On the algebraic structure of dual weak braces and the Yang-Baxter equation

Paola Stefanelli

YRAC 2023

L'Aquila, 27 July 2023

Aims

This talk aims to:

- Introduce the algebraic structure of the dual weak-brace;
- Analyse set-theoretic solutions of the Yang-Baxter equation associated to any dual weak braces;
- Focus on some structural properties of dual weak braces.

Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

國 G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.1510(2) Springer, Berlin,(1992), 1-8.

If B is a non-empty set, a set-theoretic solution of the Yang-Baxter equation is
a map $r: B \times B \rightarrow B \times B$ that satisfies the braid equation, i.e.,

Determine all the set-theoretic solutions of the Yang-Baxter equation.

Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

國 G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.1510(2) Springer, Berlin,(1992), 1-8.

If B is a non-empty set, a set-theoretic solution of the Yang-Baxter equation is a map $r: B \times B \rightarrow B \times B$ that satisfies the braid equation, i.e.,

$$
\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right) .
$$

Determine all the set-theoretic solutions of the Yang-Baxter equation

Set-theoretic solutions of the Yang-Baxter equation

The quantum Yang-Baxter equation is a basic equation of the statistical mechanics that arose from Yang's work in 1967 and Baxter's one in 1972.

國 G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.1510(2) Springer, Berlin,(1992), 1-8.

If B is a non-empty set, a set-theoretic solution of the Yang-Baxter equation is a map $r: B \times B \rightarrow B \times B$ that satisfies the braid equation, i.e.,

$$
\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right) .
$$

The Drinfel'd challenge

Determine all the set-theoretic solutions of the Yang-Baxter equation.

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- Ieft non-degrenerate if λ_{a} is bijective, for every $a \in B$. $>$ right non-degenerate if ρ_{b} is bijective, for every $b \in B$. \Rightarrow non-degenerate if r is both left and right non-degenerate > involutive if $r^{2}=\operatorname{id}_{B \times B}$. > idempotent if $r^{2}=r$.
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The timist man τ is involutive and non-degenerate

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

\square

- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$.
> right non-degenerate if ρ_{b} is bijective, for every $b \in B$
- non-degenerate if r is both left and right non-degenerate.
- involutive if $r^{2}=\mathrm{id}_{B \times B}$.
- idempotent if $r^{2}=r$.
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$.
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$.
\Rightarrow non-degenerate if r is both left and right non-degenerate.
- involutive if $r^{2}=\mathrm{id}_{B \times B}$.
- idempotent if $r^{2}=r$
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$.
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- idempotent if $r^{2}=r$.
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$.
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- involutive if $r^{2}=\operatorname{id}_{B \times B}$.
- idempotent if $r^{2}=r$
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$.
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$.
- non-degenerate if r is both left and right non-degenerate.
- involutive if $r^{2}=\mathrm{id}_{B \times B}$.
- idempotent if $r^{2}=r$.
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The timist man τ is involutive and non-degenerate

Notation and terminology

Hereinafter, we will shortly call solution any set-theoretic solution to the Yang-Baxter equation. Moreover, if r is a solution on B, for all $a, b \in B$, we define the maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write the map r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

A solution r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$.
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$.
\checkmark non-degenerate if r is both left and right non-degenerate.
- involutive if $r^{2}=\mathrm{id}_{B \times B}$.
- idempotent if $r^{2}=r$.
- The identity map $\operatorname{id}_{B \times B}$ is involutive, idempotent, and degenerate.
- The twist map τ is involutive and non-degenerate.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B,+, \cdot)$ is a ring and \circ the adjoint operation on B, i.e.,

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0)

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces. Even more generally, non-degenerate bijective solutions can be obtained through skew braces.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

We recall that if $(B,+, \cdot)$ is a ring and \circ the adjoint operation on B, i.e.,

$$
\forall a, b \in B \quad a \circ b=a+b+a \cdot b,
$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where for all $a, b \in B$. In particular, r is non-degenerate and involutive.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces. Even more generally, non-degenerate bijective solutions can be obtained through skew braces.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.
We recall that if $(B,+, \cdot)$ is a ring and \circ the adjoint operation on B, i.e.,

$$
\forall a, b \in B \quad a \circ b=a+b+a \cdot b,
$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces. Even more generally, non-degenerate bijective solutions can be obtained through skew braces.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.
We recall that if $(B,+, \cdot)$ is a ring and \circ the adjoint operation on B, i.e.,

$$
\forall a, b \in B \quad a \circ b=a+b+a \cdot b,
$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces.
be obtained through skew braces.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.
We recall that if $(B,+, \cdot)$ is a ring and \circ the adjoint operation on B, i.e.,

$$
\forall a, b \in B \quad a \circ b=a+b+a \cdot b,
$$

then B is said to be Jacobson radical if (B, \circ) is a group (with identity 0).

Any Jacobson radical ring gives rise to a solution $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces. Even more generally, non-degenerate bijective solutions can be obtained through skew braces.

Skew braces

Definition (Rump-2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)
A triple $(B,+, \circ)$ is said to be a skew brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+^{o p}\right)$ are skew braces called the trivial and the almost trivial skew brace on $(B,+)$, respectively.
- Any Jacobson radical ring is a brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $a, b \in B$.

Skew braces

Definition (Rump-2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)
A triple $(B,+, \circ)$ is said to be a skew brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{\circ p}\right)$ are skew braces called the trivial and the almost trivial skew brace on $(B,+)$, respectively.
- Any Jacobson radical ring is a brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $a, b \in B$.

Skew braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)
A triple $(B,+, \circ)$ is said to be a skew brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{o p}\right)$ are skew braces called the trivial and the almost trivial skew brace on $(B,+)$, respectively.
- Any Jacobson radical ring is a brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $a, b \in B$.

Skew braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)
A triple $(B,+, \circ)$ is said to be a skew brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{o p}\right)$ are skew braces called the trivial and the almost trivial skew brace on $(B,+)$, respectively.
- Any Jacobson radical ring is a brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative brace is a Jacobson radical ring. Indeed, if $(B,+, 0)$ is a brace such that 0 is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{B}$.

Skew braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)
A triple $(B,+, \circ)$ is said to be a skew brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{o p}\right)$ are skew braces called the trivial and the almost trivial skew brace on $(B,+)$, respectively.
- Any Jacobson radical ring is a brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.

Skew braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, Okniński - 2014)

A triple $(B,+, \circ)$ is said to be a skew brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{o p}\right)$ are skew braces called the trivial and the almost trivial skew brace on ($B,+$), respectively.
- Any Jacobson radical ring is a brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $a, b \in B$.

Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If B is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a^{-}the inverse of a with respect to \circ, for every $a \in B$).

> Remark: r_{B} is involutive $\Longleftrightarrow(B,+, \circ)$ is a brace.

Theorem (Smoktunowicz, Vendramin - 2018)
If B is a finite skew brace, then the solution associated to B is such that

$$
r_{B}^{2 n}=i d_{B}
$$

where $n \in \mathbb{N}$ is the exponent of the additive quotient group $B / Z(B)$.

Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If B is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a^{-}the inverse of a with respect to \circ, for every $a \in B$).

Remark: r_{B} is involutive $\Longleftrightarrow(B,+, \circ)$ is a brace.
Theorem (Smoktunowicz, Vendramin - 2018)
If B is a finite skew brace, then the solution associated to B is such that
where $n \in \mathbb{N}$ is the exponent of the additive quotient group $B / Z(B)$.

Solutions associated to skew braces

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If B is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a^{-}the inverse of a with respect to o, for every $a \in B$).

Remark: r_{B} is involutive $\Longleftrightarrow(B,+, \circ)$ is a brace.
Theorem (Smoktunowicz, Vendramin - 2018)
If B is a finite skew brace, then the solution associated to B is such that

$$
r_{B}^{2 n}=\mathrm{id}_{B}
$$

where $n \in \mathbb{N}$ is the exponent of the additive quotient group $B / Z(B)$.

The inverse map r_{B}^{-1}

If $(B,+, \circ)$ is a skew brace, then the structure

$$
B^{o p}:=\left(B,+{ }^{o p}, o\right)
$$

with $a+{ }^{o p} b:=b+a$, for all $a, b \in B$, is a skew brace called the opposite skew brace of $(B,+, \circ)$.
[Koch, Truman - 2020]
The solution

$$
r_{B \circ p}(a, b)=\left(a \circ b-a,(a \circ b-a)^{-} \circ a \circ b\right)
$$

is such that

The inverse map r_{B}^{-1}

If $(B,+, \circ)$ is a skew brace, then the structure

$$
B^{o p}:=\left(B,+^{o p}, \circ\right)
$$

with $a+{ }^{o p} b:=b+a$, for all $a, b \in B$, is a skew brace called the opposite skew brace of ($B,+, \circ$).
[Koch, Truman - 2020]
The solution

$$
r_{B \circ \rho}(a, b)=\left(a \circ b-a,(a \circ b-a)^{-} \circ a \circ b\right)
$$

is such that

$$
r_{B o p}=r_{B}^{-1}
$$

In the last years...

-

```
    [Guarnieri, Vendramin]: Skew braces
    [Catino, Colazzo, S.]: Semi-braces
[Jespers, Van Antwernen]. Semi-braces
- [Catino, Mazzotta, S.]: Inverse semi-braces
        [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
    [Doikou, Dybotowicz]: Near braces
    [Martin-Lyons, Truman]: Skew bracoids
```


In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces
[Catino, Colazzo, S.]: Semi-braces
-

[Catino, Mazzotta, S.]: Inverse semi-braces
[Catino, Colazzo, S.]: Generalized semi-braces

- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
[Doikou, Rybołomiczl: Near braces
[Martin-Lyons, Truman]: Skew bracoids

In the last years...

-
- $\left\{\begin{array}{l}\text { [Guarnieri, Vendramin]: Skew braces } \\ \text { [Catino, Colazzo, S.]: Semi-braces }\end{array}\right.$
-

In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces
[Catino, Colazzo, S.]: Cancellative semi-braces
-

In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
-
- $\{$ [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
[Doikou, Rybołowicz]: Near braces
[Martin-Lyons, Truman]: Skew bracoids

In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
-
- $\{$ [Catino, Mazzotta, S.]: Inverse semi-braces
[Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
[Doikou, Rybołowicz]: Near braces
[Martin-Lyons, Truman]: Skew bracoids

In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
-
- $\{$ [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
[Doikou, Rybołowicz]: Near braces
[Martin-Lyons, Truman]: Skew bracoids

In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
-
- \int [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
- $\left\{\begin{array}{l}{[\text { Doikou, Rybołowicz]: Near braces }} \\ \text { [Martin-Lyons, Truman]: Skew bracoids }\end{array}\right.$

In the last years...

-
- $\{$ [Guarnieri, Vendramin]: Skew braces [Catino, Colazzo, S.]: Cancellative semi-braces
-
- \int [Catino, Mazzotta, S.]: Inverse semi-braces [Catino, Colazzo, S.]: Generalized semi-braces
- [Catino, Mazzotta, Miccoli, S.]: Weak braces
- [Catino, Mazzotta, S.]: Dual weak braces
- $\left\{\begin{array}{l}{[\text { Doikou, Rybołowicz]: Near braces }} \\ {[\text { Martin-Lyons, Truman }]: \text { Skew bracoids }}\end{array}\right.$

Inverse semigroups

A semigroup S is called inverse if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$
a a^{-1} a=a \quad \text { and } a^{-1} a a^{-1}=a^{-1} .
$$

Such an element a^{-1} is called the inverse of a.

- If $f: S \rightarrow T$ is a homomorphism between inverse semigroups, then $f\left(a^{-1}\right)=f(a)^{-1}$, for every $a \in S$.
- The set of idempotent elements $\mathrm{E}(S)=\left\{a a^{-1} \mid a \in S\right\}$
- Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

Inverse semigroups

A semigroup S is called inverse if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$
a a^{-1} a=a \quad \text { and } a^{-1} a a^{-1}=a^{-1} .
$$

Such an element a^{-1} is called the inverse of a. [Petrich - 1984].

- If $f: S \rightarrow T$ is a homomorphism between inverse semigroups, then $f\left(a^{-1}\right)=f(a)^{-1}$, for every $a \in S$.
- The set of idempotent elements $\mathrm{E}(S)=\left\{a a^{-1} \mid a \in S\right\}$
- Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

Inverse semigroups

A semigroup S is called inverse if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$
a a^{-1} a=a \quad \text { and } \quad a^{-1} a a^{-1}=a^{-1} .
$$

Such an element a^{-1} is called the inverse of a [Petrich - 1984].

- $\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$, for all $a, b \in S$.
- If $f: S \rightarrow T$ is a homomorphism between inverse semigroups, then $f\left(a^{-1}\right)=f(a)^{-1}$, for every $a \in S$.
- The set of idempotent elements $\mathrm{E}(S)=\left\{a a^{-1} \mid a \in S\right\}$
- Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

Inverse semigroups

A semigroup S is called inverse if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$
a a^{-1} a=a \quad \text { and } \quad a^{-1} a a^{-1}=a^{-1} .
$$

Such an element a^{-1} is called the inverse of a. [Petrich - 1984].

