On the algebraic structure of dual weak braces and the Yang-Baxter equation

Paola Stefanelli

YRAC 2023

L'Aquila, 27 July 2023

Aims

This talk aims to:

- Introduce the algebraic structure of the *dual weak-brace*;
- Analyse set-theoretic solutions of the Yang-Baxter equation associated to any dual weak braces;
- Focus on some structural properties of dual weak braces.

Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.**1510**(2) Springer, Berlin,(1992), 1–8.

If B is a non-empty set, a *set-theoretic solution* of the Yang-Baxter equation is a map $r: B \times B \to B \times B$ that satisfies the *braid equation*, i.e.,

 $(r \times \mathrm{id}_B)(\mathrm{id}_B \times r)(r \times \mathrm{id}_B) = (\mathrm{id}_B \times r)(r \times \mathrm{id}_B)(\mathrm{id}_B \times r).$

The Drinfel'd challenge

Determine all the set-theoretic solutions of the Yang-Baxter equation.

Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.**1510**(2) Springer, Berlin,(1992), 1–8.

If B is a non-empty set, a *set-theoretic solution* of the Yang-Baxter equation is a map $r: B \times B \to B \times B$ that satisfies the *braid equation*, i.e.,

 $(r \times \mathrm{id}_B)(\mathrm{id}_B \times r)(r \times \mathrm{id}_B) = (\mathrm{id}_B \times r)(r \times \mathrm{id}_B)(\mathrm{id}_B \times r).$

The Drinfel'd challenge

Determine all the set-theoretic solutions of the Yang-Baxter equation.

Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.**1510**(2) Springer, Berlin,(1992), 1–8.

If B is a non-empty set, a *set-theoretic solution* of the Yang-Baxter equation is a map $r: B \times B \to B \times B$ that satisfies the *braid equation*, i.e.,

 $(r \times \mathrm{id}_B)(\mathrm{id}_B \times r)(r \times \mathrm{id}_B) = (\mathrm{id}_B \times r)(r \times \mathrm{id}_B)(\mathrm{id}_B \times r).$

The Drinfel'd challenge

Determine all the set-theoretic solutions of the Yang-Baxter equation.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a, b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- right non-degenerate if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map au is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a, b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- right non-degenerate if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- right non-degenerate if ρ_b is bijective, for every $b \in B$
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map au is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- right non-degenerate if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- idempotent if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Hereinafter, we will shortly call *solution* any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_a, \rho_b : B \to B$ and write the map r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)).$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$.
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- *involutive* if $r^2 = id_{B \times B}$.
- *idempotent* if $r^2 = r$.
- The identity map $id_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B, +, \cdot)$ is a ring and \circ the *adjoint operation* on *B*, i.e.,

 $\forall a, b \in B \quad a \circ b = a + b + a \cdot b,$

then B is said to be *Jacobson radical* if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \to B \times B$ defined by $r(a, b) := (\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a))$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B, +, \cdot)$ is a ring and \circ the *adjoint operation* on *B*, i.e.,

$$\forall a, b \in B \quad a \circ b = a + b + a \cdot b,$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \to B \times B$ defined by $r(a, b) := (\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a))$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B, +, \cdot)$ is a ring and \circ the *adjoint operation* on *B*, i.e.,

$$\forall a, b \in B \quad a \circ b = a + b + a \cdot b,$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$r(a,b) := \left(\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a)\right)$$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B, +, \cdot)$ is a ring and \circ the *adjoint operation* on *B*, i.e.,

$$\forall a, b \in B \quad a \circ b = a + b + a \cdot b,$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$r(a,b) := \left(\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a)\right)$$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B, +, \cdot)$ is a ring and \circ the *adjoint operation* on *B*, i.e.,

$$\forall a, b \in B \quad a \circ b = a + b + a \cdot b,$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$r(a,b) := \left(\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a)\right)$$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

 $a \circ (b + c) = a \circ b - a + a \circ c$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +^{op})$ are skew braces called the *trivial* and the *almost trivial skew brace* on (B, +), respectively.
- Any Jacobson radical ring is a brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a brace with ∘ is the adjoint operation, where a ∘ b := a + b + a ∘ b, for all a, b ∈ B.
- Any commutative brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a brace such that ∘ is commutative, then (B, +, ·) is Jacobson radical ring where a · b := a ∘ b a b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b+c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

- If (B, +) is a group, then (B, +, +) and (B, +, +^{op}) are skew braces called the *trivial* and the *almost trivial skew brace* on (B, +), respectively.
- Any Jacobson radical ring is a brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a brace with ∘ is the adjoint operation, where a ∘ b := a + b + a ∘ b, for all a, b ∈ B.
- Any commutative brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a brace such that ∘ is commutative, then (B, +, ·) is Jacobson radical ring where a · b := a ∘ b a b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b+c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

- If (B, +) is a group, then (B, +, +) and (B, +, +^{op}) are skew braces called the *trivial* and the *almost trivial skew brace* on (B, +), respectively.
- Any Jacobson radical ring is a brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a brace with ∘ is the adjoint operation, where a ∘ b := a + b + a ∘ b, for all a, b ∈ B.
- Any commutative brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a brace such that ∘ is commutative, then (B, +, ·) is Jacobson radical ring where a · b := a ∘ b a b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

- If (B, +) is a group, then (B, +, +) and (B, +, +^{op}) are skew braces called the *trivial* and the *almost trivial skew brace* on (B, +), respectively.
- Any Jacobson radical ring is a brace. Indeed, if (B,+, ·) is a Jacobson radical ring, then (B, +, ∘) is a brace with ∘ is the adjoint operation, where a ∘ b := a + b + a ∘ b, for all a, b ∈ B.
- Any commutative brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a brace such that ∘ is commutative, then (B, +, ·) is Jacobson radical ring where a · b := a ∘ b a b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *brace*.

- If (B, +) is a group, then (B, +, +) and (B, +, +^{op}) are skew braces called the *trivial* and the *almost trivial skew brace* on (B, +), respectively.
- Any Jacobson radical ring is a brace. Indeed, if (B,+, ·) is a Jacobson radical ring, then (B, +, ∘) is a brace with ∘ is the adjoint operation, where a ∘ b := a + b + a ∘ b, for all a, b ∈ B.
- Any commutative brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a brace such that ∘ is commutative, then (B, +, ·) is Jacobson radical ring where a · b := a ∘ b a b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B, +, \circ)$ is said to be a *skew brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b+c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a brace.

