CENTRALLY NILPOTENT SKEW BRACES

 (JOINT W. ERIC JESPERS, LEANDRO VENDRAMIN)Arne Van Antwerpen

THE YANG-BAXTER EQUATION: A PICTURE

Definition

A set-theoretic solution to the Yang-Baxter equation is a tuple (X, r), where X is a set and $r: X \times X \longrightarrow X \times X$ a function such that (on X^{3})

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{X} \times r\right)\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{X} \times r\right)
$$

For further reference, denote $r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)$.

DEFINITIONS AND EXAMPLES

Definition

A set-theoretic solution (X, r) is called

- left (resp. right) non-degenerate, if λ_{X} (resp. ρ_{y}) is bijective,
- non-degenerate, if it is both left and right non-degenerate,
- involutive, if $\mathrm{r}^{2}=\mathrm{id}_{x \times x}$,

Examples

- Twist solution: $r(x, y)=(y, x)$,
- Lyubashenko, where $f, g: X \rightarrow X$ are maps with $f g=g f$: $r(x, y)=(f(y), g(x))$.

THE STRUCTURE MONOID AND GROUP

Definition

Let (X, r) be a set-theoretic solution of the Yang-Baxter equation. Then the group

$$
G(X, r)=\left\langle x \in X \mid x y=\lambda_{x}(y) \rho_{y}(x)\right\rangle,
$$

is called the structure group of (X, r).

WHAT ARE SKEW LEFT BRACES

Definition (Rump, CJO, GV)

Two groups ($A,+$) and (A, \circ) form a skew left brace $(A,+, \circ$), if for any $a, b, c \in A$, it holds that

$$
a \circ(b+c)=(a \circ b)-a+(a \circ c)
$$

where $-a$ denotes the inverse of a in $(A,+)$.
Moreover, if $(A,+)$ is abelian, then $(A,+, \circ)$ is a left brace

EXAMPLES OF SKEW BRACES

Example

1. Every group $(G,+)$ has the skew left brace structure $(G,+,+)$, these are trivial skew left braces.
2. The dihedral group $D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle$ has a left brace structure, where $a^{i} b^{j}+a^{k} b^{l}=a^{i+k+j} b^{j+1}$ with $j, I \in\{0,1\}$.
3. Radical rings.

CREATING SOLUTIONS ON SKEW BRACES (1)

Definition (Rump, CJO, GV)

Let $(B,+)$ and (B, \circ) be groups on the same set B such that for any $a, b, c \in B$ it holds that

$$
a \circ(b+c)=(a \circ b)-a+(a \circ c) .
$$

Then ($B,+, \circ$) is called a skew (left) brace If $(B,+)$ is abelian, one says that $(B,+, \circ)$ is a left brace.

CREATING SOLUTIONS ON SKEW BRACES (1)

Definition (Rump, CJO, GV)

Let $(B,+)$ and (B, \circ) be groups on the same set B such that for any $a, b, c \in B$ it holds that

$$
a \circ(b+c)=(a \circ b)-a+(a \circ c) .
$$

Then ($B,+, \circ$) is called a skew (left) brace If $(B,+)$ is abelian, one says that $(B,+, \circ)$ is a left brace.

Denote for $a, b \in B$, the map $\lambda_{a}(b)=-a+a \circ b$. Then, $\lambda:(B, \circ) \longrightarrow \operatorname{Aut}(B,+): a \mapsto \lambda_{a}$ is a well-defined group morphism.

CREATING SOLUTIONS ON SKEW BRACES (2)

Theorem

Let $(B,+, \circ)$ be a skew left brace. Denote for any $a, b \in B$, the $\operatorname{map}_{B}(a, b)=\left(\lambda_{a}(b), \overline{(\bar{a}+b)} \circ b\right)$. Then $\left(B, r_{B}\right)$ is a bijective non-degenerate solution. Moreover, if $(B,+)$ is abelian, then $\left(B, r_{B}\right)$ is involutive.

