On Quadratic Rational Groups

Marco Vergani

Università degli Studi di Firenze

YRAC - 27 July 2023

Marco Vergani (UniFi)

On Quadratic Rational Groups

YRAC - 27 July 2023 1 / 20

< ∃ →

< □ ▶

3

Introduction

Marco Vergani (UniFi)

- E

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

Dual definition from "character table perspective" of semirational groups.

Ξ.

590

< ∃ >

=

▲ 4日 ▶

- Dual definition from "character table perspective" of semirational groups.
- 2 Related to "nice" characterization for central units of $\mathcal{U}(\mathbb{Z}G)$.

▲ 글 ▶

3

 \mathcal{A}

- Dual definition from "character table perspective" of semirational groups.
- ② Related to "nice" characterization for central units of $\mathcal{U}(\mathbb{Z}G)$.
- Nice bound of the spectra in case of solvable quadratic rational groups, important to study Gruenberg-Kegel graphs.

Ξ.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ⊒ ▶

- Every group is finite.
- $x \sim y$ denotes the conjugation in the group.
- |g| is the order of the element $g \in G$.

•
$$B_G(g) := \frac{N_G(\langle g \rangle)}{C_G(\langle g \rangle)}$$

• $\mathbb{Q}_n := \mathbb{Q}(e^{2\pi i/n})$

글 🕨 🖌 글 🕨

- 4 🗗 ▶

3

 \mathcal{A}

Definition

A group *G* is called **quadratic rational** iff $\forall \chi \in Irr(G)$ then $[\mathbb{Q}(\chi) : \mathbb{Q}] \leq 2$, where $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g)|g \in G)$.

Definition

An element $x \in G$ is called **semirational** iff $\exists m_x$ such that for every (j, |x|) = 1 then $x^j \sim x$ or $x^j \sim x^{m_x}$. A group is called **semirational** iff every element is semirational. A group is called **r-semirational** if for any $x \in G$ $m_x = r$. In particular a group is called **inverse-semirational** if is -1-semirational.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Examples

Marco Vergani (UniFi)

On Quadratic Rational Groups

YRAC - 27 July 2023 5 / 20

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

• Rational groups, in particular S_n .

< ∃ >

э.

< □ ▶

- 4 🗗 ▶

Ð,

- Rational groups, in particular S_n .
- \mathbb{M} is inverse semirational.

王

590

< ∃ >

-

• 句

< □ ▶

- Rational groups, in particular S_n .
- \mathbb{M} is inverse semirational.
- A_n is quadratic rational and semirational, in general not inverse-semirational.

< ∃ >

< □ ▶

3

 \mathcal{A}

- Rational groups, in particular S_n .
- \mathbb{M} is inverse semirational.
- A_n is quadratic rational and semirational, in general not inverse-semirational.
- D_{10} is ± 3 -semirational but not inverse semirational.

∃►

Ξ.

- Rational groups, in particular S_n .
- \mathbb{M} is inverse semirational.
- A_n is quadratic rational and semirational, in general not inverse-semirational.
- D_{10} is ± 3 -semirational but not inverse semirational.
- SmallGroup(32, 42) is quadratic rational but not semirational.

 $\checkmark Q (\sim$

- Rational groups, in particular S_n .
- \mathbb{M} is inverse semirational.
- A_n is quadratic rational and semirational, in general not inverse-semirational.
- D_{10} is ± 3 -semirational but not inverse semirational.
- SmallGroup(32, 42) is quadratic rational but not semirational.
- SmallGroup(32, 9) is semirational but not quadratic rational.

 $\checkmark Q (\sim$

Character Table Duality

Marco Vergani (UniFi)

÷.

590

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let G be a finite quadratic rational group. Then the group of central units of $\mathbb{Z}G$ is finitely generated and the number of generator is exactly the number of irreducible character with real quadratic extension.

In general we have the inclusion

$$\mathcal{Z}(\mathcal{U}(\mathbb{Z}G)) \geq \pm \mathcal{Z}(G)$$

but there is a family of groups that satisfies the following equality:

Definition

A finite group G is called **cut** (central units trivial) iff

$$\mathcal{Z}(\mathcal{U}(\mathbb{Z}G)) = \pm \mathcal{Z}(G)$$

-∢ ⊒ ▶

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Proposition (Bächle, 2017)

The following are equivalent.

