Irreducible representations of the Hecke–Kiselman algebras

Magdalena Wiertel University of Warsaw, Poland

l'Aquila, July 2023

Definition (Ganyushkin, Mazorchuk)

Let Θ be a simple <u>oriented graph</u> with *n* vertices. Then the corresponding Hecke–Kiselman monoid HK_{Θ} is the monoid generated by <u>idempotents</u> x_1, \ldots, x_n such that:

- 1) if the vertices *i*, *j* are not connected in Θ , then $x_i x_j = x_j x_i$,
- 2) if *i*, *j* are connected by an arrow $i \rightarrow j$ in Θ , then $x_i x_j x_i = x_j x_i x_j = x_i x_j$.

If K is a field then $K[HK_{\Theta}]$ denotes the corresponding monoid algebra, called the Hecke–Kiselman algebra.

\rightsquigarrow natural quotient of the 0-Hecke monoids

Theorem (Ganyushkin, Mazorchuk)

- 1) Monoid HK_{Θ} is finite \iff the graph Θ is acyclic.
- 2) Finite Hecke–Kiselman monoids are \mathcal{J} -trivial, that is $HK_{\Theta} w HK_{\Theta} = HK_{\Theta} v HK_{\Theta}$ implies that w = v in HK_{Θ} .

Definition (Ganyushkin, Mazorchuk)

Let Θ be a simple <u>oriented graph</u> with *n* vertices. Then the corresponding Hecke–Kiselman monoid HK_{Θ} is the monoid generated by <u>idempotents</u> x_1, \ldots, x_n such that:

- 1) if the vertices *i*, *j* are not connected in Θ , then $x_i x_j = x_j x_i$,
- 2) if *i*, *j* are connected by an arrow $i \rightarrow j$ in Θ , then $x_i x_j x_i = x_j x_i x_j = x_i x_j$.

If K is a field then $K[HK_{\Theta}]$ denotes the corresponding monoid algebra, called the Hecke–Kiselman algebra.

 \rightsquigarrow natural quotient of the 0-Hecke monoids

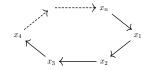
Theorem (Ganyushkin, Mazorchuk)

- 1) Monoid HK_{Θ} is finite \iff the graph Θ is acyclic.
- 2) Finite Hecke–Kiselman monoids are \mathcal{J} -trivial, that is $HK_{\Theta} w HK_{\Theta} = HK_{\Theta} v HK_{\Theta}$ implies that w = v in HK_{Θ} .

Algebra $K[C_n]$ associated to an oriented cycle

Monoid C_n for any $n \ge 3$ is given by the presentation

$$\langle x_1, \dots, x_n : x_i^2 = x_i, x_i x_{i+1} = x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1}$$
 for $i = 1, \dots, n$,
 $x_i x_j = x_j x_i$ for $n-1 > i-j > 1
angle$



What is known about $K[C_n]$?

- (Denton) C_n is a <u>*J*</u>-trivial monoid.
- (Męcel, Okniński) $K[C_n]$ is a PI-algebra of Gelfand–Kirillov dimension one.
- (Okniński, W.) Algebra K[C_n] is Noetherian and semiprime.

Tool: semigroups of matrix type

Definition

If S is a semigroup, A, B are nonempty sets and $P = (p_{ba})$ is a $B \times A$ - matrix with entries in S^0 , then the semigroup of matrix type $\mathcal{M}^0(S, A, B; P)$ over S is the set of all matrices of size $A \times B$ with at most one nonzero entry with the operation

$$M \cdot N = M \circ P \circ N$$

for every matrices M and N, where \circ is standard matrix multiplication.