- $\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$, for all $a, b \in S$.
- If $f: S \rightarrow T$ is a homomorphism between inverse semigroups, then $f\left(a^{-1}\right)=f(a)^{-1}$, for every $a \in S$.
- The set of idempotent elements $E(S)=\left\{a a^{-1} \mid a \in S\right\}$.
- Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

Inverse semigroups

A semigroup S is called inverse if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$
a a^{-1} a=a \quad \text { and } \quad a^{-1} a a^{-1}=a^{-1} .
$$

Such an element a^{-1} is called the inverse of a. [Petrich - 1984].

- $\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$, for all $a, b \in S$.
- If $f: S \rightarrow T$ is a homomorphism between inverse semigroups, then $f\left(a^{-1}\right)=f(a)^{-1}$, for every $a \in S$.
- The set of idempotent elements $\mathrm{E}(S)=\left\{a a^{-1} \mid a \in S\right\}$.
- Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

Inverse semigroups

A semigroup S is called inverse if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying

$$
a a^{-1} a=a \quad \text { and } \quad a^{-1} a a^{-1}=a^{-1} .
$$

Such an element a^{-1} is called the inverse of a. [Petrich - 1984].

- $\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$, for all $a, b \in S$.
- If $f: S \rightarrow T$ is a homomorphism between inverse semigroups, then $f\left(a^{-1}\right)=f(a)^{-1}$, for every $a \in S$.
- The set of idempotent elements $\mathrm{E}(S)=\left\{a a^{-1} \mid a \in S\right\}$.
- Moreover, idempotents commute each other.

An inverse semigroup S is a Clifford semigroup if it has central idempotents.

Weak braces

Definition (Catino, Mazzotta, Miccoli, S. - 2022)
A triple $(S,+, \circ)$ is said to be a weak brace if $(S,+)$ and (S, \circ) are inverse semigroups satisfying
$-\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,

- $\forall a \in S \quad a \circ a^{-}=-a+a$, where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$. As a consequence, if $|\mathrm{E}(S)|=1$, then $(S,+, \circ)$ is a skew brace.

- Skew braces are special instances of weak braces.
- If $(S,+)$ is a Clifford semigroup, then $(S,+,+)$ and $\left(S,+,+{ }^{\circ p}\right)$ are weak braces called the trivial and the almost trivial weak brace on $(S,+)$, respectively.

Weak braces

Definition (Catino, Mazzotta, Miccoli, S. - 2022)
A triple $(S,+, \circ)$ is said to be a weak brace if $(S,+)$ and (S, \circ) are inverse semigroups satisfying
$-\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,

- $\forall a \in S \quad a \circ a^{-}=-a+a$, where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$.
consequence, if $|E(S)|=1$, then $(S,+, 0)$ is a skew brace.

- Skew braces are special instances of weak braces.
- If $(S+)$ is a Clifford semigroun then $(S,+,+)$ and $\left(S,+,+{ }^{\circ}\right)$ are weak braces called the trivial and the almost trivial weak brace on $(S,+)$, respectively.

Weak braces

Definition (Catino, Mazzotta, Miccoli, S. - 2022)
A triple $(S,+, \circ)$ is said to be a weak brace if $(S,+)$ and (S, \circ) are inverse semigroups satisfying
$-\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,

- $\forall a \in S \quad a \circ a^{-}=-a+a$, where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$. As a consequence, if $|\mathrm{E}(S)|=1$, then $(S,+, \circ)$ is a skew brace.

- Skew braces are special instances of weak braces.
- If $(S,+)$ is a Clifford semigroup, then $(S,+,+)$ and $\left(S,+,+{ }^{\circ p}\right)$ are weak braces called the trivial and the almost trivial weak brace on $(S,+)$, respectively.

Weak braces

Definition (Catino, Mazzotta, Miccoli, S. - 2022)
A triple $(S,+, \circ)$ is said to be a weak brace if $(S,+)$ and (S, \circ) are inverse semigroups satisfying
$-\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,

- $\forall a \in S \quad a \circ a^{-}=-a+a$, where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).

In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$. As a consequence, if $|\mathrm{E}(S)|=1$, then $(S,+, \circ)$ is a skew brace.

- Skew braces are special instances of weak braces.

Weak braces

Definition (Catino, Mazzotta, Miccoli, S. - 2022)

A triple $(S,+, \circ)$ is said to be a weak brace if $(S,+)$ and (S, \circ) are inverse semigroups satisfying
$-\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,

- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and a^{-}denote the inverses of $(S,+)$ and (S, \circ).
In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$. As a consequence, if $|E(S)|=1$, then $(S,+, \circ)$ is a skew brace.
- Skew braces are special instances of weak braces.
- If $(S,+)$ is a Clifford semigroup, then $(S,+,+)$ and $\left(S,+,+{ }^{\circ p}\right)$ are weak braces called the trivial and the almost trivial weak brace on ($S,+$), respectively.

Solutions associated to a weak brace

A key result
If ($S,+, \circ$) is a weak brace, then

$$
\forall a \in S, e \in \mathrm{E}(S) \quad e+a=e \circ a .
$$

In particular, $\mathrm{E}(\mathrm{S})$ is a trivial weak brace contained in S.

Theorem (Catino, Mazzotta, Miccoli, S. - 2022)
If $(S,+, \circ)$ is a weak brace, then the map $r_{s}: S \times S \rightarrow S \times S$ given by

$$
r_{s}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a solution. Moreover, r_{s} has a behaviour close to bijectivity.
Indeed, we can consider the opposite weak brace, i.e. $S^{o p}=\left(S,+{ }^{\circ p}, 0\right)$, with
$a+{ }^{\text {op }} b=b+a$, for all $a, b \in S$, and so we have that

$$
r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{\text {Sop }}=r_{\text {Sop }}, \quad \text { and } \quad r_{\text {S }} r_{\text {Sop }}=r_{\text {Sop }} r_{S}
$$

Hence, r_{s} is a completely regular element of $\operatorname{Map}(S \times S)$.

Solutions associated to a weak brace

A key result
If $(S,+, \circ)$ is a weak brace, then

$$
\forall a \in S, e \in E(S) \quad e+a=e \circ a .
$$

In particular, $\mathrm{E}(S)$ is a trivial weak brace contained in S.
\square

$$
r_{s}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a solution. Moreover, r_{S} has a behaviour close to bijectivity.
Indeed, we can consider the opposite weak brace, i.e. $S^{\circ p}=\left(S,+{ }^{\circ p}, \circ\right)$, with
$a+{ }^{\text {op }} b=b+a$, for all $a, b \in S$, and so we have that
$r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{\text {Sop }}=r_{\text {Sop }}, \quad$ and $\quad r_{\text {S }} r_{\text {Sop }}=r_{\text {SOP }} r_{S}$.
Hence, r_{s} is a completely regular element of $\operatorname{Map}(S \times S)$.

