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1 DLP

Let G be a group, P ∈ G, Q ∈ ⟨P ⟩ = {0, P, 2P, 3P, . . . }.

Discrete logarithm problem (DLP)

Compute n ∈ Z such that Q = nP .

(Silly) example

G = (R∗, ·), P = 10, Q = 1000. As

Q = P · P · P =⇒ n = 3.

You figure it out by simply counting the digits of Q: (super) efficient!
⇝ not smart for constructing one-way functions.
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1 Crypto-why

Easy way to construct key-exchange protocols: G = ⟨g⟩, and

Alice

a ∈ Z

ga = ga ∈ G

gab = (gb)a ∈ G

Bob

b ∈ Z

gb = gb ∈ G

gab = (ga)b ∈ G
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Easy way to construct key-exchange protocols: G = ⟨g⟩, and

Alice

a ∈ Z

ga = ga ∈ G

gab = (gb)a ∈ G

Bob

b ∈ Z

gb = gb ∈ G

gab = (ga)b ∈ G

Eve

ga, gb
?
⇝ gab
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1 ECDLP

We usually employ G = group of points of an elliptic curve E defined
over a finite field.
Elliptic curve
Smooth plane projective cubic with a specified point O.

... in practice
The projective points (X : Y : Z) ∈ P2(Fq) satisfying a Weierstrass
equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

The specified point (”at infinity”) is O = (0 : 1 : 0).
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1 Point operation

Chord-tangent definition

... But can also be defined on open coverings!

W. Bosma, H. W. Lenstra, Complete Systems of Two Addition Laws for Elliptic
Curves, J. Number Theory 53, 1995, pp. 229–240.
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1 Elliptic curves over rings

Point operation
There are fx, fy, fz ∈ Z[x1, y1, z1, x2, y2, z2](2,2) such that

(X1 : Y1 : Z1) + (X2 : Y2 : Z2) =(
fx(Xi, Yi, Zi) : fy(Xi, Yi, Zi) : fz(Xi, Yi, Zi)

)
.

[Oversimplified]

In some cases, these f∗’s may also have “nice” representations.

M. Sala, D. Taufer, Elliptic Loops, J. Pure Appl. Algebra 227 (12), 2023.
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1 Elliptic curves over rings

EC/Rings

It is possible to extend the group operation to rings with finitely many
maximal ideals.
Over such rings, we can still define elliptic curves with an explicit
projective description!

H. W. Lenstra, Elliptic curves and number-theoretic algorithms, Proc. International
Congress of Mathematicians, 1986, pp. 99–120.
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2 Hardness of the ECDLP

The ECDLP is usually difficult over Fq, i.e. the best-known algorithms
(Baby-step Giant-step, Pollard rho/kangaroo) are exponential in the
size of the input parameters ( ∼ O(√q) ).

BUT
▶ We do not have proof of hardness.
▶ There are proven exceptions:

• ECs with smooth orders.
• (Sub)groups of order pi, with p|q.
• ECs with a small embedding degree.
• ECs that may be (homomorphically) mapped into low-genus

algebraic curves.
• ECs over small degree extension fields.
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2 Pohlig–Hellman

If P generates a group of order N = pe1
1 · p

e2
2 · . . . · per

r , you solve
many smaller ECDLP:

N

p1
Q = λ1

N

p1
P ,

N

p2
1
Q = (λ1 + λ2p1)N

p2
1
P ,

...
N

pe1
1
Q = (λ1 + λ2p1 + . . .+ λe1p

e1−1
1 ) N

pe1
1
P .

This provides us with the logarithm modulo pe1
1 .

Repeat for every pei
i and recover the complete logarithm via CRT.
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2 Lifting the curve

If ⟨P ⟩ is a p-group, the corresponding ECDLP may be read by lifting:

E(Z/p2Z) mod p−−−−→ E(Fp),
P ↑, Q↑ 7→ P ,Q.

pP ↑ = (pX : 1 : 0), pQ↑ = (npX : 1 : 0).

T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm
for anomalous elliptic curves, Comm. Math. Univ. Sancti Pauli 47, 1998, pp. 81–92.

N. Smart, The discrete logarithm on elliptic curves of trace one, J. Cryptology 12,
1999, pp. 193–196.

M. Sala, D. Taufer, The group structure of elliptic curves over Z/NZ,
ArXiv:2010.15543.
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2 Pairings and MOV

Need a pairing
e : E(Fq)× E(Fq)→ F∗

qk ,

namely
▶ bilinear,
▶ non-degenerate,
▶ efficiently computable.

⇝ e(Q,P ) = e(nP , P ) = e(P , P )n,

Recover n by solving a DLP in F∗
qk .

A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, STOC ’91: Proceedings of the twenty-third annual ACM
symposium on Theory of Computing, 1991, pp. 80–89.
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2 Weil descent

Need a hyperelliptic curve H and a computable group homomorphism

ϕ : E(F(2m)k)→ JacH .

If the genus of H is small (∼ k), the DLP on JacH may be
(asymptotically) easier than the starting one:

⇝ solve ϕ(Q) = ϕ(nP ) = nϕ(P ).

