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Aims

This talk aims to:

Introduce the algebraic structure of the dual weak-brace;

Analyse set-theoretic solutions of the Yang-Baxter equation associated to
any dual weak braces;

Focus on some structural properties of dual weak braces.



Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical
mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

ﬁ G. Drinfel'd, On some unsolved problems in quantum group theory, in:
Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math.
vol.1510(2) Springer, Berlin,(1992), 1-8.
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If B is a non-empty set, a set-theoretic solution of the Yang-Baxter equation is
a map r: B x B — B x B that satisfies the braid equation, i.e.,

(r X idB)(idB ><r)(r X IdB) = (idB ><r)(r X idB)(idB ><r).

The Drinfel'd challenge

Determine all the set-theoretic solutions of the Yang-Baxter equation.
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Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the
Yang-Baxter equation. Moreover, if r is a solution on B, for all a,b € B, we
define the maps \,, pp : B — B and write the map r as

r(a,b) = (A (b), s (a))-

A solution r is said to be
left non-degenerate if ), is bijective, for every a € B.
right non-degenerate if pp is bijective, for every b € B.
non-degenerate if r is both left and right non-degenerate.
involutive if r? = idgxs.

idempotent if r? = r.

e The identity map idgx s is involutive, idempotent, and degenerate.

e The twist map 7 is involutive and non-degenerate.
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Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if (B, +,-) is a ring and o the adjoint operation on B, i.e.,
VabeB aob=a+b+a-b,

then B is said to be Jacobson radical if (B, o) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution r : B x B — B x B defined by

r(a b) = (Aa (B)s A o) (a))

where A\, (b) := a- b+ b, for all a, b € B. In particular, r is non-degenerate and
involutive.

More generally, non-degenerate involutive solutions are strictly related to the
structure of braces. Even more generally, non-degenerate bijective solutions can
be obtained through skew braces.
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Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedo6, Jespers,
Okninski - 2014)

A triple (B, +,0) is said to be a skew brace if (B,+) and (B, o) are groups and
ao(b+c)=aob—a+aoc

holds, for all a, b, c € B. If (B,+) is abelian then B is a brace.

The groups (B, +) and (B, o) have the same identity that we denote by 0.

e If (B,+) is a group, then (B,+,+) and (B, +,+°) are skew braces called
the trivial and the almost trivial skew brace on (B,+), respectively.

e Any Jacobson radical ring is a brace. Indeed, if (B,+, ") is a Jacobson
radical ring, then (B, +,0) is a brace with o is the adjoint operation,
whereaob:=a+b+a-b, forall a,be B.

e Any commutative brace is a Jacobson radical ring. Indeed, if (B, +,0) is a
brace such that o is commutative, then (B, +, ) is Jacobson radical ring
where a-b:=aob—-a—b, forall a,b € B.
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Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If B is a skew brace, then the map rg : B x B — B x B defined by
re (a, b) := (—a+aob, (—a+aob) oaob)
is a non-degenerate bijective solution (with a— the inverse of a with respect to

o, for every a € B).

Remark: rg is involutive <= (B,+,0) is a brace.

Theorem (Smoktunowicz, Vendramin - 2018)

If B is a finite skew brace, then the solution associated to B is such that
r2" = idg

where n € N is the exponent of the additive quotient group B/Z (B).
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- -1
The inverse map rg

If (B,+,0) is a skew brace, then the structure
B = (B,+%,0)

with a+% b:= b+ a, for all a,b € B, is a skew brace called the opposite skew
brace of (B, +,0).

[Koch, Truman - 2020]
The solution

rgor (a,b) = (aob—a, (aob—a) caob)
is such that

—1
rgop = I’B
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Inverse semigroups

A semigroup S is called inverse if, for each a € S, there exists a unique
a~! € S satisfying
—1 —1_ -1 -1
aa_a=a and a aa  =a .

Such an element a=! is called the inverse of a. &= [Petrich - 1984].

° (371)71 =aand (ab) ' =b'a ! foralla,beS.

e If f:S— T is a homomorphism between inverse semigroups, then
f(a=')=f(a) ", foreveryac$.

o The set of idempotent elements E (S) = {aa™* | a € S}.

e Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.
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-VYaes$s aoa = —a-+ta,
where —a and a~ denote the inverses of (S, +) and (S, o).

