Charles University Prague - Department of Algebra

On Conjugation Quandle Coloring of Torus Knots

Joint work with my cat

Filippo Spaggiari

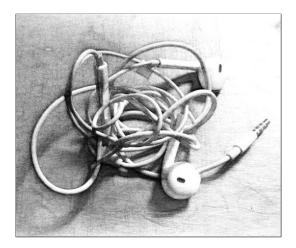
spaggiari@karlin.mff.cuni.cz

YRAC 2023 – L'Aquila, Italy July 25th – July 29th, 2023

- Fundamentals of Knot Theory
- **2** Torus Knots and Quandles
- **3** Coloring with matrices
- **4** Coloring with D_n and S_n

F. Spaggiari, On conjugation quandle coloring of torus knots. Work in progress, 2023

1. Fundamentals of Knot Theory



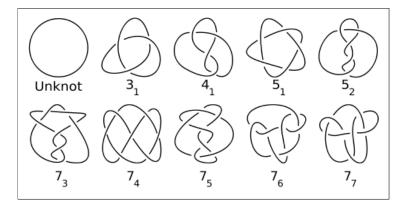
This is not a *mathematical* knot!

Having loose ends oversimplifies the situation. We need to glue the ends.

Definition (Knot)

A **knot** is a closed non-self-intersecting curve in \mathbb{R}^3 .

Equivalence Problem: determine if two given knots can be continuously deformed one into the other, aiming the *classification*.



Remark: *K* can be untangled \iff *K* is equivalent to the unknot.

Definition (Knot invariant)

A **knot invariant** is a knot function \mathcal{I} such that

$$K_1 \cong K_2 \implies \mathcal{I}(K_1) = \mathcal{I}(K_2).$$

Our invariant is **coloring**: we associate a mathematical object with every **strand** of the knot such that at each **crossing** some conditions are fulfilled.

Where is the Algebra behind knots...?

Definition (Quandle)

A **quandle** is a binar (Q, \triangleright) such that for all $x, y, z \in Q$

- **1. Idempotency:** $x \triangleright x = x$
- **2. Right self-distributivity:** $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$
- **3. Right invertibility:** $w \triangleright x = y$ has a unique solution $w \in Q$.

Example (Conjugation quandle)

Let *G* be a group and define $x \triangleright y = yxy^{-1}$. Then (G, \triangleright) is a *conjugation quandle*, denoted by Conj(*G*).

Remark: Of particular interest is Conj(GL(2, q)): it produces satisfactory results while being reasonably handy.

Proposition

Let (Q, \triangleright) *be a quandle.*

- $\bullet \ \rhd \ is \ associative \implies (Q, \rhd) \ is \ a \ trivial \ quandle.$
- **2** \triangleright has an identity element \implies (Q, \triangleright) is a trivial quandle.

They are far away from being groups.

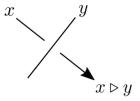
However...

Quandles can be used for coloring knots!

Definition (Quandle coloring)

A (Q, \triangleright) -coloring of a knot *K* is a way to associate elements of *Q* with the strands of *K* such that at every crossing of *K*

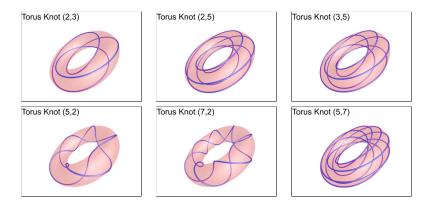
x under *y* produces *z* in *K* \iff *x* \triangleright *y* = *z* in (*Q*, \triangleright).

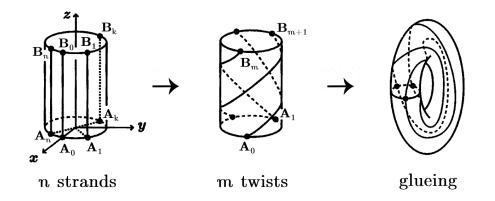


Only **non-trivial colorings** are interesting.