P. Gaudry, F. Hess, N. Smart, Constructive and destructive facets of Weil descent on
elliptic curves, J. Cryptology 15, 2002, pp. 19–46.

This occurs rarely!

F. Hess, Weil descent attacks, in Advances in elliptic curve cryptography, London
Math. Soc. Lecture Note Ser. 317, Cambridge Univ. Press, 2005, pp. 151–180.

12 Weak instances of ECDLP



2 Index calculus for field towers

Need a factor base F = {P1, P2, . . . , Pr} and relations

α1Q+ β1P =
∑

Pi∈S1⊂F
Pi,

α2Q+ β2P =
∑

Pi∈S2⊂F
Pi,

...
αr+1Q+ βr+1P =

∑
Pi∈Sr+1⊂F

Pi.

(huge) linear algebra⇝ αQ+ βP = 0 =⇒ n = −β
α
.

I. A. Semaev, Summation polynomials and the discrete logarithm problem on elliptic
curves, Cryptology ePrint Archive, Report 2004/031, 2004.
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2 Index calculus for field towers

In practice: not effective in general, but works well for curves defined
over field extensions: Fqk .

C. Diem, On the discrete logarithm problem in elliptic curves, Compos. Math. 147,
2011, pp. 75–104.

P. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve
discrete logarithm problem, J. Symbolic Comput. 44, 2008, pp. 1690–1702.

We gain even more by applying it with special choices of factor bases
combined with GB-methods!

A. Joux, V. Vitse, Elliptic Curve Discrete Logarithm Problem over Small Degree
Extension Fields, J. Cryptology 26, 2013, pp. 119–143.
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3 What about rings?

When gcd(p, q) = 1, we have

E(Z/pqZ) ≃ E(Z/pZ)× E(Z/qZ),

while for prime powers we almost always have

E(Z/peZ) ≃ E(Z/pZ)× Z/pe−1Z.

The latter isomorphism is explicit and effective, hence we are not
increasing the ECDLP difficulty w.r.t. E(Fp).

M. Sala, D. Taufer, The group structure of elliptic curves over Z/NZ,
ArXiv:2010.15543.
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3 More generally, for finite local rings

(R,m) local. The operations in the group at infinity

E∞(R) = {Points projecting to O ∈ E(R/m) mod m}

are “easier than they should be”.

⇝

Corollary
Let R = Fq[x]/(xk). The ECDLP over E(R) is almost always
polynomially equivalent to the ECDLP over E(Fq).

R. Invernizzi, D. Taufer, Multiplication polynomials for elliptic curves over finite local
rings, ACM’s International Conference Proceedings Series (ISSAC’23), 2023, pp. 335–344.
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3 Multiplication Polynomials

Framework
Finite local ring (R,m), E elliptic curve over R. We look at the
coordinate of nP when

P = (X ′ : Y ′ : Z ′) ∈ E∞(R).

First observation: P ←→ X.

P = (X : 1 : Z) =
(
X : 1 : f(X)

)
,

with f(x) ∈ Z[a1, . . . , a6][x].
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3 Multiplication Polynomials

Scalar multiplication

nP =
(
ψ1(n)X + ψ2(n)X2 + . . .+ ψk−1(n)Xk−1 : 1 : f(. . . )

)
,

where k ∈ N is the nilpotency of R.

Theorem
For every i ∈ {1, . . . , k − 1}, we have

ψi(n) ∈ Q[a1, . . . , a6][n]i.

Moreover, we have n | ψi(n) and

(2! · 3! · . . . · i!)ψi(n) ∈ Z[a1, . . . , a6][n]i.
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3 Super-efficient point multiplication at infinity

Over rings with nilpotency k, you only need to pre-compute

ψ1(n), ψ2(n), . . . , ψk−1(n) ∈ Q[a1, . . . , a6][n]≤k−1.

Then, finding

nP =
(
ψ1(n)X + ψ2(n)X2 + . . .+ ψk−1(n)Xk−1 : 1 : f(. . . )

)
only requires (at most) k polynomial evaluations, of degree 1, 2, . . . , k.

Remarkable remark
It does not even directly depend on n (and the size of R)!
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4 Ring recap

▶ R finite ring of your choice, may always write R ≃ R1 × ...×Rs

as product of finite local rings.
▶ We have

E(R) ≃ E(R1)× . . .× E(Rs).
▶ On every E(Ri), we have super fast point arithmetic at infinity.
▶ Usually

E(Ri) ≃ E∞(Ri)× E(Fqi).
▶ It does not look like your ECDLP benefits from working over

rings!
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4 Take-home message

Think carefully when choosing your favorite elliptic curve for
ECDLP-based protocols.

If you run out of fantasy, have a look at https://safecurves.cr.yp.to/.
... Or propose better curves!

D. J. Bernstein, T. Lange. SafeCurves: choosing safe curves for elliptic-curve
cryptography. https://safecurves.cr.yp.to, accessed 26 July 2023.
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Thanks for your attention!
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