Proposition (Bächle, 2017)

The following are equivalent.

• G is **cut**.

Marco Vergani (UniFi)

Proposition (Bächle, 2017)

The following are equivalent.

- G is cut.
- **2** *G* is inverse semirational.

Proposition (Bächle, 2017)

The following are equivalent.

- **1** *G* is **cut**.
- \bigcirc G is inverse semirational.
- ③ For any $x \in G$ then either $|B_G(x)| = \varphi(|x|)$ or $|B_G(x)| = \varphi(|x|)/2$ and $x \not\sim x^{-1}$.

Proposition (Bächle, 2017)

The following are equivalent.

- G is cut.
- **2** G is inverse semirational.
- ③ For any $x \in G$ then either $|B_G(x)| = \varphi(|x|)$ or $|B_G(x)| = \varphi(|x|)/2$ and $x \not\sim x^{-1}$.
- ④ If $\mathbb{Q}G \cong \bigoplus_{k=1}^{m} M_{n_k}(D_k)$ is the Wedderburn decomposition where $m, n_k \in \mathbb{Z}_{\geq 1}$ and D_k rational division algebras for each k, then

$$\mathcal{Z}(D_k)\cong \mathbb{Q}(\sqrt{-d})$$

for some $d \in \mathbb{Z}_{\geq 0}$ square free.

8 / 20

Proposition (Bächle, 2017)

The following are equivalent.

- G is cut.
- **2** G is inverse semirational.
- ③ For any $x \in G$ then either $|B_G(x)| = \varphi(|x|)$ or $|B_G(x)| = \varphi(|x|)/2$ and $x \not\sim x^{-1}$.
- ④ If $\mathbb{Q}G \cong \bigoplus_{k=1}^{m} M_{n_k}(D_k)$ is the Wedderburn decomposition where $m, n_k \in \mathbb{Z}_{\geq 1}$ and D_k rational division algebras for each k, then

$$\mathcal{Z}(D_k)\cong \mathbb{Q}(\sqrt{-d})$$

for some $d \in \mathbb{Z}_{\geq 0}$ square free.

Some d ∈ Z≥1, i.e. has field of values of χ is Q(χ) = Q(√-d) for guadratic extension of Q.

One of the main motivation for studying the finite subgroups of $\mathcal{U}(\mathbb{Z}G)$ is the following problem that asks whether the ring structure of RG determines the group G up to isomorphism:

Isomorphism Problem (ISO)

Does the group rings RG and RH being isomorphic imply that so are the groups G and H? In particular for $R = \mathbb{Z}$.

A weaker answer to the Isomorphism problem could be provided by solving the following problem:

Prime graph Question (PQ)

Let G be a finite group. Do G and $V(\mathbb{Z}G)$ have the same prime graph?

This problem is particurally interesting since there exist a reduction theorem.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To every finite group G we can attach a graph that is related to the prime spectra of G.

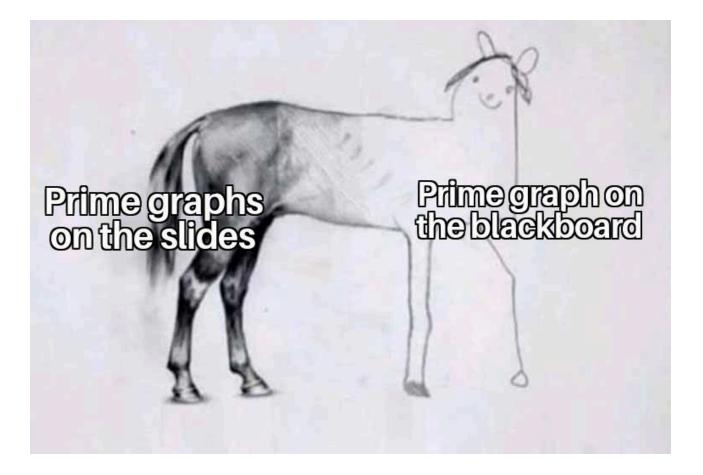
Definition

The prime graph (or Gruenberg-Kegel graph) is the undirected loop-free and multiple-free graph whose vertices are the primes in the prime spectra of G, and two vertices p and q are joined by an edge, if and only if Gcontains an element of order pq.