Remark

Let (X, r) be a bijective non-degenerate set-theoretic solution. Then, $G(X, r)$ is a skew left brace and carries an associated solution as a skew brace.

THE *-OPERATION IN SKEW LEFT BRACES

Definition

Let $(A,+, \circ)$ be a skew left brace. For any $a, b \in A$, denote

$$
a * b=-a+a \circ b-b=\lambda_{a}(b)-b
$$

Denote $X * Y$ for the additive subgroup generated by $x * y$, where $x \in X, y \in Y$ and $X, Y \subseteq A$.

Example

1. For $(G,+,+)$, one sees that $a * b=0$. Actually a characterization.
2. For $\left(D_{2 n},+, \cdot\right)$ one can see that $\left(a^{i} b^{j}\right) *\left(a^{k} b^{\prime}\right) \in\langle a\rangle$.

SOLUTIONS LIKE LYUBASHENKO'S

Definition (Retraction)

Let (X, r) be a finite bijective non-degenerate set-theoretic solution. Define the relation $x \sim y$ on X, when $\lambda_{x}=\lambda_{y}$ and $\rho_{X}=\rho_{y}$. Then, there exists a natural set-theoretic solution on X / \sim called the retraction $\operatorname{Ret}(X, r)$.

SOLUTIONS LIKE LYUBASHENKO'S

Definition (Retraction)

Let (X, r) be a finite bijective non-degenerate set-theoretic solution. Define the relation $x \sim y$ on X, when $\lambda_{x}=\lambda_{y}$ and $\rho_{X}=\rho_{y}$. Then, there exists a natural set-theoretic solution on X / \sim called the retraction $\operatorname{Ret}(X, r)$.

Denote for $n \geq 2, \operatorname{Ret}^{n}(X, r)=\operatorname{Ret}\left(\operatorname{Ret}^{n-1}(X, r)\right)$. If there exists a positive integer n such that $\left|\operatorname{Ret}^{n}(X, r)\right|=1$, then (X, r) is called a multipermutation solution

WHY ARE MULTIPERMUTATION SOLUTIONS INTERESTING

Theorem (CJOBVLGI)
Let (X, r) be a finite involutive non-degenerate set-theoretic solution. The following statements are equivalent,

- the solution (X, r) is a multipermutation solution,
- the group $G(X, r)$ is left orderable,
- the group $G(X, r)$ is diffuse,
- the group $G(X, r)$ is poly-Z .

Breaks down for non-involutive solutions, as $G(X, r)$ has torsion in that case!

ALL MULTIPERMUTATION SOLUTIONS

Proposition

Let (X, r) be a multipermutation solution, then the skew brace $G(X, r)$ is of nilpotent type.
So we focus attention on so-called skew braces ($B,+, \circ$) of nilpotent type, i.e. $(B,+)$ is a nilpotent group.

Left Nilpotent

- $B^{n+1}=B * B^{n}$ left ideals
- $\left|B^{k}\right|=1$, then left
nilpotent
- Nilpotent type: (B, \circ) nilpotent
- Example: $\left(C_{2^{n}}, D_{2^{n}}\right)$

Right nilpotent

- $B^{(n+1)}=B^{(n)} * B$ ideals
- $\left|B^{(k)}\right|=1$, then right nilpotent
- Nilpotent type:
$\left(B, r_{B}\right)$ multipermutation
- Example: $\left(C_{2 n}, D_{2 n}\right)$

MEASURING MULTIPERMUTATION

Definition

A skew brace $(B,+, \circ)$) is said to be multipermutation, if $\left(B, r_{B}\right)$ is multipermutation.
Equivalently:

- B is right nilpotent of nilpotent type,
- The chain $\operatorname{Soc}^{n}(B)$ ends in B.