Definition (Torus Knot)

A **torus knot** is any knot that can be embedded on the trivial torus.

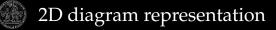


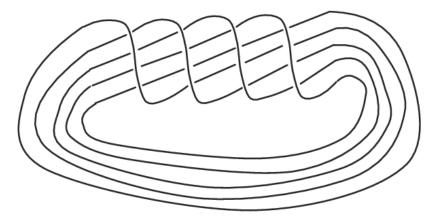


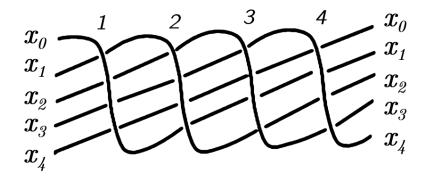
Notation K(m, n)

The **torus knot** with *n* strands and *m* twists will be denoted by K(m, n).

Insight on torus knots







K(4,5)

2. Torus Knots and Quandles

Problem:

K(m, n) is Conj(G)-colorable

some conditions in G hold

Theorem

Let G be a group. The following are equivalent:

• K(m,n) is Conj(G)-colorable.

2 $\exists x_0, \ldots, x_{n-1} \in G$ such that all the following terms are equal

 $\{x_{\sigma^k(0)}x_{\sigma^k(1)}\ldots x_{\sigma^k(m-1)}\colon k=0,\ldots,n-1\},\$

where $\sigma = (0 \ 1 \ 2 \ \dots \ n - 1) \in S_n$ is a cyclic permutation of the indices.

3 $\exists x_0, \ldots, x_{n-1} \in G$ such that for $u = x_{n-m}x_{n-m+1} \ldots x_{n-2}x_{n-1}$ we have

$$x_i \triangleright u = x_{i-m \pmod{n}} \quad \forall i = 0, \dots, n-1.$$

Remark: It translates a geometric coloring condition only in terms of quandle or group equations (*n.b.* quandles are nice, but groups are better!).

Theorem

K(m, n) is Conj(G)-colorable if and only if there is a prime factor p of m and a prime factor q of n such that K(p, q) is Conj(G)-colorable.

Theorem

Let $m \in \mathbb{N}$ *and* p *be a prime such that* $p \nmid m$ *. Then* K(m, p) *is* Conj(G)*-colorable if and only if there is* $u \in G$ *such that the centralizers* $C_G(u^p) \setminus C_G(u) \neq \emptyset$.

Remark: The colorability of K(m, p)

- Depends on a single element $u \in G$.
- It does not depend on *m*.

3. Coloring with matrices

Problem:

K(m,p) is Conj(GL(2,q))-colorable f(m,p,q) holds

We know the conjugacy classes of *G*, the representatives, and their centralizers.

Туре	и	$C_{GL(2,q)}(u)$
Type 1	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	GL(2,q)
Type 2	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	$\left\{ \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \in GL(2,q) \colon u, v \neq 0 \right\}$
Type 3	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	$\left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix} \in GL(2,q) \colon u \neq 0 \right\}$
Type 4	$\begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix}$	$\left\{ \begin{pmatrix} u & v \\ au & u+bv \end{pmatrix} \in GL(2,q) \colon u \neq 0 \text{ or } v \neq 0 \right\}$

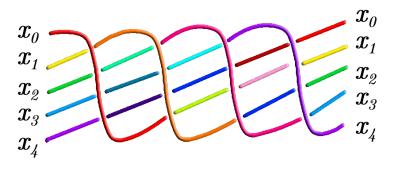
So, when does the centralizer expand?