In any weak brace E(S,+) = E(S, o) thus we will simply write E(S). As a
consequence, if |E(S)| =1, then (S, +,0) is a skew brace.

e Skew braces are special instances of weak braces.

e If (S,+) is a Clifford semigroup, then (S,+,+) and (S, +, +) are weak
braces called the trivial and the almost trivial weak brace on (S, +),
respectively.

10
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A key result
If (S,+,0) is a weak brace, then

VaeS,ecE(S) et+a=eoa

In particular, E(S) is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022)
If (S,+,0) is a weak brace, then the maprs : S xS — S x S given by

rs(a,b) = (—a+aob,(—a+aob) oaob)
is a solution. Moreover, rs has a behaviour close to bijectivity.

Indeed, we can consider the opposite weak brace, i.e., S = (S5,+°, o), with
a+®?b=>b+a, forall a,be S, and so we have that

rs rsop rs = rs, rsop s Fsop = Fsop, and rsrsop = rsopfts.

Hence, rs is a completely regular element of Map (S x S).
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The additive structure of a weak brace

Theorem

Let (S,+,0) be a weak brace. Then, (S,+) is a Clifford semigroup.
Generally, (S, 0) is not a Clifford semigroup.

Example
Let
- X ={1,x,y};
- S the upper semilattice on X with join 1;

- T the commutative inverse monoid on X with identity 1 such that
xx =yy =xand xy = y;

- 7:=(xy) € Aut(S) and o : T — Aut(S) defined by o(1) = o(x) = ids
and o(y) = 7.

Then, considered the trivial weak braces on S and T, S x, T is a weak brace
such that (5 x T,0) is not Clifford since

v,y)oly,y)” =(v,x) and (y,y) o(y,y) = (x,x).

12



Weak braces coming from RB-operators

Definition (Catino, Mazzotta, S. - 2023)
If (S,+) is a Clifford semigroup, any map R : S — S satisfying

Vabes R(a) +R(b) =R(a+NR(a)+ b—%R(a))
at+R(a)—R(a)=a

is called Rota—Baxter operator on (S, +).

13
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Vabes R(a)+R(b)=R(a+%R(a) +b—NR(a))
at+R(a)—R(a)=a

is called Rota—Baxter operator on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if
R is an RB-operator on a Clifford semigroup (S, +), the operation defined by

aop b:=a+MR(a)+b—NR(a)

gives rise to a weak brace (S, +, on) with (S, 0m,) a Clifford semigroup.
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at+R(a)—R(a)=a

is called Rota—Baxter operator on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if
R is an RB-operator on a Clifford semigroup (S, +), the operation defined by

aop b:=a+MR(a)+b—NR(a)
gives rise to a weak brace (S, +, on) with (S, 0m,) a Clifford semigroup.

Instances of Rota—Baxter operators are:

e if (S,+) is a group, maps R € End (S, +) such that )% = % and
Im% C Z (S, +).
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Weak braces coming from RB-operators
Definition (Catino, Mazzotta, S. - 2023)
If (S,+) is a Clifford semigroup, any map R : S — S satisfying
Vabes R(a)+R(b)=R(a+%R(a) +b—NR(a))
at+R(a)—R(a)=a
is called Rota—Baxter operator on (S, +).

Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if
R is an RB-operator on a Clifford semigroup (S, +), the operation defined by

aop b:=a+MR(a)+b—NR(a)
gives rise to a weak brace (S, +, on) with (S, 0m,) a Clifford semigroup.

Instances of Rota—Baxter operators are:
e if (S,+) is a group, maps R € End (S, +) such that )% = % and
ImR C Z(S,+).
e maps R := —p where ¢ € End (S, +) is such that ©®> = ¢ and ¢ (e) = e,
for every e € E(S).

13



Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)
A weak brace (S, +, o) is called dual weak brace if (S, o) is a Clifford semigroup.
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Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)
A weak brace (S, +, o) is called dual weak brace if (S, o) is a Clifford semigroup.

If (S,+,0) is a dual weak brace, then the solution rs has also a behaviour close
to the non-degeneracy in the sense that

M- da=Xa, Ao =M, and  XAA- =\, A,
papa* pa = p37 pa* papa* = pa*7 and papa* = pa* pa

for every a € S.
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Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)
A weak brace (S, +, o) is called dual weak brace if (S, o) is a Clifford semigroup.

