On the theory of polynomial identities

Antonio loppolo

University of L'Aquila
antonio.ioppolo@univaq.it

Young Researchers Algebra Conference 2023 July 25-29, 2023

Algebras

Let F be a fixed field.
Algebra: F-vector space that is also a ring with additional properties relating the 3 operations.

Example

$M_{n}(F)$ is the algebra of $n \times n$ matrices.

All our algebras are associative!!

Identities

Identity: symbolic expression involving operations and variables which is identically satisfied when the variables are substituted in a given algebraic structure.

- $a b=b a \rightsquigarrow$ commutative identity,
- $a(b c)=(a b) c \rightsquigarrow$ associative identity.

Polynomials

$$
X=\left\{x_{1}, x_{2}, \ldots\right\} \text { countable set of non-commuting variables. }
$$

$F\langle X\rangle$ is the free algebra of polynomials on X over F.

Example

The commutator $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1} \in F\langle X\rangle$.

Polynomial identities in algebras

Polynomial identities

Definition

A polynomial $f=f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ is a polynomial identity of the algebra A, and we write $f \equiv 0$, if, for any $a_{1}, \ldots, a_{n} \in A$,

$$
f\left(a_{1}, \ldots, a_{n}\right)=0
$$

Pl-algebras: they satisfy at least one non-trivial polynomial identity.

Example

The commutator $\left[x_{1}, x_{2}\right] \equiv 0$ on any commutative algebra C.

Polynomial identities in matrix algebras

Standard polynomial: $S t_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{\sigma \in S_{m}}(-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(m)}$.

Theorem (Amitsur, Levitzki, 1950)
 $S t_{2 n}\left(x_{1}, \ldots, x_{2 n}\right) \equiv 0$ on $M_{n}(F)$.

Combinatorial approach in PI-theory.

Identities of an algebra

Problem

Finding all identities satisfied by a given algebra A.

$$
\operatorname{Id}(A)=\{f \in F\langle X\rangle: f \equiv 0 \text { on } A\}
$$

Example (Drensky, 1981)

$\operatorname{ld}\left(M_{2}(F)\right)=\left\langle S t_{4},\left[\left[x_{1}, x_{2}\right]^{2}, x_{3}\right]\right\rangle$.

$$
\operatorname{Id}\left(M_{3}(F)\right) \rightsquigarrow \text { no idea !!! }
$$

The Specht's problem

> Theorem (Kemer, 1987)
> If char $F=0, \operatorname{ld}(A)$ is finitely generated.

Example (Belov, 2010)

Negative answer in positive characteristic.

Multilinear polynomials

Definition

A polynomial $f=f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X\rangle$ is said to be multilinear if each variable x_{i} appears exactly once in each monomial of f.

$$
P_{n}=\operatorname{span}_{F}\left\{x_{\sigma(1)} \cdots x_{\sigma(n)}: \sigma \in S_{n}\right\}
$$

Example

$S t_{n}=\sum_{\sigma \in S_{n}}(-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}$ is a multilinear polynomial.

Analytical approach in Pl-theory.

The codimension sequence

Definition

The n-th codimension of an algebra A is the non-negative integer:

$$
c_{n}(A)=\operatorname{dim}_{F} \frac{P_{n}}{P_{n} \cap \operatorname{Id}(A)} \leq n!
$$

- Regev, 1972: If A is $\mathrm{PI}, c_{n}(A)$ is exponentially bounded.
- Kemer, 1979: characterizes alg. with polynomial growth.

The exponent of an algebra

Theorem (Giambruno, Zaicev, 1999)

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)} \in \mathbb{N}
$$

- Positive answer to Amitsur's conjecture ('80).
- One can classify algebras according to $\exp (A)$.

Example (Giambruno, Mishchenko, Zaicev, 2008-2014)

- Families of Lie algebras in which $\exp (A) \notin \mathbb{N}$.
- Families of non-associative algebras s.t. $\exp (A)$ does not exist.

Pl-theory techniques

Superalgebras

A superalgebra A is an algebra graded by the cyclic group \mathbb{Z}_{2} :

$$
A=A_{0} \oplus A_{1}, \quad \text { with } A_{i} A_{j} \subseteq A_{i+j(\bmod 2)}
$$

Physics: algebraic structure describing bosons and fermions.

Example

$M_{2}(F)$ is a superalgebra with grading: $\left\{\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)\right\} \oplus\left\{\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right)\right\}$.

Finite dimensional case

Step 1: reduction to the finite dimensional case.

Theorem (Kemer, 1988)
For any alg. $A, \operatorname{Id}(A)=\operatorname{Id}(G(B))$, where B is a f.d. superalgebra.

Wedderburn-Malcev decomposition

Step 2: Wedderburn-Malcev decomposition.

Theorem

An algebra A can be decomposed as

$$
A=A_{1} \oplus \cdots \oplus A_{k}+J, \text { where }
$$

- the A_{i} 's are simple algebras,
- J is the Jacobson radical of A.

Simple algebras

Definition

A is simple if $A^{2} \neq 0$ and it has no non-zero proper ideals.

Example

The matrix algebra $M_{n}(F)$ is simple.

Step 3: Classification of simple algebras.

- Wedderburn-Artin theorems: just $M_{n}(F)$.

Last step

Step 4: PI-theory theorems.

Algebras with trace

Algebras with trace

Definition

Let A be an associative algebra with unit. A linear map $\operatorname{tr}: A \rightarrow F$ is a trace on A if $\operatorname{tr}(a b)=\operatorname{tr}(b a)$, for all $a, b \in A$.

Example

The usual trace on the matrix algebra $M_{n}(F)$ is defined as

$$
\operatorname{tr}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)=a_{11}+\cdots+a_{n n} .
$$

Pl-theory for this kind of algebras

A surprising result

Theorem (Razmyslov, 1974, Procesi, 1976)

$\operatorname{ld}\left(M_{n}(F), t r\right)$ is generated by the n-th Cayley-Hamilton polynomial.

```
Example (2 < 2 matrices)
Id}(\mp@subsup{M}{2}{}(F),\operatorname{tr})=\langle\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}+\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}+\operatorname{tr}(\mp@subsup{x}{1}{})\operatorname{tr}(\mp@subsup{x}{2}{})-\operatorname{tr}(\mp@subsup{x}{1}{})\mp@subsup{x}{2}{}-\operatorname{tr}(\mp@subsup{x}{2}{})\mp@subsup{x}{1}{}-\operatorname{tr}(\mp@subsup{x}{1}{}\mp@subsup{x}{2}{})\rangle
```


Recent developments

Let D_{n} be the algebra of $n \times n$ diagonal matrices.

Example

A trace on D_{n} is just a linear map $\operatorname{tr}: D_{n} \rightarrow F$.

- I., Koshlukov, La Mattina, 2021: $\operatorname{Id}\left(D_{2}, t r\right)$ and $\operatorname{Id}\left(D_{3}, t r\right)$.
- I., Koshlukov, La Mattina, 2021/22: growth theorems on $c_{n}^{\text {tr }}(A)$.
- Giambruno, I., La Mattina, 2023: Amitsur's conjecture.

$$
\exp ^{t r}(A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{t r}(A)} \in \mathbb{N}
$$

Thank you for your attention.