- If (B, +) is a group, then (B, +, +) and (B, +, +^{op}) are skew braces called the *trivial* and the *almost trivial skew brace* on (B, +), respectively.
- Any Jacobson radical ring is a brace. Indeed, if (B,+, ·) is a Jacobson radical ring, then (B, +, ∘) is a brace with ∘ is the adjoint operation, where a ∘ b := a + b + a ∘ b, for all a, b ∈ B.
- Any commutative brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a brace such that ∘ is commutative, then (B, +, ·) is Jacobson radical ring where a · b := a ∘ b a b, for all a, b ∈ B.

Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)

If B is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

Remark: r_B is involutive $\iff (B, +, \circ)$ is a brace.

Theorem (Smoktunowicz, Vendramin - 2018)

If B is a finite skew brace, then the solution associated to B is such that

$$r_B^{2n} = \mathrm{id}_B$$

where $n \in \mathbb{N}$ is the exponent of the additive quotient group B/Z(B).

Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)

If B is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

Remark: r_B is involutive $\iff (B, +, \circ)$ is a brace.

Theorem (Smoktunowicz, Vendramin - 2018)

If B is a finite skew brace, then the solution associated to B is such that

$$r_B^{2n} = \mathrm{id}_B$$

where $n \in \mathbb{N}$ is the exponent of the additive quotient group B/Z(B).

Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)

If B is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

Remark: r_B is involutive $\iff (B, +, \circ)$ is a brace.

Theorem (Smoktunowicz, Vendramin - 2018)

If B is a **finite** skew brace, then the solution associated to B is such that

$$r_B^{2n} = \mathrm{id}_B$$

where $n \in \mathbb{N}$ is the exponent of the additive quotient group B/Z(B).

The inverse map r_B^{-1}

If $(B, +, \circ)$ is a skew brace, then the structure

$$B^{op} := (B, +^{op}, \circ)$$

with $a + {}^{op} b := b + a$, for all $a, b \in B$, is a skew brace called the *opposite skew* brace of $(B, +, \circ)$.

[Koch, Truman - 2020]

The solution

$$r_{B^{op}}\left(a,b
ight)=\left(a\circ b-a,\;\left(a\circ b-a
ight)^{-}\circ a\circ b
ight)$$

is such that

$$r_{B^{op}} = r_B^{-1}$$

The inverse map r_B^{-1}

If $(B, +, \circ)$ is a skew brace, then the structure

$$B^{op} := (B, +^{op}, \circ)$$

with $a + {}^{op} b := b + a$, for all $a, b \in B$, is a skew brace called the *opposite skew* brace of $(B, +, \circ)$.

[Koch, Truman - 2020]

The solution

$$r_{B^{op}}\left(a,b
ight)=\left(a\circ b-a,\;\left(a\circ b-a
ight)^{-}\circ a\circ b
ight)$$

is such that

$$r_{B^{op}} = r_B^{-1}$$

• [Rump]: Braces

[Catino, Colazzo, S.]: Semi-braces

- [Jespers, Van Antwerpen]: Semi-braces
 - [Catino, Mazzotta, S.]: Inverse semi-braces
 - [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces

[Doikou, Rybołowicz]: Near braces

[Martin-Lyons, Truman]: Skew bracoids

- [Rump]: Braces

 - [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
- [Jespers, Van Antwerpen]: Semi-braces

 - [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces

- [Rump]: Braces

 - [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
- [Jespers, Van Antwerpen]: Semi-braces

 - [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces

- [Rump]: Braces

 - [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
- [Jespers, Van Antwerpen]: Semi-braces

 - [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
In the last years...

- [Rump]: Braces
- [Guarnieri, Vendramin]: Skew braces
 [Catino, Colazzo, S.]: Cancellative semi-braces
- [Jespers, Van Antwerpen]: Semi-braces

 - [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
- [Doikou, Rybołowicz]: Near braces
 [Martin-Lyons, Truman]: Skew bracoids

In the last years...

- [Rump]: Braces
- [Guarnieri, Vendramin]: Skew braces
 [Catino, Colazzo, S.]: Cancellative semi-braces
- [Jespers, Van Antwerpen]: Semi-braces

 - [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
- [Doikou, Rybołowicz]: Near braces
 [Martin-Lyons, Truman]: Skew bracoids

A semigroup S is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Such an element a^{-1} is called the *inverse of a*. \bigcirc [Petrich - 1984].

- The set of idempotent elements $E(S) = \{a a^{-1} \mid a \in S\}.$
- Moreover, idempotents commute each other.

A semigroup S is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Such an element a^{-1} is called the *inverse of a*. \square [Petrich - 1984].

- The set of idempotent elements $E(S) = \{a a^{-1} \mid a \in S\}.$
- Moreover, idempotents commute each other.

A semigroup S is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Such an element a^{-1} is called the *inverse of a*. \square [Petrich - 1984].

•
$$(a^{-1})^{-1} = a$$
 and $(ab)^{-1} = b^{-1}a^{-1}$, for all $a, b \in S$.

• If $f: S \to T$ is a homomorphism between inverse semigroups, then $f(a^{-1}) = f(a)^{-1}$, for every $a \in S$.

- The set of idempotent elements $E(S) = \{a a^{-1} \mid a \in S\}.$
- Moreover, idempotents commute each other.

A semigroup S is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Such an element a^{-1} is called the *inverse of a*. \square [Petrich - 1984].

•
$$(a^{-1})^{-1} = a$$
 and $(ab)^{-1} = b^{-1}a^{-1}$, for all $a, b \in S$.

• If $f: S \to T$ is a homomorphism between inverse semigroups, then $f(a^{-1}) = f(a)^{-1}$, for every $a \in S$.

• The set of idempotent elements $E(S) = \{a a^{-1} \mid a \in S\}.$

Moreover, idempotents commute each other.

A semigroup S is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Such an element a^{-1} is called the *inverse of a*. \square [Petrich - 1984].

•
$$(a^{-1})^{-1} = a$$
 and $(ab)^{-1} = b^{-1}a^{-1}$, for all $a, b \in S$.

• If $f: S \to T$ is a homomorphism between inverse semigroups, then $f(a^{-1}) = f(a)^{-1}$, for every $a \in S$.

- The set of idempotent elements $E(S) = \{a a^{-1} \mid a \in S\}.$
- Moreover, idempotents commute each other.

A semigroup S is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Such an element a^{-1} is called the *inverse of a*. \square [Petrich - 1984].

