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1 DLP

Let G be a group, P € G, Q € (P) ={0,P,2P,3P,...}.
Discrete logarithm problem (DLP)

Compute n € Z such that Q = nP.

(Silly) example

G = (R*,-), P =10, @ = 1000. As

You figure it out by simply counting the digits of Q: (super) efficient!
~» not smart for constructing one-way functions.
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1 Crypto-why

Easy way to construct key-exchange protocols: G = (g), and

a €7 beZ
gagaeG><gbgb€G
9ab = (9")* € G gab = (9") € G
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1 Crypto-why

Easy way to construct key-exchange protocols: G = (g), and

acZ beZ
‘ Eve J
?
ga:gGEG Gar 9o ~ Gab gb:ngG
===
gar = (9")* € G gar = (9")° € G

3 Weak instances of ECDLP

KU LEUVEN



1 ECDLP

We usually employ G = group of points of an elliptic curve F defined
over a finite field.

Elliptic curve

Smooth plane projective cubic with a specified point O.

. in practice

The projective points (X : Y : Z) € P?(FF,) satisfying a Weierstrass
equation

yQZ + a1xyz + a3yz2 =23 -+ a2x2z -+ a4x22 + a623.

The specified point ("at infinity”) is O = (0:1:0).
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1 Point operation

Chord-tangent definition

... But can also be defined on open coverings!

B w. Bosma, H. W. Lenstra, Complete Systems of Two Addition Laws for Elliptic
Curves, J. Number Theory 53, 1995, pp. 229-240.
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1  Elliptic curves over rings

Point operation

There are fu, fy, f» € Z[z1, Y1, 21, T2, Y2, 22](2,2) Such that
(X12Y1221)+(X22Y22ZQ):

(fil‘(X’La}/;nZ’L) : fy(XZaYLZZ) : fZ(X’Lv}/;nZ’L))

[Oversimplified]

In some cases, these f,.'s may also have “nice” representations.

B wm. Sala, D. Taufer, Elliptic Loops, J. Pure Appl. Algebra 227 (12), 2023.
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1  Elliptic curves over rings

EC/Rings

It is possible to extend the group operation to rings with finitely many
maximal ideals.

Over such rings, we can still define elliptic curves with an explicit
projective description!

E H. W. Lenstra, Elliptic curves and number-theoretic algorithms, Proc. International

Congress of Mathematicians, 1986, pp. 99-120.
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@® Hardness of the ECDLP
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2 Hardness of the ECDLP

The ECDLP is usually difficult over Iy, i.e. the best-known algorithms
(Baby-step Giant-step, Pollard rho/kangaroo) are exponential in the
size of the input parameters ( ~ O(,/q) ).

BUT

» We do not have proof of hardness.
» There are proven exceptions:

® ECs with smooth orders.

(Sub)groups of order p?, with p|q.

ECs with a small embedding degree.

ECs that may be (homomorphically) mapped into low-genus
algebraic curves.

ECs over small degree extension fields.

8 Weak instances of ECDLP | KU LEUVEN



2  Pohlig—Hellman

If P generates a group of order N = p{' - p5? - ... p§, you solve

many smaller ECDLP:

N N

_Q = AI_P)

D1 D1

N N
—Q = (A + Aop1) =5 P,
P (a )p%
N

Q=M+ Xap1 + o A DT P
P1 P1

This provides us with the logarithm modulo pf*.
Repeat for every p; and recover the complete logarithm via CRT.

KU LEUVEN
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2  Lifting the curve

If (P) is a p-group, the corresponding ECDLP may be read by lifting:

E(Z/p°Z) 2222 B(F,),
Ph.Q"— P, Q.

pPTz(szl:O), pQT:(an:I:O).

SR Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm
for anomalous elliptic curves, Comm. Math. Univ. Sancti Pauli 47, 1998, pp. 81-92.

B\ Smart, The discrete logarithm on elliptic curves of trace one, J. Cryptology 12,
1999, pp. 193-196.
B wm. Sala, D. Taufer, The group structure of elliptic curves over Z/NZ,

ArXiv:2010.15543.
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2  Pairings and MOV

Need a pairing
e: E(F,) x E(F;) — sz,
namely
» bilinear,
> non-degenerate,
> efficiently computable.
~e(Q,P)=enP,P)=e(P,P)",

Recover n by solving a DLP in F;k.

i A. Menezes, T. Okamoto, S. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field, STOC '91: Proceedings of the twenty-third annual ACM
symposium on Theory of Computing, 1991, pp. 80-89.

11 Weak instances of ECDLP KU LEUVEN




2  Weil descent
Need a hyperelliptic curve H and a computable group homomorphism
¢ : E(F(2m)k) — Jacy.

If the genus of H is small (~ k), the DLP on Jacy may be
(asymptotically) easier than the starting one:

v solve  ¢(Q) = ¢(nl”) = n(P).