Туре	u ^p	$C_{GL(2,q)}(u^p) \setminus C_{GL(2,q)}(u) \neq \emptyset$		
Type 1	$\begin{pmatrix} a^p & 0 \\ 0 & a^p \end{pmatrix}$	Never		
Type 2	$\begin{pmatrix} a^p & 0 \\ 0 & b^p \end{pmatrix}$	$p \mid q-1$		
Type 3	$\begin{pmatrix} a^p & pa^{p-1} \\ 0 & a^p \end{pmatrix}$	p=q		
Type 4	$\begin{pmatrix} x_{p-1} & y_{p-1} \\ ay_{p-1} & x_{p-1} + by_{p-1} \end{pmatrix}$	$p \mid q+1$		
where $\begin{cases} x_0 = 0 \\ y_0 = 1 \end{cases}$ $\begin{cases} x_n = ay_{n-1} \\ y_n = x_{n-1} + by_{n-1}. \end{cases}$ $n \ge 1.$				

Theorem (GL(2, q) coloring characterization)

The following conditions are equivalent.

- $p \mid q(q+1)(q-1)$.
- **2** K(m,p) is Conj(GL(2,q))-colorable.
- **3** K(m,p) is Conj(SL(2,q))-colorable.



4. Coloring with D_n and S_n

Problem:

K(m,p) is $Conj(D_n (or S_n))$ -colorable f(n,p) holds

Let $m, p \in \mathbb{N}$ be such that 1 < m < p and p prime.

Theorem (D_n coloring characterization)

K(m, p) is $Conj(D_n)$ -colorable if and only if $p \mid n$.

Theorem (S_n coloring characterization)

 $\mathsf{K}(m,p)$ is $\mathsf{Conj}(\mathsf{S}_n)$ -colorable if and only if $p \leq n$.

Summary:

- We have developed tools to analyze Conj(G)-coloring of a torus knot K(m, n).
 - We may assume *m*, *n* to be primes.
 - The colorability only depends on *n* and on one element in the group.
- We have completely characterized the colorability in terms of a numeric condition for the groups GL(2, *q*), SL(2, *q*), D_{*n*}, and S_{*n*}.

New horizons:

- Conj(G)-coloring of K(m, p) for other groups G.
- Relations among Conj(*G*)-coloring and the Jones polynomial.
- Conj(G)-coloring of the Whitehead double of K(m, p).

Summary:

- We have developed tools to analyze Conj(G)-coloring of a torus knot K(m, n).
 - We may assume *m*, *n* to be primes.
 - The colorability only depends on *n* and on one element in the group.
- We have completely characterized the colorability in terms of a numeric condition for the groups GL(2, *q*), SL(2, *q*), D_{*n*}, and S_{*n*}.

New horizons:

- Conj(G)-coloring of K(m, p) for other groups G.
- Relations among Conj(*G*)-coloring and the Jones polynomial. There's none!
- Conj(G)-coloring of the Whitehead double of K(m, p).

Summary:

- We have developed tools to analyze Conj(G)-coloring of a torus knot K(m, n).
 - We may assume *m*, *n* to be primes.
 - The colorability only depends on *n* and on one element in the group.
- We have completely characterized the colorability in terms of a numeric condition for the groups GL(2, *q*), SL(2, *q*), D_{*n*}, and S_{*n*}.

New horizons:

- Conj(G)-coloring of K(m, p) for other groups G.
- Relations among Conj(*G*)-coloring and the Jones polynomial. There's none!
- Conj(G)-coloring of the Whitehead double of K(m, p). Hopeless!
- Proceed with the next project!

Bibliography I

- [1] F. Spaggiari, *On conjugation quandle coloring of torus knots*. Work in progress, **2023**.
- [2] K. Murasugi, Knot Theory and Its Applications, Birkhäuser Boston, 1996.
- [3] M. Richling, Torus Knots, 2022,

https://www.mitchr.me/SS/torusKnots/index.html#orgcfdc49b (visited on 06/23/2023).

That's all, thanks!

Do you have questions, or knot?

spaggiari@karlin.mff.cuni.cz