•
$$(a^{-1})^{-1} = a$$
 and $(ab)^{-1} = b^{-1}a^{-1}$, for all $a, b \in S$.

• If $f: S \to T$ is a homomorphism between inverse semigroups, then $f(a^{-1}) = f(a)^{-1}$, for every $a \in S$.

- The set of idempotent elements $E(S) = \{a a^{-1} \mid a \in S\}.$
- Moreover, idempotents commute each other.

Definition (Catino, Mazzotta, Miccoli, S. - 2022)

A triple $(S, +, \circ)$ is said to be a *weak brace* if (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ (b + c) = a \circ b a + a \circ c,$
- $\forall a \in S \qquad a \circ a^- = -a + a,$

where -a and a^- denote the inverses of (S, +) and (S, \circ) .

- Skew braces are special instances of weak braces.
- If (S, +) is a Clifford semigroup, then (S, +, +) and $(S, +, +^{op})$ are weak braces called the *trivial* and the *almost trivial weak brace* on (S, +), respectively.

Definition (Catino, Mazzotta, Miccoli, S. - 2022)

A triple $(S, +, \circ)$ is said to be a *weak brace* if (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ (b + c) = a \circ b a + a \circ c,$
- $\forall a \in S \qquad a \circ a^- = -a + a,$

where -a and a^- denote the inverses of (S, +) and (S, \circ) .

- Skew braces are special instances of weak braces.
- If (S, +) is a Clifford semigroup, then (S, +, +) and (S, +, +^{op}) are weak braces called the *trivial* and the *almost trivial weak brace* on (S, +), respectively.

Definition (Catino, Mazzotta, Miccoli, S. - 2022)

A triple $(S, +, \circ)$ is said to be a *weak brace* if (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ (b + c) = a \circ b a + a \circ c,$
- $\forall a \in S \qquad a \circ a^- = -a + a,$

where -a and a^- denote the inverses of (S, +) and (S, \circ) .

- Skew braces are special instances of weak braces.
- If (S, +) is a Clifford semigroup, then (S, +, +) and (S, +, +^{op}) are weak braces called the *trivial* and the *almost trivial weak brace* on (S, +), respectively.

Definition (Catino, Mazzotta, Miccoli, S. - 2022)

A triple $(S, +, \circ)$ is said to be a *weak brace* if (S, +) and (S, \circ) are inverse semigroups satisfying

 $- \forall a, b, c \in S \quad a \circ (b + c) = a \circ b - a + a \circ c,$

 $- \forall a \in S \qquad a \circ a^- = -a + a,$

where -a and a^- denote the inverses of (S, +) and (S, \circ) .

In any weak brace $E(S, +) = E(S, \circ)$ thus we will simply write E(S). As a consequence, if |E(S)| = 1, then $(S, +, \circ)$ is a skew brace.

• Skew braces are special instances of weak braces.

• If (S, +) is a Clifford semigroup, then (S, +, +) and $(S, +, +^{op})$ are weak braces called the *trivial* and the *almost trivial weak brace* on (S, +), respectively.

Definition (Catino, Mazzotta, Miccoli, S. - 2022)

A triple $(S, +, \circ)$ is said to be a *weak brace* if (S, +) and (S, \circ) are inverse semigroups satisfying

 $- \forall a, b, c \in S \quad a \circ (b + c) = a \circ b - a + a \circ c,$

 $- \forall a \in S \qquad a \circ a^- = -a + a,$

where -a and a^- denote the inverses of (S, +) and (S, \circ) .

- Skew braces are special instances of weak braces.
- If (S,+) is a Clifford semigroup, then (S,+,+) and (S,+,+^{op}) are weak braces called the *trivial* and the *almost trivial weak brace* on (S,+), respectively.

A key result

If $(S, +, \circ)$ is a weak brace, then

$$\forall a \in S, e \in E(S)$$
 $e + a = e \circ a$.

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022)

If $(S, +, \circ)$ is a weak brace, then the map $r_S : S \times S \to S \times S$ given by

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b)$$

is a solution. Moreover, r₅ has a behaviour close to bijectivity.

Indeed, we can consider the *opposite weak brace*, i.e., $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$, and so we have that

 $r_{S} r_{S^{op}} r_{s} = r_{S}, \quad r_{S^{op}} r_{S} r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_{S} r_{S^{op}} = r_{S^{op}} r_{S}.$

Hence, r_s is a completely regular element of Map $(S \times S)$.

A key result

If $(S, +, \circ)$ is a weak brace, then

$$\forall a \in S, e \in \mathsf{E}(S)$$
 $e + a = e \circ a.$

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022)

If $(S, +, \circ)$ is a weak brace, then the map $r_S : S \times S \to S \times S$ given by

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b)$$

is a solution. Moreover, r₅ has a behaviour close to bijectivity.

Indeed, we can consider the *opposite weak brace*, i.e., $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$, and so we have that

 $r_{S} r_{S^{op}} r_{s} = r_{S}, \quad r_{S^{op}} r_{S} r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_{S} r_{S^{op}} = r_{S^{op}} r_{S}.$

Hence, r_s is a completely regular element of Map $(S \times S)$.

A key result

If $(S, +, \circ)$ is a weak brace, then

$$\forall a \in S, e \in \mathsf{E}(S) \qquad e + a = e \circ a.$$

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022) If $(S, +, \circ)$ is a weak brace, then the map $r_S : S \times S \to S \times S$ given by $r_S(a, b) = (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$

is a solution. Moreover, r₅ has a behaviour close to bijectivity.

Indeed, we can consider the *opposite weak brace*, i.e., $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$, and so we have that

 $r_S r_{S^{op}} r_s = r_S, \quad r_{S^{op}} r_S r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_S r_{S^{op}} = r_{S^{op}} r_S.$

Hence, r_s is a completely regular element of Map $(S \times S)$.

A key result

If $(S, +, \circ)$ is a weak brace, then

$$\forall a \in S, e \in \mathsf{E}(S) \qquad e + a = e \circ a.$$

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022)

If (S,+, $\circ)$ is a weak brace, then the map $r_S:S\times S\to S\times S$ given by

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b)$$

is a solution. Moreover, r₅ has a behaviour close to bijectivity.

Indeed, we can consider the *opposite weak brace*, i.e., $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$, and so we have that

 $r_{S} r_{S^{op}} r_{s} = r_{S}, \quad r_{S^{op}} r_{S} r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_{S} r_{S^{op}} = r_{S^{op}} r_{S}.$

Hence, r_s is a completely regular element of Map $(S \times S)$.