≣▶ ∢ ≣▶

3

Examples of prime graphs



Marco Vergani (UniFi)

YRAC - 27 July 2023

э.

▲ ① ▶

< □ ▶

- ₹ ₹ ►

11 / 20

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

We can see that in the case of solvable groups there is a nice theorem that characterize the prime graph.

Theorem (Gruenberg-Kegel)

Let G a finite solvable group, then $\Gamma_{GK}(G)$ has at most 2 connected components, and has exactly 2 components, if and only if G is a Frobenius group or a 2-Frobenius group.

In particular if the group G is solvable then the prime graph question holds. Still interesting is to understand what kind of graphs can be realized by a (certain) group.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Since there is a reduction theorem that allows us to consider the Prime graph Problem only on almost simple group then we have the following theorems:

Theorem H (Bächle, Kiefer, Maheshwary, Del Rio)

The Prime graph question has a positive answer for finite rational groups.

Theorem G (Bächle, Kiefer, Maheshwary, Del Rio)

Let g be a finite cut group such that there is no epimorphism $G \to \mathbb{M}$, where \mathbb{M} denotes the sporadic simple Monster group. Then the Prime graph Question has a positive answer for G.

What can we say about quadratic rational groups?

< ロ > < 同 > < 三 > < 三 > < 三 > <

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Marco Vergani (UniFi)

- 1

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

< □ > < □ > < □ > < □ > < □ > .

Since we are interested in studying the Gruenberg-Kegel graph of those groups, would be nice to have a bound over the prime spectra mainly in the solvable case, let us denote $\pi(G) := \{p|p \mid |G|\}$

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- ₹ ►

Since we are interested in studying the Gruenberg-Kegel graph of those groups, would be nice to have a bound over the prime spectra mainly in the solvable case, let us denote $\pi(G) := \{p|p \mid |G|\}$

Theorem (Tent, 2012)

Let G be a solvable quadratic rational group. Then

 $\pi(G) \subseteq \{2, 3, 5, 7, 13\}$

▲ 글 ▶

Since we are interested in studying the Gruenberg-Kegel graph of those groups, would be nice to have a bound over the prime spectra mainly in the solvable case, let us denote $\pi(G) := \{p|p \mid |G|\}$

Theorem (Tent, 2012)

Let G be a solvable quadratic rational group. Then

 $\pi(G)\subseteq\{2,3,5,7,13\}$

Theorem (Chilligan, Dolfi 2010-Bächle 2017)

Let G be a solvable semirational group. Then

 $\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$

Since we are interested in studying the Gruenberg-Kegel graph of those groups, would be nice to have a bound over the prime spectra mainly in the solvable case, let us denote $\pi(G) := \{p|p \mid |G|\}$

Theorem (Tent, 2012)

Let G be a solvable quadratic rational group. Then

 $\pi(G)\subseteq\{2,3,5,7,13\}$

Theorem (Chilligan, Dolfi 2010-Bächle 2017)

Let G be a solvable semirational group. Then

 $\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$

If the group is inverse-semirational then

 $\pi(G) \subseteq \{2,3,5,7\}$

Quasi-rational group

Marco Vergani (UniFi)

÷.

590

<ロト < 団 > < 巨 > < 巨 >

We have seen that inverse-semirational groups have a lot of proprieties regarding the symmetries of their character table.

- ₹ ►

< □ ▶

王

 \mathcal{A}

Quasi-rational group

We have seen that inverse-semirational groups have a lot of proprieties regarding the symmetries of their character table.

We worked on constructing a meaningful generalization that preserves a lot of those symmetries.

▲ 글 ▶

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

We have seen that inverse-semirational groups have a lot of proprieties regarding the symmetries of their character table. We worked on constructing a meaningful generalization that preserves a

lot of those symmetries.

Definition

A group is called **quasi-rational** if there exists $r \in \mathbb{Z}$ such that (r, exp(G)) = 1 and G is r-semirational. A group is called **2-quasi-rational** if is r-semirational with |r| = 2 in $(\mathbb{Z}/exp(G)\mathbb{Z})^{\times}$.