Ideal chain and matrix structures inside C_n

Theorem

 C_n has a chain of ideals

$$\emptyset = I_{n-2} \triangleleft I_{n-3} \triangleleft \cdots \triangleleft I_0 \triangleleft I_{-1} \triangleleft C_n,$$

with the following properties

- 1) for i = 0, ..., n 2 there exist semigroups of matrix type $M_i \subset I_{i-1}/I_i$ (we agree that $I_{n-3}/\emptyset = I_{n-3} \cup \{\theta\}$) such that the sets $(I_{i-1}/I_i) \setminus M_i$ are finite and C_n/I_{-1} is a finite semigroup;
- 2) $M_i = \mathcal{M}^0(S_i, A_i, B_i; P_i)$, where S_i is the infinite cyclic semigroup, P_i is a square symmetric matrix of size $B_i \times A_i$ with coefficients in $S_i^1 \cup \{\theta\}$ and $|A_i| = |B_i| = {n \choose i+1}$.

Motivation: irreducible representations of finite monoids

Every finite monoid \boldsymbol{M} admits a chain of principal ideals

$$\emptyset = M_k \triangleleft M_{k-1} \triangleleft \cdots \triangleleft M_1 = M$$

such that each factor is either null semigroup or 0-simple semigroup, which is isomorphic to $\mathcal{M}^0(G, X, Y; P)$, where G is a group.

Clifford-Munn-Ponizovskii theorem 1) $\begin{cases} \text{irreducible representations of} \\ \text{monoid M} \end{cases} \iff \begin{cases} \text{irreducible representations of} \\ 0\text{-simple factors} \end{cases}$ 2) $\begin{cases} \text{irreducible representations} \\ \text{of } 0\text{-simple semigroup} \\ \mathcal{M}^{0}(G, X, Y; P) \end{cases} \iff \begin{cases} \text{irreducible representations of} \\ \text{the maximal subgroup G} \end{cases}$

Case of finite $\mathcal J\text{-trivial}$ monoids

$$\left\{ \begin{matrix} \text{irreducible representations} \\ \text{of } M \end{matrix} \right\} \nleftrightarrow \left\{ \begin{matrix} \text{idempotents of } M \end{matrix} \right\}$$

Irreducible representations of the algebra $K[C_n]$

Theorem

Let $\varphi : K[C_n] \longrightarrow M_j(K)$ be an irreducible representation of the Hecke–Kiselman algebra $K[C_n]$ over an algebraically closed field K. If $\varphi(K[I_{n-3}]) \neq 0$ set i = n - 2. Otherwise take the minimal $i \in \{-1, \ldots, n-3\}$ such that $\varphi(K[I_i]) = 0$.

- If i ≥ 0 and φ(K[M_i]) ≠ 0, then the representation φ is induced by a representation of K[M_i].
- If (i≥0 and φ(K[M_i]) = 0) or i = -1, then the representation φ is one-dimensional and induced by an idempotent e ∈ I_{i-1} \ I_i or e ∈ C_n \ I₋₁, respectively.

 \rightsquigarrow characterization of all idempotents of the monoid C_n is known

Irreducible representations of $K[M_i]$

Recall that $M_i = \mathcal{M}^0(S_i, A_i, B_i; P_i)$, where S_i is infinite cyclic semigroup generated by s_i , P_i is a $B_i \times A_i$ matrix with coefficients in $S_i^1 \cup \{\theta\}$.

 $M_i \rightsquigarrow$ completely 0-simple closure $cl(M_i) = \mathcal{M}^0(\operatorname{gr}(s_i), A_i, B_i; P_i)$.

Theorem

Every irreducible representation of the infinite cyclic group $gr(s_i)$ induces a unique irreducible representation of M_i . It is induced by an irreducible representation of $cl(M_i)$.

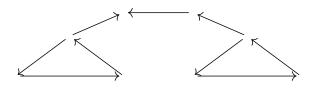
Conversely, every irreducible representation of M_i comes from a representation of the group $gr(s_i)$, and can be uniquely extended to an irreducible representation of $cl(M_i)$.

PI Hecke-Kiselman algebras

Theorem (Męcel, Okniński)

Hecke–Kiselman algebra $K[HK_{\Theta}]$ satisfies a polynomial identity if and only if Θ does not contain two different cycles connected by an oriented path of length $k \ge 0$.

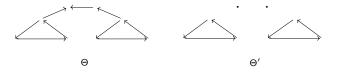
Example



Θ

The radical of PI Hecke-Kiselman algebras

Let Θ' be the subgraph of Θ obtained by deleting all arrows $x \to y$ that are not contained in any cyclic subgraph of Θ .