A key result

If $(S, +, \circ)$ is a weak brace, then

$$\forall a \in S, e \in \mathsf{E}(S) \qquad e + a = e \circ a.$$

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022) If $(S, +, \circ)$ is a weak brace, then the map $r_S : S \times S \to S \times S$ given by

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b)$$

is a solution. Moreover, r₅ has a behaviour close to bijectivity.

Indeed, we can consider the *opposite weak brace*, i.e., $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$, and so we have that

 $r_{S} r_{S^{op}} r_{s} = r_{S}, \quad r_{S^{op}} r_{S} r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_{S} r_{S^{op}} = r_{S^{op}} r_{S}.$

Hence, r_s is a completely regular element of Map ($S \times S$).

A key result

If $(S, +, \circ)$ is a weak brace, then

$$\forall a \in S, e \in \mathsf{E}(S) \qquad e + a = e \circ a.$$

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022) If $(S, +, \circ)$ is a weak brace, then the map $r_S : S \times S \to S \times S$ given by

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b)$$

is a solution. Moreover, r₅ has a behaviour close to bijectivity.

Indeed, we can consider the *opposite weak brace*, i.e., $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$, and so we have that

 $r_{S} r_{S^{op}} r_{s} = r_{S}, \quad r_{S^{op}} r_{S} r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_{S} r_{S^{op}} = r_{S^{op}} r_{S}.$

Hence, r_s is a completely regular element of Map $(S \times S)$.

The additive structure of a weak brace

Theorem

Let $(S, +, \circ)$ be a weak brace. Then, (S, +) is a Clifford semigroup.

Generally, (S, \circ) is not a Clifford semigroup.

Example

Let

- $X := \{1, x, y\};$
- S the upper semilattice on X with join 1;
- T the commutative inverse monoid on X with identity 1 such that xx = yy = x and xy = y;
- $\tau := (xy) \in \operatorname{Aut}(S)$ and $\sigma : T \to \operatorname{Aut}(S)$ defined by $\sigma(1) = \sigma(x) = \operatorname{id}_S$ and $\sigma(y) = \tau$.

Then, considered the trivial weak braces on S and T, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford since

$$(y, y) \circ (y, y)^{-} = (y, x)$$
 and $(y, y)^{-} \circ (y, y) = (x, x)$.

The additive structure of a weak brace

Theorem

Let $(S, +, \circ)$ be a weak brace. Then, (S, +) is a Clifford semigroup.

Generally, (S, \circ) is not a Clifford semigroup.

Example

Let

- $X := \{1, x, y\};$
- S the upper semilattice on X with join 1;
- T the commutative inverse monoid on X with identity 1 such that xx = yy = x and xy = y;
- $\tau := (xy) \in Aut(S)$ and $\sigma : T \to Aut(S)$ defined by $\sigma(1) = \sigma(x) = id_S$ and $\sigma(y) = \tau$.

Then, considered the trivial weak braces on *S* and *T*, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford since

$$(y, y) \circ (y, y)^{-} = (y, x)$$
 and $(y, y)^{-} \circ (y, y) = (x, x)$.

Definition (Catino, Mazzotta, S. - 2023) If (S, +) is a Clifford semigroup, any map $\mathfrak{R} : S \to S$ satisfying $\forall a, b \in S$ $\mathfrak{R}(a) + \mathfrak{R}(b) = \mathfrak{R}(a + \mathfrak{R}(a) + b - \mathfrak{R}(a))$ $a + \mathfrak{R}(a) - \mathfrak{R}(a) = a$

is called *Rota–Baxter operator* on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \Re is an RB-operator on a Clifford semigroup (S,+), the operation defined by

 $a\circ_{\mathfrak{R}}b:=a+\mathfrak{R}\left(a
ight)+b-\mathfrak{R}\left(a
ight)$

gives rise to a weak brace $(S, +, \circ_{\Re})$ with (S, \circ_{\Re}) a Clifford semigroup.

Instances of Rota–Baxter operators are:

- if (S, +) is a group, maps $\mathfrak{R} \in \operatorname{End}(S, +)$ such that $\mathfrak{R}^2 = \mathfrak{R}$ and $\operatorname{Im} \mathfrak{R} \subseteq Z(S, +)$.
- maps $R := -\varphi$ where $\varphi \in \text{End}(S, +)$ is such that $\varphi^2 = \varphi$ and $\varphi(e) = e$, for every $e \in E(S)$.

Definition (Catino, Mazzotta, S. - 2023) If (S, +) is a Clifford semigroup, any map $\mathfrak{R} : S \to S$ satisfying $\forall a, b \in S$ $\mathfrak{R}(a) + \mathfrak{R}(b) = \mathfrak{R}(a + \mathfrak{R}(a) + b - \mathfrak{R}(a))$ $a + \mathfrak{R}(a) - \mathfrak{R}(a) = a$

is called *Rota–Baxter operator* on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \Re is an RB-operator on a Clifford semigroup (*S*,+), the operation defined by

 $a \circ_{\mathfrak{R}} b := a + \mathfrak{R}(a) + b - \mathfrak{R}(a)$

gives rise to a weak brace $(S, +, \circ_{\mathfrak{R}})$ with $(S, \circ_{\mathfrak{R}})$ a Clifford semigroup.

Instances of Rota–Baxter operators are:

- if (S, +) is a group, maps $\mathfrak{R} \in \operatorname{End}(S, +)$ such that $\mathfrak{R}^2 = \mathfrak{R}$ and $\operatorname{Im} \mathfrak{R} \subseteq Z(S, +)$.
- maps R := -φ where φ ∈ End (S, +) is such that φ² = φ and φ (e) = e, for every e ∈ E(S).

Definition (Catino, Mazzotta, S. - 2023) If (S, +) is a Clifford semigroup, any map $\mathfrak{R} : S \to S$ satisfying $\forall a, b \in S$ $\mathfrak{R}(a) + \mathfrak{R}(b) = \mathfrak{R}(a + \mathfrak{R}(a) + b - \mathfrak{R}(a))$ $a + \mathfrak{R}(a) - \mathfrak{R}(a) = a$

is called *Rota–Baxter operator* on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \mathfrak{R} is an RB-operator on a Clifford semigroup (S,+), the operation defined by

 $a \circ_{\mathfrak{R}} b := a + \mathfrak{R}(a) + b - \mathfrak{R}(a)$

gives rise to a weak brace $(S, +, \circ_{\mathfrak{R}})$ with $(S, \circ_{\mathfrak{R}})$ a Clifford semigroup.