토 🕨 🗶 토 🕨 - 토

We have seen that inverse-semirational groups have a lot of proprieties regarding the symmetries of their character table. We worked on constructing a meaningful generalization that preserves a

lot of those symmetries.

Definition

A group is called **quasi-rational** if there exists $r \in \mathbb{Z}$ such that (r, exp(G)) = 1 and G is r-semirational. A group is called **2-quasi-rational** if is r-semirational with |r| = 2 in $(\mathbb{Z}/exp(G)\mathbb{Z})^{\times}$.

Theorem (MV)

Let G be a solvable 2-quasi-rational group. Then

$$\pi(G)\subseteq\{2,3,5,7\}$$

Marco Vergani (UniFi)

590

15 / 20

æ

Let G be a group with exponent n,

< □

< ∃ →

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Let G be a group with exponent n, \mathbb{F} be a subfield of \mathbb{Q}_n fixed by the cyclic subgroup generated by $\sigma_r \in Gal(\mathbb{Q}_n/\mathbb{Q})$ such that (r, n) = 1 and $\sigma_r(\zeta_n) = \zeta_n^r$. Then the following are equivalent:

-<∃> ∃

Let G be a group with exponent n, \mathbb{F} be a subfield of \mathbb{Q}_n fixed by the cyclic subgroup generated by $\sigma_r \in Gal(\mathbb{Q}_n/\mathbb{Q})$ such that (r, n) = 1 and $\sigma_r(\zeta_n) = \zeta_n^r$. Then the following are equivalent:

• *G* is *r*-semirational.

▶ < 토 ▶ = Ē

Let G be a group with exponent n, \mathbb{F} be a subfield of \mathbb{Q}_n fixed by the cyclic subgroup generated by $\sigma_r \in Gal(\mathbb{Q}_n/\mathbb{Q})$ such that (r, n) = 1 and $\sigma_r(\zeta_n) = \zeta_n^r$. Then the following are equivalent:

- *G* is *r*-semirational.
- ② $\forall \chi \in Irr(G) \mathbb{Q}(\chi)$ is quadratic or rational and $\mathbb{Q}(\chi) \cap \mathbb{F} = \mathbb{Q}$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

토 🕨 🗶 토 🕨 - 토

We have seen that the same group can have different integer r such that G is r-semirational.

< ∃ →

E

 \mathcal{A}

We have seen that the same group can have different integer r such that G is r-semirational.

Definition

Let G be a quasi-rational group and n = exp(G) then we call:

 $R_G := \{r \in (\mathbb{Z}/n\mathbb{Z})^{\times} | G \text{ is } r - semirational}\}$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

∃▶ ∢∃▶

We have seen that the same group can have different integer r such that G is r-semirational.

Definition

Let G be a quasi-rational group and n = exp(G) then we call:

$$R_G := \{r \in (\mathbb{Z}/n\mathbb{Z})^{\times} | G \text{ is } r - semirational}\}$$

We can observe that, fixed the group G, R_G is the lateral of the group:

$$H_G = \{r \in (\mathbb{Z}/n\mathbb{Z})^{\times} | g^r \sim g \; \forall g \in G\} \cong \mathcal{G}al(\mathbb{Q}_n/\mathbb{Q}(G))$$

-∢∃≯

æ.

590

▶ ◀ 重 ▶

32

▲ 🗇 🕨

◀ □ ▶

In particular, can all possible laterals of "compatible" groups H_G appear?

-∢ ⊒ ▶

-

▲ (司) ▶

3

 \mathcal{A}

In particular, can all possible laterals of "compatible" groups H_G appear?Can we obtain a complete classification of Frobenius group of quasi-rational groups?

-∢ ⊒ ▶

< □ ▶ < 凸 ▶

3

 \mathcal{A}

In particular, can all possible laterals of "compatible" groups H_G appear?Can we obtain a complete classification of Frobenius group of quasi-rational groups?