Here, $\operatorname{Soc}^{n+1}(B)$ is the pullback in B of $\operatorname{Soc}\left(B / \operatorname{Soc}^{n}(B)\right)$ with

$$
\operatorname{Soc}(A)=\operatorname{ker} \lambda \cap Z(B,+) .
$$

CENTRAL NILPOTENCY

Definition

Let B be a skew brace. Denote $\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$.
Equivalently,

$$
\operatorname{Ann}(B)=\left\{x \in Z(B,+) \mid \lambda_{x}=\operatorname{id}_{B}, \lambda_{y}(x)=x \text { for all } y \in B\right\}
$$

Definition

Let B be a skew brace. One says that B is centrally nilpotent, if the chain $A n n^{n}(B)$ ends in B, where $A n n^{k+1}(B)$ is pullback of $A n n\left(B / A n n^{k}(B)\right)$.

DESCENDING SERIES

We have an ascending ideal series, what about descending?

$$
\Gamma_{n+1}(B, I)=\left\langle B * \Gamma_{n}(B, I), \Gamma_{n}(B, I) * B,\left[\Gamma_{n}(B, I), B\right]_{+}\right\rangle
$$

is an ideal in B, if I is an ideal.
Proposition (Bonatto,Jedlicka)
Let B be a skew brace. Then, B is centrally nilpotent, if for some positive integer n we have $\Gamma_{n}(B, B)=1$.

STRONGLY NILPOTENT

$$
B^{[n]}=\left\langle B^{[l]} * B^{[n-i]} \mid 1 \leq i \leq n\right\rangle .
$$

Proposition (Smoktunowicz)

Let B be a skew brace. Then, B is strongly nilpotent if and only if B is left and right nilpotent and (B, \circ) is nilpotent.
What if we account for additive commutator?

$$
\Gamma_{[n]}(B)=\left\langle\Gamma_{[i]}(B) * \Gamma_{[n-i]}(B),\left[\Gamma_{[i]}(B), \Gamma_{[n-i]}(B)\right]_{+}\right\rangle
$$

Proposition (Jespers, AVA, Vendramin)

Let B be a skew brace of nilpotent type. If B is centrally nilpotent, then B is strongly centrally nilpotent. Moreover, B is strongly nilpotent.

NILPOTENCY CLASS

Both the chains $\Gamma_{n}(B)$ and $\Gamma_{[n]}(B)$ allow to define a notion of nilpotency class of B.

Problem

- Can we relate the above nilpotency classes?
- Are there bounds using the additive/multiplicative nilpotency class?

FINITELY GENERATED

Proposition (Jespers, AVA, Vendramin)

Let B be a centrally nilpotent skew brace with ACC on sub skew braces. TFAE

- B is finitely generated as a brace,
- $(B,+)$ is finitely generated as a group,
- (B, \circ) is finitely generated as a group.

Vice versa, every finitely generated Centrally nilpotent skew brace has ACC on sub skew braces.

What is torsion in a skew brace?

Proposition (Jespers, AVA, Vendramin)

Let B be a centrally nilpotent skew brace. Then $T_{+}(B)=T_{\circ}(B)$, which is an ideal of B. Finite, if B is finitely generated.

Proposition (Jespers, AVA, Vendramin)
Let B be a centrally nilpotent skew brace. If $T_{+}(B)=0$. Then, $a^{n}=b^{n}$ or na $=n b$ implies $a=b$.

REFERENCES

1. E. Jespers, A. Van Antwerpen, L. Vendramin, Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation, Comm. Cont. Math., to appear.
2. F. Cedó, A. Smoktunowicz, L. Vendramin, Skew left braces of nilpotent type, Proc.Lond.Math.Soc. 118(6), 2019.
3. A. Smoktunowicz, On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation, Trans.Amer.Math.Soc. 370(9), 2018.
4. M. Bonatto, P. Jedlička, Central nilpotency of skew braces, J. Alg. Appl., online