Solutions associated to a weak brace

A key result

If $(S,+, \circ)$ is a weak brace, then

$$
\forall a \in S, e \in E(S) \quad e+a=e \circ a .
$$

In particular, $\mathrm{E}(S)$ is a trivial weak brace contained in S.
Theorem (Catino, Mazzotta, Miccoli, S. - 2022)
If $(S,+, \circ)$ is a weak brace, then the map $r_{s}: S \times S \rightarrow S \times S$ given by

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a solution.
Indeed, we can consider the opposite weak brace, i.e., $S^{o p}=\left(S,+^{\circ p}, 0\right)$, with $a+{ }^{o p} b=b+a$, for all $a, b \in S$, and so we have that

Hence, r_{s} is a completely regular element of Map $(S \times S)$.

Solutions associated to a weak brace

A key result

If $(S,+, \circ)$ is a weak brace, then

$$
\forall a \in S, e \in E(S) \quad e+a=e \circ a .
$$

In particular, $\mathrm{E}(S)$ is a trivial weak brace contained in S.
Theorem (Catino, Mazzotta, Miccoli, S. - 2022)
If $(S,+, \circ)$ is a weak brace, then the map $r_{s}: S \times S \rightarrow S \times S$ given by

$$
r s(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a solution. Moreover, rs has a behaviour close to bijectivity.

Hence, r_{s} is a completely regular element of $\operatorname{Map}(S \times S)$.

Solutions associated to a weak brace

A key result

If $(S,+, \circ)$ is a weak brace, then

$$
\forall a \in S, e \in E(S) \quad e+a=e \circ a .
$$

In particular, $\mathrm{E}(S)$ is a trivial weak brace contained in S.
Theorem (Catino, Mazzotta, Miccoli, S. - 2022)
If $(S,+, \circ)$ is a weak brace, then the map $r_{s}: S \times S \rightarrow S \times S$ given by

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a solution. Moreover, rs has a behaviour close to bijectivity.
Indeed, we can consider the opposite weak brace, i.e., $S^{\circ p}=\left(S,+^{\circ p}, \circ\right)$, with $a+{ }^{o p} b=b+a$, for all $a, b \in S$, and so we have that

$$
r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{S o p}=r_{S o p}, \quad \text { and } \quad r_{S} r_{\text {Sop }}=r_{\text {Sop }} r_{S} .
$$

Hence, r_{s} is a completely regular element of $\operatorname{Map}(S \times S)$.

Solutions associated to a weak brace

A key result

If $(S,+, \circ)$ is a weak brace, then

$$
\forall a \in S, e \in E(S) \quad e+a=e \circ a .
$$

In particular, $\mathrm{E}(S)$ is a trivial weak brace contained in S.
Theorem (Catino, Mazzotta, Miccoli, S. - 2022)
If $(S,+, \circ)$ is a weak brace, then the map $r_{S}: S \times S \rightarrow S \times S$ given by

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a solution. Moreover, rs has a behaviour close to bijectivity.
Indeed, we can consider the opposite weak brace, i.e., $S^{\circ p}=\left(S,+^{\circ p}, \circ\right)$, with $a+{ }^{o p} b=b+a$, for all $a, b \in S$, and so we have that

$$
r_{s} r_{\text {sop }} r_{s}=r_{s}, \quad r_{\text {sop }} r_{s} r_{\text {sop }}=r_{\text {sop }}, \quad \text { and } \quad r_{\text {s } r_{\text {sop }}}=r_{\text {sop }} r_{s} .
$$

Hence, r_{s} is a completely regular element of $\operatorname{Map}(S \times S)$.

The additive structure of a weak brace

Theorem
Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.
Generally, (S, \circ) is not a Clifford semigroup.
Example
1 et
$X:=\{1, x, y\} ;$
S the upper semilattice on X with join 1 ;
T the commutative inverse monoid on X with identity 1 such that
$x x=y y=x$ and $x y=y$;
$\tau:=(x y) \in \operatorname{Aut}(S)$ and $\sigma: T \rightarrow \operatorname{Aut}(S)$ defined by $\sigma(1)=\sigma(x)=$ id $_{S}$
and $\sigma(y)=\tau$.
Then, considered the trivial weak braces on S and $T, S \rtimes_{\sigma} T$ is a weak brace such that ($S \times T, \circ$) is not Clifford since

$$
(y, y) \circ(y, y)^{-}=(y, x) \quad \text { and } \quad(y, y)^{-} \circ(y, y)=(x, x)
$$

The additive structure of a weak brace

Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.
Generally, (S, \circ) is not a Clifford semigroup.

Example

Let

- $X:=\{1, x, y\} ;$
- S the upper semilattice on X with join 1 ;
- T the commutative inverse monoid on X with identity 1 such that $x x=y y=x$ and $x y=y$;
- $\tau:=(x y) \in \operatorname{Aut}(S)$ and $\sigma: T \rightarrow \operatorname{Aut}(S)$ defined by $\sigma(1)=\sigma(x)=\mathrm{id}_{S}$ and $\sigma(y)=\tau$.
Then, considered the trivial weak braces on S and $T, S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford since

$$
(y, y) \circ(y, y)^{-}=(y, x) \quad \text { and } \quad(y, y)^{-} \circ(y, y)=(x, x)
$$

Weak braces coming from RB-operators

Definition (Catino, Mazzotta, S. - 2023)
If $(S,+)$ is a Clifford semigroup, any map $\mathfrak{R}: S \rightarrow S$ satisfying

$$
\begin{aligned}
\forall a, b \in S \quad \Re(a) & +\mathfrak{R}(b)=\mathfrak{R}(a+\mathfrak{R}(a)+b-\mathfrak{R}(a)) \\
a & +\mathfrak{R}(a)-\mathfrak{R}(a)=a
\end{aligned}
$$

is called Rota-Baxter operator on $(S,+)$.
Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \mathfrak{R} is an RB-operator on a Clifford semigroup $(S,+)$, the operation defined by
gives rise to a weak brace ($S,+, \circ_{\Re}$) with (S, o_{\Re}) a Clifford semigroup.
Instances of Rota-Baxter operators are:

- if $(S,+)$ is a group, maps $\Re \in \operatorname{End}(S,+)$ such that $\Re^{2}=\mathfrak{R}$ and
$\operatorname{Im} \mathfrak{R} \subseteq Z(S,+)$
- maps $R:=-\varphi$ where $\varphi \in \operatorname{End}(S,+)$ is such that $\varphi^{2}=\varphi$ and $\varphi(e)=e$, for every $e \in E(S)$.