If (S,+,0) is a dual weak brace, then the solution rs has also a behaviour close
to the non-degeneracy in the sense that

M- da=Xa, Ao =M, and  XAA- =\, A,
papa* pa = p37 pa* papa* = pa*7 and papa* = pa* pa

for every a € S. Hence, \,, pa are completely regular elements in Map (S).
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Dual weak braces

Strong semilattices of groups

&= [Petrich - 1984]:

Ga,a = ids,
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Dual weak braces

Strong semilattices of groups

&= [Petrich - 1984]:

Pa,a = ids,

N > Let Y be a (lower) semilattice.

Doy Gg D ids,
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Strong semilattices of groups

&= [Petrich - 1984]:

ba,a = ids,,
N > Let Y be a (lower) semilattice.

Ga > Let {Go | @ € Y} be a family of disjoint groups.
Pa,p

¢a,'y G,B D ids;f

8.y

ids,
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Strong semilattices of groups

&= [Petrich - 1984]:

Pa,a = ids,,
0 Let Y be a (lower) semilattice.
Ga Let {Go | @ € Y} be a family of disjoint groups.
For each pair «, 8 of elements of Y such that a > 3,
b s let ¢o,3 1 Go — G be a group homomorphism such
: that
1. @a,a is the identical automorphism of G,, for every
</)0,’)' GB D id5,—r o€ Yy
2. 9rPas = Pany ifa>pB2>1.
D8~
Gy

ids.
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Strong semilattices of groups

&= [Petrich - 1984]:

ba,a = ids,,
0 Let Y be a (lower) semilattice.
Ga Let {Go | @ € Y} be a family of disjoint groups.
For each pair «, 8 of elements of Y such that a > 3,
.y let ¢o,3 1 Go — G be a group homomorphism such
: that
1. @a,a is the identical automorphism of G,, for every
(/)0,7 GB D id5,—r [ RS Y,
2. 9 yPap = ayifa>pf >y
bo.y Then, S := |J G. endowed with the operation given by
acY
G—Y b P b
ab = ¢a,ap(a) #s,as(b),

ids. for all a € G, and b € Gg, is a Clifford semigroup.
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Strong semilattices of groups

&= [Petrich - 1984]:

Pa,a = ids,
N Let Y be a (lower) semilattice.
Ga Let {Go | @ € Y} be a family of disjoint groups.
For each pair «, 8 of elements of Y such that a > 3,
.y let ¢o,3 1 Go — G be a group homomorphism such
. that
1. @a,a is the identical automorphism of G,, for every
(/)0,7 G,B D) idS—r o€ Y,
2. PP =Ganyifa>pf2y.
bo.y Then, S := |J G. endowed with the operation given by
acyY
G—y b P b
U ab = ¢a,ap(a) #s,as(b),
ids. for all a € G, and b € Gg, is a Clifford semigroup.

Conversely, any Clifford semigroup is obtained in this way.

15



Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

» Let Y be a (lower) semilattice.
> Let {By | a € Y} be a family of disjoint skew braces.

» For each a,B € Y such that a > 3, let ¢o,5 : Bo — Bg be a skew brace
homomorphism such that
1. ¢o,o =ids,, forevery a € Y;
2. P yPa,p = Pa,y, forall a, 5,y € Y such that a > 3 > ~.

16



Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)
» Let Y be a (lower) semilattice.
> Let {By | a € Y} be a family of disjoint skew braces.

» For each a,B € Y such that a > 3, let ¢o,5 : Bo — Bg be a skew brace
homomorphism such that
1. ¢o,o =ids,, forevery a € Y;
2. P yPa,p = Pa,y, forall a, 5,y € Y such that a > 3 > ~.

Then, S := |J Ba. endowed with
a€eY

a+b:=¢a,ap(a)+ ¢s,a3(b)
aob:= ¢a,o¢ﬁ(a) ° ¢570¢B(b)7

for all a € B, and b € Bg, is a dual weak brace.
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Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

» Let Y be a (lower) semilattice.
> Let {By | a € Y} be a family of disjoint skew braces.