Instances of Rota-Baxter operators are:

- if (S, +) is a group, maps $\mathfrak{R} \in \operatorname{End}(S, +)$ such that $\mathfrak{R}^2 = \mathfrak{R}$ and $\operatorname{Im} \mathfrak{R} \subseteq Z(S, +)$.
- maps $R := -\varphi$ where $\varphi \in \text{End}(S, +)$ is such that $\varphi^2 = \varphi$ and $\varphi(e) = e$, for every $e \in E(S)$.

Definition (Catino, Mazzotta, S. - 2023) If (S, +) is a Clifford semigroup, any map $\mathfrak{R} : S \to S$ satisfying $\forall a, b \in S$ $\mathfrak{R}(a) + \mathfrak{R}(b) = \mathfrak{R}(a + \mathfrak{R}(a) + b - \mathfrak{R}(a))$ $a + \mathfrak{R}(a) - \mathfrak{R}(a) = a$

is called *Rota–Baxter operator* on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \mathfrak{R} is an RB-operator on a Clifford semigroup (S,+), the operation defined by

 $a \circ_{\mathfrak{R}} b := a + \mathfrak{R}(a) + b - \mathfrak{R}(a)$

gives rise to a weak brace $(S, +, \circ_{\mathfrak{R}})$ with $(S, \circ_{\mathfrak{R}})$ a Clifford semigroup.

Instances of Rota-Baxter operators are:

- if (S, +) is a group, maps $\mathfrak{R} \in \operatorname{End}(S, +)$ such that $\mathfrak{R}^2 = \mathfrak{R}$ and $\operatorname{Im} \mathfrak{R} \subseteq Z(S, +)$.
- maps R := -φ where φ ∈ End (S, +) is such that φ² = φ and φ (e) = e, for every e ∈ E(S).

Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)

A weak brace $(S, +, \circ)$ is called *dual weak brace* if (S, \circ) is a Clifford semigroup.

If $(S, +, \circ)$ is a dual weak brace, then the solution r_S has also a behaviour close to the non-degeneracy in the sense that

$$\begin{split} \lambda_a \lambda_{a^-} \lambda_a &= \lambda_a, \qquad \lambda_{a^-} \lambda_a \lambda_{a^-} &= \lambda_{a^-}, \quad \text{and} \quad \lambda_a \lambda_{a^-} &= \lambda_{a^-} \lambda_a \\ \rho_a \rho_{a^-} \rho_a &= \rho_a, \qquad \rho_{a^-} \rho_a \rho_{a^-} &= \rho_{a^-}, \quad \text{and} \quad \rho_a \rho_{a^-} &= \rho_{a^-} \rho_a \end{split}$$

for every $a \in S$. Hence, λ_a , ρ_a are completely regular elements in Map (S).

Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)

A weak brace $(S, +, \circ)$ is called *dual weak brace* if (S, \circ) is a Clifford semigroup.

If $(S, +, \circ)$ is a dual weak brace, then the solution r_S has also a behaviour close to the non-degeneracy in the sense that

$$\begin{array}{ll} \lambda_a\lambda_{a^-}\lambda_a=\lambda_a, & \lambda_{a^-}\lambda_a\lambda_{a^-}=\lambda_{a^-}, \quad \text{and} \quad \lambda_a\lambda_{a^-}=\lambda_{a^-}\lambda_a\\ \rho_a\rho_{a^-}\rho_a=\rho_a, & \rho_{a^-}\rho_a\rho_{a^-}=\rho_{a^-}, \quad \text{and} \quad \rho_a\rho_{a^-}=\rho_{a^-}\rho_a \end{array}$$

for every $a \in S$. Hence, λ_a , ρ_a are completely regular elements in Map (S).

Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)

A weak brace $(S, +, \circ)$ is called *dual weak brace* if (S, \circ) is a Clifford semigroup.

If $(S, +, \circ)$ is a dual weak brace, then the solution r_S has also a behaviour close to the non-degeneracy in the sense that

$$\begin{split} \lambda_a \lambda_{a^-} \lambda_a &= \lambda_a, \qquad \lambda_{a^-} \lambda_a \lambda_{a^-} &= \lambda_{a^-}, \quad \text{and} \qquad \lambda_a \lambda_{a^-} &= \lambda_{a^-} \lambda_a \\ \rho_a \rho_{a^-} \rho_a &= \rho_a, \qquad \rho_{a^-} \rho_a \rho_{a^-} &= \rho_{a^-}, \qquad \text{and} \qquad \rho_a \rho_{a^-} &= \rho_{a^-} \rho_a \end{split}$$

for every $a \in S$. Hence, λ_a , ρ_a are completely regular elements in Map (S).

🕼 [Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\{G_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint groups.
- ▶ For each pair α, β of elements of Y such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : G_{\alpha} \to G_{\beta}$ be a group homomorphism such that

1. $\phi_{\alpha,\alpha}$ is the identical automorphism of G_{α} , for every $\alpha \in Y$;

2.
$$\phi_{\beta,\gamma}\phi_{lpha,eta}=\phi_{lpha,\gamma} ext{ if } lpha\geqeta\geq\gamma.$$

Then, $S:=igcup_{lpha\in Y} {\sf G}_{lpha}$ endowed with the operation given by

$$a b := \phi_{\alpha,\alpha\beta}(a) \phi_{\beta,\alpha\beta}(b),$$

CP [Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\{G_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint groups.
- ▶ For each pair α, β of elements of Y such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : G_{\alpha} \to G_{\beta}$ be a group homomorphism such that
 - 1. $\phi_{\alpha,\alpha}$ is the identical automorphism of G_{α} , for every $\alpha \in Y$;

2.
$$\phi_{\beta,\gamma}\phi_{lpha,eta}=\phi_{lpha,\gamma} ext{ if } lpha\geqeta\geq\gamma.$$

Then, $S:=igcup_{lpha\in Y} {\mathcal G}_lpha$ endowed with the operation given by

$$a b := \phi_{\alpha,\alpha\beta}(a) \phi_{\beta,\alpha\beta}(b),$$

CP [Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\{G_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint groups.
- For each pair α, β of elements of Y such that $\alpha \geq \beta$, let $\phi_{\alpha,\beta} : G_{\alpha} \to G_{\beta}$ be a group homomorphism such that
 - 1. $\phi_{\alpha,\alpha}$ is the identical automorphism of G_{α} , for every $\alpha \in Y$;

2.
$$\phi_{\beta,\gamma}\phi_{\alpha,\beta}=\phi_{\alpha,\gamma}$$
 if $\alpha\geq\beta\geq\gamma.$

Then, $S:=igcup_{lpha\in Y} {\sf G}_{lpha}$ endowed with the operation given by

$$a b := \phi_{\alpha,\alpha\beta}(a) \phi_{\beta,\alpha\beta}(b),$$

CP [Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\{G_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint groups.
- ▶ For each pair α, β of elements of Y such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : G_{\alpha} \to G_{\beta}$ be a group homomorphism such that
 - 1. $\phi_{\alpha,\alpha}$ is the identical automorphism of G_{α} , for every $\alpha \in Y$;

2.
$$\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$$
 if $\alpha \ge \beta \ge \gamma$.