Weak braces coming from RB-operators

Definition (Catino, Mazzotta, S. - 2023)
If $(S,+)$ is a Clifford semigroup, any map $\mathfrak{R}: S \rightarrow S$ satisfying

$$
\begin{gathered}
\forall a, b \in S \quad \Re(a)+\Re(b)=\Re(a+\Re(a)+b-\Re(a)) \\
a+\Re(a)-\Re(a)=a
\end{gathered}
$$

is called Rota-Baxter operator on $(S,+)$.
Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \Re is an RB-operator on a Clifford semigroup $(S,+)$, the operation defined by

$$
a \circ_{\Re} b:=a+\Re(a)+b-\Re(a)
$$

gives rise to a weak brace $\left(S,+, \circ_{\mathfrak{R}}\right)$ with $\left(S, \circ_{\mathfrak{R}}\right)$ a Clifford semigroup.
Instances of Rota-Baxter operators are:

- maps $R:=-\varphi$ where $\varphi \in$ End $(S,+)$ is such that $\varphi^{2}=\varphi$ and $\varphi(e)=e$, for every $e \in E(S)$.

Weak braces coming from RB-operators

Definition (Catino, Mazzotta, S. - 2023)

$$
\begin{gathered}
\forall a, b \in S \quad \Re(a)+\mathfrak{R}(b)=\mathfrak{R}(a+\mathfrak{R}(a)+b-\mathfrak{R}(a)) \\
a+\mathfrak{R}(a)-\Re(a)=a
\end{gathered}
$$

is called Rota-Baxter operator on $(S,+)$.
Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \Re is an RB-operator on a Clifford semigroup $(S,+)$, the operation defined by

$$
a \circ_{\Re} b:=a+\Re(a)+b-\Re(a)
$$

gives rise to a weak brace $\left(S,+, \circ_{\mathfrak{R}}\right)$ with $\left(S, \circ_{\mathfrak{R}}\right)$ a Clifford semigroup.
Instances of Rota-Baxter operators are:

- if $(S,+)$ is a group, maps $\mathfrak{R} \in$ End $(S,+)$ such that $\mathfrak{R}^{2}=\Re$ and $\operatorname{lm} \Re \subseteq Z(S,+)$.
- maps $R:=-\varphi$ where $\varphi \in$ End $(S,+)$ is such that $\varphi^{2}=\varphi$ and $\varphi(e)=e$ for every $e \in E(S)$.

Weak braces coming from RB-operators

Definition (Catino, Mazzotta, S. - 2023)

$$
\begin{gathered}
\forall a, b \in S \quad \Re(a)+\Re(b)=\Re(a+\Re(a)+b-\Re(a)) \\
a+\Re(a)-\Re(a)=a
\end{gathered}
$$

is called Rota-Baxter operator on $(S,+)$.
Bearing in mind [Guo, Lang, Sheng - 2021] and [Bardakov, Gubarev - 2023] if \mathfrak{R} is an RB-operator on a Clifford semigroup $(S,+)$, the operation defined by

$$
a \circ_{\Re} b:=a+\Re(a)+b-\Re(a)
$$

gives rise to a weak brace $\left(S,+, \circ_{\mathfrak{R}}\right)$ with $\left(S, \circ_{\mathfrak{R}}\right)$ a Clifford semigroup.
Instances of Rota-Baxter operators are:

- if $(S,+)$ is a group, maps $\mathfrak{R} \in$ End $(S,+)$ such that $\mathfrak{R}^{2}=\Re$ and $\operatorname{lm} \Re \subseteq Z(S,+)$.
- maps $R:=-\varphi$ where $\varphi \in \operatorname{End}(S,+)$ is such that $\varphi^{2}=\varphi$ and $\varphi(e)=e$, for every $e \in E(S)$.

Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)
A weak brace $(S,+, \circ)$ is called dual weak brace if (S, \circ) is a Clifford semigroup.

If $(S,+, \circ)$ is a dual weak brace, then the solution r_{S} has also a behaviour close to the non-degeneracy in the sense that

for every $a \in S$. Hence, λ_{a}, ρ_{a} are completely regular elements in Map (S).

Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)
A weak brace $(S,+, \circ)$ is called dual weak brace if (S, \circ) is a Clifford semigroup.

If $(S,+, \circ)$ is a dual weak brace, then the solution $r s$ has also a behaviour close to the non-degeneracy in the sense that

$$
\begin{array}{llll}
\lambda_{\mathrm{a}} \lambda_{\mathrm{a}^{-}} \lambda_{\mathrm{a}}=\lambda_{\mathrm{a}}, & \lambda_{\mathrm{a}^{-}} \lambda_{\mathrm{a}} \lambda_{\mathrm{a}^{-}}=\lambda_{\mathrm{a}^{-}}, & \text {and } & \lambda_{\mathrm{a}} \lambda_{\mathrm{a}^{-}}=\lambda_{\mathrm{a}^{-}} \lambda_{\mathrm{a}} \\
\rho_{\mathrm{a}} \rho_{\mathrm{a}^{-}} \rho_{\mathrm{a}}=\rho_{\mathrm{a}}, & \rho_{\mathrm{a}^{-}} \rho_{\mathrm{a}} \rho_{\mathrm{a}^{-}}=\rho_{a^{-}}, & \text {and } & \rho_{\mathrm{a}} \rho_{\mathrm{a}^{-}}=\rho_{\mathrm{a}^{-}} \rho_{\mathrm{a}}
\end{array}
$$

for every $a \in S$. Hence, λ_{a}, ρ_{a} are completely regular elements in Map (S)

Dual weak braces

Definition (Catino, Mazzotta, S. - 2023)

A weak brace $(S,+, \circ)$ is called dual weak brace if (S, \circ) is a Clifford semigroup.

If $(S,+, \circ)$ is a dual weak brace, then the solution $r s$ has also a behaviour close to the non-degeneracy in the sense that

$$
\begin{array}{llll}
\lambda_{\mathrm{a}} \lambda_{\mathrm{a}^{-}} \lambda_{\mathrm{a}}=\lambda_{\mathrm{a}}, & \lambda_{\mathrm{a}^{-}} \lambda_{\mathrm{a}} \lambda_{\mathrm{a}^{-}}=\lambda_{\mathrm{a}^{-}}, & \text {and } & \lambda_{\mathrm{a}} \lambda_{\mathrm{a}^{-}}=\lambda_{\mathrm{a}^{-}} \lambda_{\mathrm{a}} \\
\rho_{\mathrm{a}} \rho_{\mathrm{a}^{-}} \rho_{\mathrm{a}}=\rho_{\mathrm{a}}, & \rho_{\mathrm{a}^{-}-} \rho_{\mathrm{a}} \rho_{\mathrm{a}^{-}}=\rho_{a^{-}}, & \text {and } & \rho_{\mathrm{a}} \rho_{\mathrm{a}^{-}}=\rho_{\mathrm{a}^{-}} \rho_{\mathrm{a}}
\end{array}
$$

for every $a \in S$. Hence, λ_{a}, ρ_{a} are completely regular elements in $\operatorname{Map}(S)$.