E P. Gaudry, F. Hess, N. Smart, Constructive and destructive facets of Weil descent on

elliptic curves, J. Cryptology 15, 2002, pp. 19-46.

This occurs rarely!

E F. Hess, Weil descent attacks, in Advances in elliptic curve cryptography, London
Math. Soc. Lecture Note Ser. 317, Cambridge Univ. Press, 2005, pp. 151-180.
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2 Index calculus for field towers

Need a factor base F = {P;, P,,..., P} and relations

a1Q + P = Z p;,

P,eS1CF
aQ+ P = > P,
P,eSeCF
@+ BnlP= > P
PiE$r+1C.F
(huge) linear algebra ~» aQ) + P =0 — n = —é.
«

B A Semaev, Summation polynomials and the discrete logarithm problem on elliptic
curves, Cryptology ePrint Archive, Report 2004/031, 2004.
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2 Index calculus for field towers

In practice: not effective in general, but works well for curves defined
over field extensions: Fx.

B c Diem, On the discrete logarithm problem in elliptic curves, Compos. Math. 147,
2011, pp. 75-104.

B p. Gaud ry, Index calculus for abelian varieties of small dimension and the elliptic curve

discrete logarithm problem, J. Symbolic Comput. 44, 2008, pp. 1690-1702.
We gain even more by applying it with special choices of factor bases
combined with GB-methods!

B A Joux, V. Vitse, Elliptic Curve Discrete Logarithm Problem over Small Degree
Extension Fields, J. Cryptology 26, 2013, pp. 119-143.
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© ECDLP over rings
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3  What about rings?
When ged(p, q) = 1, we have
E(Z/pqZ) ~ E(Z/pZ) x E(Z/qZ),
while for prime powers we almost always have
E(Z/p°Z) ~ E(Z/pZ) x Z/p*'Z.

The latter isomorphism is explicit and effective, hence we are not
increasing the ECDLP difficulty w.r.t. E(F,).

E M. Sala, D. Taufer, The group structure of elliptic curves over Z/NZ,
ArXiv:2010.15543.
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3 More generally, for finite local rings
(R, m) local. The operations in the group at infinity
E*°(R) = {Points projecting to O € E(R/m) mod m}

are “easier than they should be”.

Corollary

Let R = F,[z]/(2*). The ECDLP over E(R) is almost always
polynomially equivalent to the ECDLP over E(FF,).

B r Invernizzi, D. Taufer, Multiplication polynomials for elliptic curves over finite local
rings, ACM’s International Conference Proceedings Series (ISSAC'23), 2023, pp. 335-344.
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3  Multiplication Polynomials

Framework

Finite local ring (R, m), E elliptic curve over R. We look at the
coordinate of nP when

P=(X":Y":2) e E°(R).

First observation: P +— X.
P=(X:1:2)=(X:1:£(X)),

with £(z) € Z[ay, ..., ag][x].
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3  Multiplication Polynomials

Scalar multiplication

nP = (1 (n)X + P2 (n) X2+ ...+ 1 (n) X110 £(. ..

where k£ € N is the nilpotency of R.

Theorem

For every i € {1,...,k — 1}, we have

z,lzl(n) S Q[al, A ,a6] [n]z

Moreover, we have n | ¢;(n) and
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3  Super-efficient point multiplication at infinity

Over rings with nilpotency k, you only need to pre-compute

wl(n), 1#2(71), . ,wk_l(n) S Q[al, 00T a6] [n]gk_l.
Then, finding
nP = (1 (n)X + P2 (n) X2 + ...+ 1 (M) X110 £(.0)

only requires (at most) k polynomial evaluations, of degree 1,2,...,k.

Remarkable remark

It does not even directly depend on n (and the size of R)!
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O Take-home
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4 Ring recap

> R finite ring of your choice, may always write R ~ Ry X ... X Ry
as product of finite local rings.
> We have
E(R) ~ E(R;) X ... x E(Ry).

» On every F(R;), we have super fast point arithmetic at infinity.
> Usually
E(R;) ~ E*(R;) x E(F,).

> It does not look like your ECDLP benefits from working over
rings!
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4 Take-home message

Think carefully when choosing your favorite elliptic curve for
ECDLP-based protocols.

If you run out of fantasy, have a look at https://safecurves.cr.yp.to/.
... Or propose better curves!

B .y Bernstein, T. Lange. SafeCurves: choosing safe curves for elliptic-curve

cryptography. https://safecurves.cr.yp.to, accessed 26 July 2023.
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https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to

Thanks for your attention!
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