Then, $S:=igcup_{lpha\in Y} {\sf G}_{lpha}$ endowed with the operation given by

$$a b := \phi_{lpha, lpha eta}(a) \phi_{eta, lpha eta}(b),$$

GP [Petrich - 1984]:

- Let Y be a (lower) semilattice.
- ▶ Let $\{G_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint groups.
- For each pair α, β of elements of Y such that $\alpha \geq \beta$,

2.
$$\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$$
 if $\alpha \ge \beta \ge \gamma$.

$$a b := \phi_{\alpha,\alpha\beta}(a) \phi_{\beta,\alpha\beta}(b),$$

for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup.

GP [Petrich - 1984]:

2.
$$\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$$
 if $\alpha \ge \beta \ge \gamma$.

$$a b := \phi_{\alpha,\alpha\beta}(a) \phi_{\beta,\alpha\beta}(b),$$

Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

- ▶ Let Y be a (lower) semilattice.
- Let $\{B_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint skew braces.
- ▶ For each $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a skew brace homomorphism such that
 - 1. $\phi_{\alpha,\alpha} = id_{B_{\alpha}}$, for every $\alpha \in Y$;
 - 2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S := \bigcup_{\alpha \in Y} B_{\alpha}$ endowed with

 $egin{array}{lll} {a+b} := \phi_{lpha,lphaeta}(a) + \phi_{eta,lphaeta}(b) \ {a\circ b} := \phi_{lpha,lphaeta}(a) \circ \phi_{eta,lphaeta}(b), \end{array}$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace. Conversely, any dual weak brace is a strong semilattice of skew braces.

Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

- ▶ Let Y be a (lower) semilattice.
- Let $\{B_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint skew braces.
- ▶ For each $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a skew brace homomorphism such that
 - 1. $\phi_{\alpha,\alpha} = id_{B_{\alpha}}$, for every $\alpha \in Y$;
 - 2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S := \bigcup_{\alpha \in Y} B_{\alpha}$ endowed with

 $egin{array}{lll} \mathbf{a}+\mathbf{b}:=\phi_{lpha,lphaeta}(\mathbf{a})+\phi_{eta,lphaeta}(\mathbf{b})\ \mathbf{a}\circ\mathbf{b}:=\phi_{lpha,lphaeta}(\mathbf{a})\circ\phi_{eta,lphaeta}(\mathbf{b}), \end{array}$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace. Conversely, any dual weak brace is a strong semilattice of skew braces
Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

- ▶ Let Y be a (lower) semilattice.
- Let $\{B_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint skew braces.
- ▶ For each $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a skew brace homomorphism such that
 - 1. $\phi_{\alpha,\alpha} = id_{B_{\alpha}}$, for every $\alpha \in Y$;
 - 2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S := \bigcup_{\alpha \in Y} B_{\alpha}$ endowed with

$$egin{array}{lll} {a+b} := \phi_{lpha,lphaeta}({a}) + \phi_{eta,lphaeta}({b}) \ {a\circ b} := \phi_{lpha,lphaeta}({a}) \circ \phi_{eta,lphaeta}({b}), \end{array}$$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace. Conversely, any dual weak brace is a strong semilattice of skew braces.

An easy example

Let us consider:

 $\begin{array}{ll} \mathsf{id}_{B_{\alpha}} & \mathsf{F} \ Y = \{\alpha, \beta\}, \ \text{with } \alpha > \beta; \\ & & & \\ \bigcirc & & \\ B_{\alpha} & \mathsf{F} \ B_{\alpha} \ \text{the trivial skew brace on the cyclic group } C_{3}; \\ & & & \\ B_{\beta} \ \text{the trivial skew brace on the symmetric group } Sym_{3}; \\ & & & \\ \phi_{\alpha,\beta} & & \\ \phi_{\alpha,\beta} & & \\ \phi_{\alpha,\beta}(0) = \mathsf{id}_{3}, \ \phi_{\alpha,\beta}(1) = (123), \ \phi_{\alpha,\beta}(2) = (132). \\ & & \\ \mathsf{Then}, \ S = B_{\alpha} \bigcup B_{\beta} \ \text{endowed with the operation given by} \\ & & \\ \forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b := \phi_{\alpha,\beta}(a) + \phi_{\beta,\beta}(b) \\ & & \\ & & a \circ b := \phi_{\alpha,\beta}(a) \circ \phi_{\beta,\beta}(b) \end{array}$

is a (not trivial) dual weak brace.

Homomorphisms between skew braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature:

- ▶ [Cedó 2018], [Vendramin 2019] pose the problem of computing the automorphism groups of skew braces of size *p*^{*n*}.
- [Zenouz 2019] determines the automorphism group of skew braces of order p > 3.
- ▶ [Puljić, Smoktunowicz, Zenouz 2022] describe F_p-braces of cardinality p⁴ which are not right nilpotent.
- [Rathee, Yadav 2023] deal with automorphisms of skew braces for developing some general homological and cohomological aspects related to skew braces.
- ► [Civino, Fedele, Gavioli 2023] are interested in finding isomorphic F₂-braces.

Homomorphisms between skew braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature:

- ▶ [Cedó 2018], [Vendramin 2019] pose the problem of computing the automorphism groups of skew braces of size *p*^{*n*}.
- [Zenouz 2019] determines the automorphism group of skew braces of order p > 3.
- ▶ [Puljić, Smoktunowicz, Zenouz 2022] describe 𝔽_p-braces of cardinality p⁴ which are not right nilpotent.
- [Rathee, Yadav 2023] deal with automorphisms of skew braces for developing some general homological and cohomological aspects related to skew braces.
- ▶ [Civino, Fedele, Gavioli 2023] are interested in finding isomorphic \mathbb{F}_2 -braces.

Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

- ▶ Let Y be a (lower) semilattice.
- ▶ Let $\{r_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint solutions on X_{α} indexed by Y.
- For each $\alpha \geq \beta$ let $\phi_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$ be a map.
- Let $X := \bigcup_{\alpha \in Y} X_{\alpha}$ and $r : X \times X \longrightarrow X \times X$ the map defined as

$$r(x,y) := r_{\alpha\beta} \left(\phi_{\alpha,\alpha\beta} \left(x \right), \phi_{\beta,\alpha\beta} \left(y \right) \right),$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$.

If the following conditions are satisfied:

1. $\phi_{\alpha,\alpha} = \operatorname{id}_{X_{\alpha}}$, for every $\alpha \in Y$,

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$,

3. $(\phi_{\alpha,\beta} \times \phi_{\alpha,\beta}) r_{\alpha} = r_{\beta} (\phi_{\alpha,\beta} \times \phi_{\alpha,\beta})$, for all $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, then *r* is a solution on *X*, called strong semilattice of the solutions r_{α} .

Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

- ▶ Let Y be a (lower) semilattice.
- ▶ Let $\{r_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint solutions on X_{α} indexed by Y.
- For each $\alpha \geq \beta$ let $\phi_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$ be a map.
- Let $X := \bigcup_{\alpha \in Y} X_{\alpha}$ and $r : X \times X \longrightarrow X \times X$ the map defined as

$$r(x,y) := r_{\alpha\beta} \left(\phi_{\alpha,\alpha\beta} \left(x \right), \phi_{\beta,\alpha\beta} \left(y \right) \right),$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$.

If the following conditions are satisfied:

1.
$$\phi_{\alpha,\alpha} = \mathsf{id}_{X_{\alpha}}$$
, for every $\alpha \in Y$,

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \ge \beta \ge \gamma$,

3. $(\phi_{\alpha,\beta} \times \phi_{\alpha,\beta}) r_{\alpha} = r_{\beta} (\phi_{\alpha,\beta} \times \phi_{\alpha,\beta})$, for all $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, then r is a solution on X, called strong semilattice of the solutions r_{α} .

Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

- ▶ Let Y be a (lower) semilattice.
- ▶ Let $\{r_{\alpha} \mid \alpha \in Y\}$ be a family of disjoint solutions on X_{α} indexed by Y.
- For each $\alpha \geq \beta$ let $\phi_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$ be a map.
- Let $X := \bigcup_{\alpha \in Y} X_{\alpha}$ and $r : X \times X \longrightarrow X \times X$ the map defined as

$$r(x,y) := r_{\alpha\beta} \left(\phi_{\alpha,\alpha\beta} \left(x \right), \phi_{\beta,\alpha\beta} \left(y \right) \right),$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$.

If the following conditions are satisfied:

1. $\phi_{\alpha,\alpha} = \mathsf{id}_{X_{\alpha}}$, for every $\alpha \in Y$,

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \ge \beta \ge \gamma$,

3. $(\phi_{\alpha,\beta} \times \phi_{\alpha,\beta}) r_{\alpha} = r_{\beta} (\phi_{\alpha,\beta} \times \phi_{\alpha,\beta})$, for all $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, then r is a solution on X, called strong semilattice of the solutions r_{α} .

The solutions associated to dual weak braces

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α} .

Corollary

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a finite dual weak brace and r the solution associated to S. Then, $r^{2k+1} = r$ with $2k = \operatorname{lcm}\{p(r_{\alpha}) \mid \alpha \in Y\}$.

As a particular case, the solution r associated to a finite dual weak brace $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ is *cubic*, i.e., $r^3 = r$, if and only if each r_{α} is involutive, i.e., each B_{α} is a brace.

The solutions associated to dual weak braces

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α} .

Corollary

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a finite dual weak brace and r the solution associated to S. Then, $r^{2k+1} = r$ with $2k = \operatorname{lcm}\{p(r_{\alpha}) \mid \alpha \in Y\}$.

As a particular case, the solution r associated to a finite dual weak brace $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ is *cubic*, i.e., $r^3 = r$, if and only if each r_{α} is involutive, i.e., each B_{α} is a brace.

The solutions associated to dual weak braces

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α} .

Corollary

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a finite dual weak brace and r the solution associated to S. Then, $r^{2k+1} = r$ with $2k = \text{lcm}\{p(r_{\alpha}) \mid \alpha \in Y\}$.

As a particular case, the solution r associated to a finite dual weak brace $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ is *cubic*, i.e., $r^3 = r$, if and only if each r_{α} is involutive, i.e., each B_{α} is a brace.

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

- 1. $E(S) \subseteq I$;
- 2. $\forall a, b \in I \quad a b \in I \quad \text{and} \quad a^{-1} \in I;$
- 3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an *ideal* of $(S, +, \circ)$ if

- 1. I is a normal subsemigroup of (S, +);
- 2. *I* is a normal subsemigroup of (S, \circ) ;
- 3. $\lambda_a(I) \subseteq I$, for every $a \in S$;

If I is an ideal, the relation \sim_I on S given by

 $\forall a, b \in S \quad a \sim_I b \iff a - a = b - b \text{ and } -a + b \in I,$

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

- 1. $E(S) \subseteq I$;
- 2. $\forall a, b \in I$ $a b \in I$ and $a^{-1} \in I$;
- 3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an *ideal* of $(S, +, \circ)$ if

- 1. *I* is a normal subsemigroup of (S, +);
- 2. *I* is a normal subsemigroup of (S, \circ) ;
- 3. $\lambda_a(I) \subseteq I$, for every $a \in S$;

If I is an ideal, the relation \sim_I on S given by

 $\forall a, b \in S \quad a \sim_I b \iff a - a = b - b \text{ and } -a + b \in I,$

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

- 1. $E(S) \subseteq I$;
- 2. $\forall a, b \in I \quad a b \in I \quad \text{and} \quad a^{-1} \in I;$
- 3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an *ideal* of $(S, +, \circ)$ if

- 1. *I* is a normal subsemigroup of (S, +);
- 2. *I* is a normal subsemigroup of (S, \circ) ;
- 3. $\lambda_a(I) \subseteq I$, for every $a \in S$;

If I is an ideal, the relation \sim_I on S given by

 $\forall a, b \in S \quad a \sim_I b \iff a - a = b - b \text{ and } - a + b \in I,$

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

- 1. $E(S) \subseteq I$;
- 2. $\forall a, b \in I \quad a b \in I \quad \text{and} \quad a^{-1} \in I;$
- 3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an *ideal* of $(S, +, \circ)$ if

- 1. *I* is a normal subsemigroup of (S, +);
- 2. *I* is a normal subsemigroup of (S, \circ) ;
- 3. $\lambda_a(I) \subseteq I$, for every $a \in S$;

If I is an ideal, the relation \sim_I on S given by

 $\forall a, b \in S \quad a \sim_I b \iff a - a = b - b \text{ and } -a + b \in I,$

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

• S and E(S) are trivial ideals of S.