Strong semilattices of groups

[Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\left\{G_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint groups.
\Rightarrow For each pair α, β of elements of Y such that $\alpha \geq \beta$. let $\phi_{\alpha, \beta}: G_{\alpha} \rightarrow G_{\beta}$ be a group homomorphism such that

1. $\phi_{\alpha, a}$ is the identical automorphism of G_{α}, for every
$\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup_{\alpha \in Y} G_{\alpha}$ endowed with the operation given by
$a b:=\phi_{\alpha, \alpha \beta}(a) \phi_{\beta, \alpha \beta}(b)$,
for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup.
Conversely, any Clifford semigroup is obtained in this way.

Strong semilattices of groups

[[Petrich - 1984]:

- Let Y be a (lower) semilattice.
\Rightarrow Let $\left\{G_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint groups.
\Rightarrow For each pair α, β of elements of Y such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: G_{\alpha} \rightarrow G_{\beta}$ be a group homomorphism such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of G_{α}, for every
$\alpha \in Y$;

Then, $S:=\bigcup G_{\alpha}$ endowed with the operation given by
for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup.
Conversely, any Clifford semigroup is obtained in this way.

Strong semilattices of groups

[Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\left\{G_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint groups.

Then, $S:=\bigcup G_{\alpha}$ endowed with the operation given by
$a b:=\phi_{\alpha, \alpha \beta}(a) \phi_{\beta, \alpha \beta}(b)$,
for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup.
Conversely, any Clifford semigroup is obtained in this way.

Strong semilattices of groups

[Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\left\{G_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint groups.
- For each pair α, β of elements of Y such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: G_{\alpha} \rightarrow G_{\beta}$ be a group homomorphism such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of G_{α}, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup G_{\alpha}$ endowed with the operation given by
for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup.
Conversely, any Clifford semigroup is obtained in this way.

Strong semilattices of groups

[Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\left\{G_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint groups.
- For each pair α, β of elements of Y such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: G_{\alpha} \rightarrow G_{\beta}$ be a group homomorphism such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of G_{α}, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup_{\alpha \in Y} G_{\alpha}$ endowed with the operation given by

$$
a b:=\phi_{\alpha, \alpha \beta}(a) \phi_{\beta, \alpha \beta}(b)
$$

for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup.
Conversely, any Clifford semigroup is obtained in this way.

Strong semilattices of groups

[Petrich - 1984]:

- Let Y be a (lower) semilattice.
- Let $\left\{G_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint groups.
- For each pair α, β of elements of Y such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: G_{\alpha} \rightarrow G_{\beta}$ be a group homomorphism such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of G_{α}, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup_{\alpha \in Y} G_{\alpha}$ endowed with the operation given by

$$
a b:=\phi_{\alpha, \alpha \beta}(a) \phi_{\beta, \alpha \beta}(b)
$$

for all $a \in G_{\alpha}$ and $b \in G_{\beta}$, is a Clifford semigroup. Conversely, any Clifford semigroup is obtained in this way.

Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

- Let Y be a (lower) semilattice.
- Let $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint skew braces.
- For each $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a skew brace homomorphism such that

1. $\phi_{\alpha, \alpha}=\mathrm{id}_{B_{\alpha}}$, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup_{\alpha \in Y} B_{\alpha}$ endowed with

$$
\begin{aligned}
& a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \\
& a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b),
\end{aligned}
$$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace.
Conversely, any dual weak brace is a strong semilatiice of skew braces.

Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

- Let Y be a (lower) semilattice.
- Let $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint skew braces.
- For each $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a skew brace homomorphism such that

1. $\phi_{\alpha, \alpha}=\mathrm{id}_{B_{\alpha}}$, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup_{\alpha \in Y} B_{\alpha}$ endowed with

$$
\begin{aligned}
& a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \\
& a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b)
\end{aligned}
$$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace.

Strong semilattice of skew braces

Theorem (Catino, Mazzotta, S. - 2023)

- Let Y be a (lower) semilattice.
- Let $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint skew braces.
- For each $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a skew brace homomorphism such that

1. $\phi_{\alpha, \alpha}=\mathrm{id}_{B_{\alpha}}$, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S:=\bigcup_{\alpha \in Y} B_{\alpha}$ endowed with

$$
\begin{aligned}
& a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \\
& a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b)
\end{aligned}
$$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace.
Conversely, any dual weak brace is a strong semilattice of skew braces.

An easy example

Let us consider:

- $Y=\{\alpha, \beta\}$, with $\alpha>\beta$;
- B_{α} the trivial skew brace on the cyclic group C_{3};
- B_{β} the trivial skew brace on the symmetric group Sym_{3};
- $\phi_{\alpha, \beta}: C_{3} \rightarrow$ Sym $_{3}$ the homomorphism given by

$$
\phi_{\alpha, \beta}(0)=\mathrm{id}_{3}, \phi_{\alpha, \beta}(1)=(123), \phi_{\alpha, \beta}(2)=(132) .
$$

Then, $S=B_{\alpha} \bigcup B_{\beta}$ endowed with the operation given by

$$
\begin{aligned}
\forall a \in B_{\alpha}, b \in B_{\beta} & a+b:=\phi_{\alpha, \beta}(a)+\phi_{\beta, \beta}(b) \\
& a \circ b:=\phi_{\alpha, \beta}(a) \circ \phi_{\beta, \beta}(b)
\end{aligned}
$$

is a (not trivial) dual weak brace.