» For each a,B € Y such that a > 3, let ¢o,5 : Bo — Bg be a skew brace
homomorphism such that
1. ¢o,o =ids,, forevery a € Y;
2. P yPa,p = Pa,y, forall a, 5,y € Y such that a > 3 > ~.

Then, S := |J Ba. endowed with
a€eY
a+ b= da,as(a) + ¢p.as(b)
aob:=¢aas(a) odsas(b),

for all a € B, and b € Bg, is a dual weak brace.
Conversely, any dual weak brace is a strong semilattice of skew braces.
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An easy example

Let us consider:
Y ={a, 8}, with a > 3;

ids,,
N B, the trivial skew brace on the cyclic group Gjs;
B, Bg the trivial skew brace on the symmetric group
Syms;
¢a,s : C3 = Sym; the homomorphism given by
$05(0) = ids, Ga(1) = (123), d.s(2) = (132).
Then, S = B, |J Bg endowed with the operation given by
B — i Va€ B,,b € B@ a-+b:= ¢a,@(a)+¢3,3(b)
1dp
g aob:= ¢ap(a)o ¢pp(b)

is a (not trivial) dual weak brace.

17



Homomorphisms between skew braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.
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Homomorphisms between skew braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature:

[Cedo - 2018], [Vendramin - 2019] pose the problem of computing the
automorphism groups of skew braces of size p".

[Zenouz - 2019] determines the automorphism group of skew braces of
order p > 3.

[Pulji¢, Smoktunowicz, Zenouz - 2022] describe F,-braces of cardinality p*
which are not right nilpotent.

[Rathee, Yadav - 2023] deal with automorphisms of skew braces for
developing some general homological and cohomological aspects related to
skew braces.

[Civino, Fedele, Gavioli - 2023] are interested in finding isomorphic
Fa-braces.
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Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

>

>
>
>

Let Y be a (lower) semilattice.

Let {ro | @ € Y} be a family of disjoint solutions on X, indexed by Y.
For each a > 3 let ¢o,p : Xa — Xg be a map.

Let X := |J Xa and r: X x X — X x X the map defined as

acY

r(x,y) = rap (9a,as (x) s 68,08 (),
for all x € X, and y € Xs.
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Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

» Let Y be a (lower) semilattice.

> Let {ro | @ € Y} be a family of disjoint solutions on X, indexed by Y .
» For each a > 3 let ¢o,p : Xoa — X3 be a map.

> Let X := |J Xa and r: X x X — X x X the map defined as

acY

r(x,y) = rap (9a,as (x) s 68,08 (),
for all x € X, and y € Xs.

If the following conditions are satisfied:
1. ¢a,a =idx,, foreverya €Y,
2. P8 yPa,p = Pa,~, forall a, B,y € Y such that a > 3 > v,
3. (¢a,8 X ¢a,8) fa = 13 (Pa,p X ¢a,p), for all a, B € Y such that o > 3,
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Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

» Let Y be a (lower) semilattice.

Let {ro | @ € Y} be a family of disjoint solutions on X, indexed by Y.

>
» For each a > 3 let ¢o,p : Xoa — X3 be a map.
> Let X := |J Xa and r: X x X — X x X the map defined as

acY

r(x,y) = rap (9a,as (x) s 68,08 (),
for all x € X, and y € Xs.

If the following conditions are satisfied:
1. ¢a,a =idx,, foreverya €Y,
2. P8 yPa,p = Pa,~, forall a, B,y € Y such that a > 3 > v,
3. (¢a,8 X ¢a,8) fa = 13 (Pa,p X ¢a,p), for all a, B € Y such that o > 3,

then r is a solution on X, called strong semilattice of the solutions r,,.
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The solutions associated to dual weak braces

Theorem

Let S =[Y; Ba; ¢a,p] be a dual weak brace. Then, the solution r associated to
S is the strong semilattice of the bijective non-degenerate solutions r,,
associated to each skew brace B, .
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The solutions associated to dual weak braces

Theorem

Let S =[Y; Ba; ¢a,p] be a dual weak brace. Then, the solution r associated to
S is the strong semilattice of the bijective non-degenerate solutions r,,
associated to each skew brace B, .