► The set

Soc (S) := $\{a \mid a \in S, \forall b \in S \mid a+b = a \circ b \text{ and } a+b = b+a\}$

is an ideal of *S* called the *socle* of *S*.

▶ Denoted by $\zeta(S, \circ)$ the center of (S, \circ) , the set

Ann $(S) := \operatorname{Soc}(S) \cap \zeta(S, \circ)$,

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

• S and E(S) are trivial ideals of S.

► The set

Soc (S) := $\{a \mid a \in S, \forall b \in S \mid a+b = a \circ b \text{ and } a+b = b+a\}$

is an ideal of *S* called the *socle* of *S*.

▶ Denoted by $\zeta(S, \circ)$ the center of (S, \circ) , the set

Ann $(S) := \operatorname{Soc}(S) \cap \zeta(S, \circ)$,

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

• S and E(S) are trivial ideals of S.

The set

 $Soc(S) := \{a \mid a \in S, \forall b \in S \mid a+b = a \circ b \text{ and } a+b = b+a\}$

is an ideal of *S* called the *socle* of *S*.

• Denoted by $\zeta(S, \circ)$ the center of (S, \circ) , the set

Ann $(S) := \operatorname{Soc}(S) \cap \zeta(S, \circ)$,

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

• S and E(S) are trivial ideals of S.

The set

 $\operatorname{Soc}(S) := \{a \mid a \in S, \forall b \in S \mid a+b = a \circ b \text{ and } a+b = b+a\}$

is an ideal of S called the *socle* of S.

• Denoted by $\zeta(S, \circ)$ the center of (S, \circ) , the set

Ann $(S) := \operatorname{Soc}(S) \cap \zeta(S, \circ)$,

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

• S and E(S) are trivial ideals of S.

The set

 $Soc(S) := \{a \mid a \in S, \forall b \in S \mid a+b = a \circ b \text{ and } a+b = b+a\}$

is an ideal of S called the *socle* of S.

▶ Denoted by $\zeta(S, \circ)$ the center of (S, \circ) , the set

Ann $(S) := \operatorname{Soc} (S) \cap \zeta (S, \circ),$

A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} . Set $\psi_{\alpha,\beta} := \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$, if $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then

 $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$

is an ideal of S. Conversely, every ideal of S is of this form.

Remark: $Soc(S) \subseteq \bigcup_{\alpha \in Y} Soc(B_{\alpha})$ but, in general, $Soc(S) \neq [Y; Soc(B_{\alpha}); \psi_{\alpha,}]$

A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} . Set $\psi_{\alpha,\beta} := \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$, if $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then

 $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$

is an ideal of S. Conversely, every ideal of S is of this form.

Remark: Soc $(S) \subseteq \bigcup_{\alpha \in Y}$ Soc (B_{α}) but, in general, Soc $(S) \neq [Y; Soc(B_{\alpha}); \psi_{\alpha})$

A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} . Set $\psi_{\alpha,\beta} := \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$, if $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then

 $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$

is an ideal of S. Conversely, every ideal of S is of this form.

Remark: Soc $(S) \subseteq \bigcup_{\alpha \in Y}$ Soc (B_{α}) but, in general, Soc $(S) \neq [Y; Soc(B_{\alpha}); \psi_{\alpha,\beta}]$

Final remarks

Proposition

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, $\psi_{\alpha,\beta} := \phi_{\alpha,\beta}|_{\mathsf{Soc}(B_{\alpha})}$, for all $\alpha \ge \beta$, and assume that $I := [Y; \mathsf{Soc}(B_{\alpha}); \psi_{\alpha,\beta}]$ is an ideal of S. Then, $I = \mathsf{Soc}(S)$.

Proposition

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, $\psi_{\alpha,\beta} := \phi_{\alpha,\beta|_{Ann(B_{\alpha})}}$, for all $\alpha \ge \beta$, and assume that $I := [Y; Ann(B_{\alpha}); \psi_{\alpha,\beta}]$ is an ideal of S. Then, I = Ann(S).

Final remarks

Proposition

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, $\psi_{\alpha,\beta} := \phi_{\alpha,\beta}|_{\mathsf{Soc}(B_{\alpha})}$, for all $\alpha \ge \beta$, and assume that $I := [Y; \mathsf{Soc}(B_{\alpha}); \psi_{\alpha,\beta}]$ is an ideal of S. Then, $I = \mathsf{Soc}(S)$.

Proposition

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, $\psi_{\alpha,\beta} := \phi_{\alpha,\beta|_{Ann(B_{\alpha})}}$, for all $\alpha \ge \beta$, and assume that $I := [Y; Ann(B_{\alpha}); \psi_{\alpha,\beta}]$ is an ideal of S. Then, I = Ann(S).

Bibliography

- F. Catino, I. Colazzo, P. Stefanelli: Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces, Forum Math., 33 (2021), no. 3, 757–772.

F. Catino, M. Mazzotta, M.M. Miccoli, P. Stefanelli: *Solutions of the Yang-Baxter* equation associated to weak braces, Semigroup Forum 104(2) (2022) 228-255.

F. Catino, M. Mazzotta, P. Stefanelli: *Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation*, J. Algebra **622** (2023) 587–613.

F. Catino, M. Mazzotta, P. Stefanelli: Solutions of the Yang-Baxter equation and strong semilattices of skew braces, Preprint arXiv:2307.03540 (2023).

L. Guarnieri, L. Vendramin: *Skew braces and the Yang-Baxter equation*, Math. Comput. **86**(307) (2017), 2519–2534.

A. Koch, P. J. Truman: *Opposite skew left braces and applications*, J. Algebra **546** (2020) 218–235.

M. Petrich: *Inverse semigroups*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984, a Wiley-Interscience Publication.

Thank you!

Contact information: ⊠ paola.stefanelli@unisalento.it