Homomorphisms between skew braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

```
This problem already emerged in literature:
    [Cedó - 2018], [Vendramin - 2019] pose the problem of computing the
    automorphism groups of skew braces of size \(p^{n}\).
    [Zenouz - 2019] determines the automorphism group of skew braces of
    order \(p>3\).
    [Puliić, Smoktunowicz, Zenouz - 2022] describe \(\mathbb{F}_{p}\)-braces of cardinality \(p^{4}\)
    which are not right nilpotent.
    [Rathee, Yadav - 2023] deal with automorphisms of skew braces for
    developing some general homological and cohomological aspects related to
    skew braces.
    [Civino, Fedele, Gavioli - 2023] are interested in finding isomorphic
    \(\mathbb{F}_{2}\)-braces.
```


Homomorphisms between skew braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.
This problem already emerged in literature:

- [Cedó - 2018], [Vendramin - 2019] pose the problem of computing the automorphism groups of skew braces of size p^{n}.
- [Zenouz - 2019] determines the automorphism group of skew braces of order $p>3$.
- [Puljić, Smoktunowicz, Zenouz - 2022] describe \mathbb{F}_{p}-braces of cardinality p^{4} which are not right nilpotent.
- [Rathee, Yadav - 2023] deal with automorphisms of skew braces for developing some general homological and cohomological aspects related to skew braces.
- [Civino, Fedele, Gavioli - 2023] are interested in finding isomorphic \mathbb{F}_{2}-braces.

Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

- Let Y be a (lower) semilattice.
- Let $\left\{r_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint solutions on X_{α} indexed by Y.
- For each $\alpha \geq \beta$ let $\phi_{\alpha, \beta}: X_{\alpha} \rightarrow X_{\beta}$ be a map.
- Let $X:=\bigcup_{\alpha \in Y} X_{\alpha}$ and $r: X \times X \longrightarrow X \times X$ the map defined as

$$
r(x, y):=r_{\alpha \beta}\left(\phi_{\alpha, \alpha \beta}(x), \phi_{\beta, \alpha \beta}(y)\right),
$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$.
If the following conditions are satisfied: 1. $\phi_{\alpha, \alpha}=\mathrm{id} x_{\alpha}$, for every $\alpha \in Y$, 2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$ 3. $\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right) r_{\alpha}=r_{\beta}\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right)$, for all $\alpha, \beta \in Y$ such that $\alpha \geq \beta$,
then r is a solution on X, called strong semilattice of the solutions r_{α}.

Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

- Let Y be a (lower) semilattice.
- Let $\left\{r_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint solutions on X_{α} indexed by Y.
- For each $\alpha \geq \beta$ let $\phi_{\alpha, \beta}: X_{\alpha} \rightarrow X_{\beta}$ be a map.
- Let $X:=\bigcup_{\alpha \in Y} X_{\alpha}$ and $r: X \times X \longrightarrow X \times X$ the map defined as

$$
r(x, y):=r_{\alpha \beta}\left(\phi_{\alpha, \alpha \beta}(x), \phi_{\beta, \alpha \beta}(y)\right),
$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$.
If the following conditions are satisfied:

1. $\phi_{\alpha, \alpha}=\mathrm{id}_{x_{\alpha}}$, for every $\alpha \in Y$,
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$,
3. $\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right) r_{\alpha}=r_{\beta}\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right)$, for all $\alpha, \beta \in Y$ such that $\alpha \geq \beta$,
[^0]
Strong semilattice of solutions

Theorem (Catino, Colazzo, S. - 2021)

- Let Y be a (lower) semilattice.
- Let $\left\{r_{\alpha} \mid \alpha \in Y\right\}$ be a family of disjoint solutions on X_{α} indexed by Y.
- For each $\alpha \geq \beta$ let $\phi_{\alpha, \beta}: X_{\alpha} \rightarrow X_{\beta}$ be a map.
- Let $X:=\bigcup_{\alpha \in Y} X_{\alpha}$ and $r: X \times X \longrightarrow X \times X$ the map defined as

$$
r(x, y):=r_{\alpha \beta}\left(\phi_{\alpha, \alpha \beta}(x), \phi_{\beta, \alpha \beta}(y)\right)
$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$.
If the following conditions are satisfied:

1. $\phi_{\alpha, \alpha}=\mathrm{id}_{x_{\alpha}}$, for every $\alpha \in Y$,
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$,
3. $\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right) r_{\alpha}=r_{\beta}\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right)$, for all $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, then r is a solution on X, called strong semilattice of the solutions r_{α}.

The solutions associated to dual weak braces

Theorem
Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α}.

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a finite dual weak brace and r the solution associated to S. Then, $r^{2 k+1}=r$ with $2 k=\operatorname{lcm}\left\{p\left(r_{\alpha}\right) \mid \alpha \in Y\right\}$

As a particular case, the solution r associated to a finite dual weak brace $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ is cubic, i.e., $r^{3}=r$, if and only if each r_{α} is involutive, i.e., each B_{α} is a brace.

The solutions associated to dual weak braces

Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α}.

Corollary

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a finite dual weak brace and r the solution associated to S. Then, $r^{2 k+1}=r$ with $2 k=\operatorname{lcm}\left\{p\left(r_{\alpha}\right) \mid \alpha \in Y\right\}$.

The solutions associated to dual weak braces

Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α}.

Corollary

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a finite dual weak brace and r the solution associated to S. Then, $r^{2 k+1}=r$ with $2 k=\operatorname{lcm}\left\{p\left(r_{\alpha}\right) \mid \alpha \in Y\right\}$.

As a particular case, the solution r associated to a finite dual weak brace $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ is cubic, i.e., $r^{3}=r$, if and only if each r_{α} is involutive, i.e., each B_{α} is a brace.

Ideals of dual weak braces

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

1. $\mathrm{E}(S) \subseteq I$;
2. $\forall a, b \in I \quad a b \in I \quad$ and $\quad a^{-1} \in I$;
3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an ideal of $(S,+, 0)$ if

1. I is a normal subsemigroup of $(S,+)$;
2. I is a normal subsemigroup of (S, \circ);
3. $\lambda_{a}(I) \subset I$, for every $a \in S$;

If I is an ideal, the relation \sim, on S given by
is a congruence of $(S,+, \circ)$.

Ideals of dual weak braces

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

1. $\mathrm{E}(S) \subseteq I$;
2. $\forall a, b \in I \quad a b \in I \quad$ and $\quad a^{-1} \in I$;
3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an ideal of $(S,+, \circ)$ if

1. I is a normal subsemigroup of $(S,+)$;
2. I is a normal subsemigroup of (S, \circ);

If I is an ideal, the relation \sim, on S given by
is a congruence of $(S,+, \circ)$

Ideals of dual weak braces

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

1. $\mathrm{E}(S) \subseteq I$;
2. $\forall a, b \in I \quad a b \in I \quad$ and $\quad a^{-1} \in I$;
3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an ideal of $(S,+, \circ)$ if

1. I is a normal subsemigroup of $(S,+)$;
2. I is a normal subsemigroup of (S, \circ);
3. $\lambda_{a}(I) \subseteq I$, for every $a \in S$;

If I is an ideal, the relation \sim, on S given by
is a congruence of $(S,+, \circ)$

Ideals of dual weak braces

A normal subsemigroup I of a Clifford semigroup S is a subset I of S such that

1. $\mathrm{E}(S) \subseteq I$;
2. $\forall a, b \in I \quad a b \in I \quad$ and $\quad a^{-1} \in I$;
3. $\forall a \in S \quad a^{-1} I a \subseteq I$.