Corollary

Let S =[Y; Ba; ¢a,p] be a finite dual weak brace and r the solution associated
to S. Then, "' = r with 2k = lem{p (ra) | @ € Y}.
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The solutions associated to dual weak braces

Theorem

Let S =[Y; Ba; ¢a,p] be a dual weak brace. Then, the solution r associated to
S is the strong semilattice of the bijective non-degenerate solutions r,,
associated to each skew brace B, .

Corollary

Let S =[Y; Ba; ¢a,p] be a finite dual weak brace and r the solution associated
to S. Then, "' = r with 2k = lem{p (ra) | @ € Y}.

As a particular case, the solution r associated to a finite dual weak brace
S =[Y;Ba; ¢a.s] is cubic, i.e., r* = r, if and only if each r, is involutive, i.e.,
each B, is a brace.

(20



Ideals of dual weak braces

A normal subsemigroup | of a Clifford semigroup S is a subset / of S such that
1. E(S) C I,
2.Vabel abel and alel
3.VaeS allacCl.
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A normal subsemigroup | of a Clifford semigroup S is a subset / of S such that
1. E(S) C I;
2.Vabel abel and alel
3.VaeS allacCl.

Definition
A subset / of a dual weak brace S is an ideal of (S, +,0) if
1. [ is a normal subsemigroup of (S, +);

2. | is a normal subsemigroup of (S, 0);
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Ideals of dual weak braces

A normal subsemigroup | of a Clifford semigroup S is a subset / of S such that
1 ES)C I
2.Vabel abel and alel
3.VaeS allacCl.

Definition

A subset / of a dual weak brace S is an ideal of (S, +,0) if
1. [ is a normal subsemigroup of (S, +);
2. | is a normal subsemigroup of (S, 0);
3. Xa(l) C I, for every a € S;

If I is an ideal, the relation ~; on S given by
VabeS a~b < a—a=b—b and —a+bel,

is a congruence of (S, +,0).
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Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S.
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S and E(S) are trivial ideals of S.
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Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover,

every ideal [ is such that E(S) C /.
S and E(S) are trivial ideals of S.
The set
Soc(S):={alaeS,VbeS a+b=aob and a+b=>b+a}

is an ideal of S called the socle of S.
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Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover,
every ideal [ is such that E(S) C /.

S and E(S) are trivial ideals of S.
The set
Soc(S):={alaeS,VbeS a+b=aob and a+b=>b+a}
is an ideal of S called the socle of S.
Denoted by ( (S, o) the center of (S, 0), the set
Ann (S) :=Soc(S)N¢(S,0),

is an ideal of S called the annihilator of S.

22



A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)

Let S =[Y; Ba; da,8] be a dual weak brace, I an ideal of each skew brace B .

Set Pa,p = ¢""B|Ia’ for all oo > B, if pa,p(la) C I, for any a > 3, then

I =1[Y; la;a,6]

is an ideal of S.
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A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)

Let S =[Y; Ba; da,8] be a dual weak brace, I an ideal of each skew brace B .
Set Ya,p = ¢a,p), , forall > B, if da,p(la) C s, for any o > B, then

I =1[Y; la; ta,6]

is an ideal of S. Conversely, every ideal of S is of this form.

23



A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)

Let S =[Y; Ba; da,8] be a dual weak brace, I an ideal of each skew brace B .
Set Ya,p = ¢a,p), , forall > B, if da,p(la) C s, for any o > B, then

I =1[Y; la; ta,6]

is an ideal of S. Conversely, every ideal of S is of this form.

Remark: Soc(S) C |J Soc(Ba) but, in general,
acY

Soc(S) # [Y; Soc(Ba); Ya, ]
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Final remarks

Proposition

Let S =[Y; Ba; ¢a,p] be a dual weak brace, Yo.5 := ¢Q7B|SOC(B y for all o > 3,
and assume that | := [Y;Soc(Ba);Ya,p] is an ideal of S. Then, | = Soc(S).
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Final remarks

Proposition

Let S =[Y; Ba; ¢a,p] be a dual weak brace, Yo.5 := ¢a7B|Soc(B y for all o > 3,
and assume that | := [Y;Soc(Ba); ¥a,s] is an ideal of S. Then, | = Soc(S).

Proposition
Let S =[Y; Ba; ¢a,p] be a dual weak brace, 1.5 := Pap), )’ for all a > 3,

)
and assume that | := [Y; Ann (B.); ¥a,8] is an ideal of S. Then, | = Ann(S).
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