Table: Possible R_G for quasi-rational 2-groups with exponent at least 8

$\{-1,3\}$	$\{-1, -3\}$	$\{3, -3\}$	$\{-1\}$	{3}	{-3}
$\langle a \rangle_8 : \langle x \rangle_2$	$\langle a \rangle_8 : \langle x \rangle_2$	$\langle a \rangle_8 : \langle x \rangle_2$	$\langle a \rangle_8 \times \langle b \rangle_4 : \langle x \rangle_2$	$\langle a \rangle_8 \times \langle b \rangle_4 : \langle x, y \rangle_2$	$\langle a \rangle_8 \times \langle b \rangle_4 : \langle x, y \rangle_2$
$a^{x} = a^{-3}$	$a^{\chi} = a^3$	$a^{x} = a^{-1}$	$a^{x} = a^{3}$	$a^{\times} = a^{-1}$	$a^{\times} = a^{-1}$
			$b^{x} = a^4 b^{-1}$	$b^{\times} = a^4 b^{-1}$	$b^{x} = a^{4}b^{-1}$
			$a^y = a^5 b^2$	$a^y = a^5 b^2$	$a^y = a^5 b^2$
			$b^y = b^{-1}$	$b^y = b^{-1}$	$b^y = a^4 b$

▲ 글 ▶

3

$\{2,3\}$ -groups

$\{\pm 5, \pm 7\}$	$\{\pm 7, \pm 11\}$	$\{\pm 5,\pm 11\}$
$\langle a \rangle_{24} : \langle x, y \rangle_2$	$\langle a \rangle_{24} : \langle x, y \rangle_2$	$\langle a \rangle_{24} : \langle x, y \rangle_2$
$a^{x} = a^{-1}$	$a^{\times} = a^{-1}$	$a^{\scriptscriptstyle X}=a^{-1}$
$a^y = a^{-11}$	$a^{y} = a^{-5}$	$a^y = a^7$
SmallGroup(96,115)	SmallGroup(96,121)	SmallGroup(96,117)
$\{-1, -7, 5, 11\}$	$\{-1, -11, 5, 7\}$	$\{-1, -5, 7, 11\}$
$\langle a \rangle_{24} : \langle x, y \rangle_2$	$\langle a \rangle_{24} : \langle x, y \rangle_2$	$\langle a \rangle_{24} : \langle x, y \rangle_2$
$a^{ imes}=a^{-11}$	$a^{\times} = a^{-5}$	$a^{x} = a^{5}$
$a^y = a^{-5}$	$a^y = a^{11}$	$a^y = a^{-11}$
SmallGroup(96,183)	SmallGroup(96,120)	SmallGroup(96,113)
	$\{-1, -11, -5, -7\}$	
	$\langle a \rangle_{24} : \langle x, y \rangle_2$	
	$a^{x} = a^{5}$	
	$a^y = a^{11}$	
	SmallGroup(96,118)	
$\{-1, 11\}$	$\{7, -5\}$	$\{7,11\}$
SmallGroup(192,95)	SmallGroup(192,305)	SmallGroup(192,412)
{5,7}	$\{-1, -7\}$	{±7}
SmallGroup(192,414)	SmallGroup(192,713)	SmallGroup(192,415)
$\{-1,7\}$	$\{-7, -5\}$	$\{5, -7\}$
SmallGroup(192,418)	SmallGroup(192,435)	SmallGroup(192,623)
$\{-1, -5\}$	{±5}	$\{11, -5\}$
SmallGroup(192,440)	SmallGroup(192,949)	SmallGroup(192,438)
$\{-1,5\}$	{5,11}	$\{11, -7\}$
SmallGroup(192,1396)	SmallGroup(192,632)	SmallGroup(192,726)
{7}	{-5}	{-1}
SmallGroup(192,424)	SmallGroup(192,445)	SmallGroup(192,634)
{5}	{11}	{-11}
SmallGroup(192,595)	SmallGroup(192,631)	?
		∢□▶∢⊡▶∢⊒

Marco Vergani (UniFi)

YRAC - 27 July 2023

19 / 20

うくで

Marco Vergani (UniFi)

On Quadratic Rational Groups

YRAC - 27 July 2023 20 / 20

When you add a meme after acknowledgments:

Marco Vergani (UniFi)

On Quadratic Rational Groups

YRAC - 27 July 2023

20 / 20

 $\mathcal{A} \mathcal{A} \mathcal{A}$