Definition

A subset I of a dual weak brace S is an ideal of $(S,+, \circ$) if

1. I is a normal subsemigroup of $(S,+)$;
2. I is a normal subsemigroup of (S, \circ);
3. $\lambda_{a}(I) \subseteq I$, for every $a \in S$;

If I is an ideal, the relation \sim, on S given by

$$
\forall a, b \in S \quad a \sim, b \quad \Longleftrightarrow \quad a-a=b-b \quad \text { and } \quad-a+b \in I
$$

is a congruence of $(S,+, \circ)$.

Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal $/$ is such that $E(S) \subseteq I$.

- S and $E(S)$ are trivial ideals of S.

The set
$\operatorname{Soc}(S):=\{a \mid a \in S, \forall b \in S \quad a+b=a \circ b \quad$ and $\quad a+b=b+a\}$
is an ideal of S called the socle of S
$>$ Denoted by $\zeta(S, \circ)$ the center of (S, \circ), the set $\operatorname{Ann}(S):=\operatorname{Soc}(S) \cap \zeta(S, 0)$,
is an ideal of S called the annihilator of S.

Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $\mathrm{E}(S) \subseteq I$.
S and $E(S)$ are trivial ideals of S.
The set
is an ideal of S called the socle of S.
Denoted by $\zeta(S, 0)$ the center of $(S, 0)$, the set
$\operatorname{Ann}(S):=\operatorname{Soc}(S) \cap \zeta(S, \circ)$,
is an ideal of S called the annihilator of S

Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

- S and $E(S)$ are trivial ideals of S.
- The set
is an ideal of S called the socle of S.
- Denoted by $\zeta(S, 0)$ the center of $(S, 0)$, the set

$$
\operatorname{Ann}(S):=\operatorname{Soc}(S) \cap \zeta(S, \circ)
$$

is an ideal of S called the annihilator of S.

Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

- S and $E(S)$ are trivial ideals of S.
- The set

$$
\operatorname{Soc}(S):=\{a \mid a \in S, \forall b \in S \quad a+b=a \circ b \quad \text { and } \quad a+b=b+a\}
$$

is an ideal of S called the socle of S.

- Denoted by $\zeta(S, \circ)$ the center of (S, \circ), the set

$$
\operatorname{Ann}(S):=\operatorname{Soc}(S) \cap \zeta(S, \circ)
$$

is an ideal of S called the annihilator of S.

Some examples of ideals

Clearly, every ideal is a dual weak sub-brace of a dual weak brace S. Moreover, every ideal I is such that $E(S) \subseteq I$.

- S and $E(S)$ are trivial ideals of S.
- The set

$$
\operatorname{Soc}(S):=\{a \mid a \in S, \forall b \in S \quad a+b=a \circ b \quad \text { and } \quad a+b=b+a\}
$$

is an ideal of S called the socle of S.

- Denoted by $\zeta(S, \circ)$ the center of (S, \circ), the set

$$
\operatorname{Ann}(S):=\operatorname{Soc}(S) \cap \zeta(S, \circ)
$$

is an ideal of S called the annihilator of S.

A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)
Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α}. Set $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{I_{\alpha}}$, for all $\alpha \geq \beta$, if $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then

$$
I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]
$$

is an ideal of S. Conversely, every ideal of S is of this form.

$$
\operatorname{Soc}(S) \neq\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]
$$

A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)
Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α}. Set $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{I_{\alpha}}$, for all $\alpha \geq \beta$, if $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then

$$
I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]
$$

is an ideal of S. Conversely, every ideal of S is of this form.

$$
\operatorname{Soc}(S) \neq\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]
$$

A characterization of ideals

Theorem (Catino, Mazzotta, S. - 2023)
Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α}. Set $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{I_{\alpha}}$, for all $\alpha \geq \beta$, if $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then

$$
I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]
$$

is an ideal of S. Conversely, every ideal of S is of this form.

Remark: $\operatorname{Soc}(S) \subseteq \bigcup_{\alpha \in Y} \operatorname{Soc}\left(B_{\alpha}\right)$ but, in general,

$$
\operatorname{Soc}(S) \neq\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]
$$

Final remarks

Proposition

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{{\operatorname{soc}\left(B_{\alpha}\right)}}$ for all $\alpha \geq \beta$, and assume that $I:=\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]$ is an ideal of S. Then, $I=\operatorname{Soc}(S)$. Proposition Let $S=\left[Y ; B_{\alpha ;} \varphi_{\alpha, \beta}\right]$ be a dual weak brace, $\psi_{\alpha, \beta}:=\phi_{\alpha, \beta}$, for all $\alpha \geq \beta$, and assume that $I:=\left[Y ; \operatorname{Ann}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]$ is an ideal of S. Then, $I=\operatorname{Ann}(S)$.

Final remarks

Proposition

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{{\operatorname{Soc}\left(B_{\alpha}\right)}}$, for all $\alpha \geq \beta$, and assume that $I:=\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]$ is an ideal of S. Then, $I=\operatorname{Soc}(S)$.

Proposition

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{\text {Ann }\left(B_{\alpha}\right)}$, for all $\alpha \geq \beta$, and assume that $I:=\left[Y ; \operatorname{Ann}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]$ is an ideal of S. Then, $I=\operatorname{Ann}(S)$.

Bibliography

F. Catino, I. Colazzo, P. Stefanelli: Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces, Forum Math., 33 (2021), no. 3, 757-772.
F. Catino, M. Mazzotta, M.M. Miccoli, P. Stefanelli: Solutions of the Yang-Baxter equation associated to weak braces, Semigroup Forum 104(2) (2022) 228-255.
F. Catino, M. Mazzotta, P. Stefanelli: Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation, J. Algebra 622 (2023) 587-613.
F. Catino, M. Mazzotta, P. Stefanelli: Solutions of the Yang-Baxter equation and strong semilattices of skew braces, Preprint arXiv:2307.03540 (2023).
L. Guarnieri, L. Vendramin: Skew braces and the Yang-Baxter equation, Math. Comput. 86(307) (2017), 2519-2534.
A. Koch, P. J. Truman: Opposite skew left braces and applications, J. Algebra 546 (2020) 218-235.

M. Petrich: Inverse semigroups, Pure and Applied Mathematics (New York), John Wiley \& Sons, Inc., New York, 1984, a Wiley-Interscience Publication.
国
W. Rump: Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307(1) (2007) 153-170.

Thank you!

[^0]: then r is a solution on X, called strong semilattice of the solutions r_{α}.