The radical of PI Hecke–Kiselman algebra (Okniński, W.)

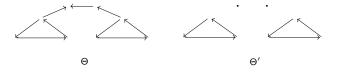
The Jacobson radical $J(K[HK_{\Theta}])$ of $K[HK_{\Theta}]$ comes from a precisely described congruence on the monoid HK_{Θ} . Moreover

 $K[HK_{\Theta}]/J(K[HK_{\Theta}]) \cong K[HK_{\Theta'}] \cong K[HK_{\Theta_1}] \otimes \cdots \otimes K[HK_{\Theta_m}],$

where $\Theta_1, \ldots, \Theta_m$ are connected components of Θ' , and algebras $K[HK_{\Theta_i}]$ are isomorphic to $\underline{K \oplus K}$ or to the algebra $\underline{K[C_j]}$, for some $j \ge 3$, for all $i = 1, \ldots, m$.

The radical of PI Hecke-Kiselman algebras

Let Θ' be the subgraph of Θ obtained by deleting all arrows $x \to y$ that are not contained in any cyclic subgraph of Θ .



The radical of PI Hecke-Kiselman algebra (Okniński, W.)

The Jacobson radical $J(K[HK_{\Theta}])$ of $K[HK_{\Theta}]$ comes from a precisely described congruence on the monoid HK_{Θ} . Moreover

$$K[HK_{\Theta}]/J(K[HK_{\Theta}]) \cong K[HK_{\Theta'}] \cong K[HK_{\Theta_1}] \otimes \cdots \otimes K[HK_{\Theta_m}],$$

where $\Theta_1, \ldots, \Theta_m$ are connected components of Θ' , and algebras $K[HK_{\Theta_i}]$ are isomorphic to $\underline{K \oplus K}$ or to the algebra $\underline{K[C_j]}$, for some $j \ge 3$, for all $i = 1, \ldots, m$.

Irreducible representations of PI Hecke-Kiselman algebras

Theorem

Every irreducible representation of $K[HK_{\Theta}]$ is of the form

$$\begin{array}{c} \mathcal{K}[\mathsf{HK}_{\Theta}] \to \mathcal{K}[\mathsf{HK}_{\Theta_{1}}] \otimes \cdots \otimes \mathcal{K}[\mathsf{HK}_{\Theta_{m}}] \to \\ \\ \mathcal{M}_{r_{1}}(\mathcal{K}) \otimes \cdots \otimes \mathcal{M}_{r_{m}}(\mathcal{K}) \xrightarrow{\simeq} \mathcal{M}_{r_{1}\cdots r_{m}}(\mathcal{K}) \end{array}$$

where

- 1) the first map is the natural epimorphism onto $K[HK_{\Theta}]/J(K[HK_{\Theta}])$,
- the second homomorphism is ψ₁ ⊗ · · · ⊗ ψ_m for some irreducible representations ψ_i : K[HK_{Θi}] → M_{ri}(K), i = 1,..., m.

References

- D11 T. Denton, Excursions into Algebra and Combinatorics at q = 0, PhD thesis, University of California, Davis (2011), arXiv: 1108.4379.
- GM11 O. Ganyushkin and V. Mazorchuk, On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra 10 (2011), 174–191.
- MO19 A. Męcel, J. Okniński, Growth alternative for Hecke-Kiselman monoids, Publicacions Matemàtiques 63 (2019), 219-240.
- OW20 J. Okniński, M. Wiertel, Combinatorics and structure of Hecke–Kiselman algebras, Communications in Contemporary Mathematics 22, No.07 (2020), 2050022.
- OW20r J. Okniński, M. Wiertel, M. On the radical of a Hecke–Kiselman algebra, Algebras and Represent. Theory, 24 (2021), 1431–1440.
 - S16 B. Steinberg, Representation Theory of Finite Monoids, Springer (2016).
 - W21 M. Wiertel, Irreducible representations of Hecke–Kiselman monoids, Linear Algebra and its Applications, 640, 12-33 (2022).

Thank you!