

Main features of fundamental (graded) algebras

(based on a joint work with A. Giambruno and E. Spinelli)

Young Researchers Algebra Conference 2023

Elena Pascucci (elena.pascucci@uniroma1.it) Sapienza Università di Roma

July 26th

Polinomial identities

Fix an <u>algebraically closed field of characteristic zero</u>, *F*. Some notations:

- A is an associative algebra,
- $X := \{x_1, x_2, \dots\}$ is a countable set,
- $F\langle X \rangle$ is the free associative algebra over F generated by X.

Definition

An element $f(x_1, ..., x_n)$ of $F\langle X \rangle$ is a **polynomial identity** (or a PI) for A if $f(a_1, ..., a_n) = O_A$ for every $a_1, ..., a_n \in A$. A is a **PI-algebra** if A satisfies a non-trivial polynomial identity $f \neq O_{F\langle X \rangle}$. Let $Id(A) := \{f \mid f \in F\langle X \rangle, f PI \text{ for } A\}$.

Specht Problem 2 Historical Motivations

One of the main questions in PI theory is

Specht Problem, 1950

Char F=O, A a PI-algebra \Rightarrow Id(A) is finitely generated as a T ideal?

Specht Problem 2 Historical Motivations

One of the main questions in PI theory is

Specht Problem, 1950

Char F=O, A a PI-algebra \Rightarrow Id(A) is finitely generated as a T ideal?

A positive solutions was given by Kemer in 1987.

One of the main steps of the proof is the following

Kemer's Representability Theorem

Let A be a *PI*-finitely generated algebra over a field *F* of characteristic zero. Then there exists a <u>finite-dimensional algebra</u> over a field extension of *F* which has the <u>same</u> polynomial identities of A.

The Role of Fundamental Algebras 2 Historical Motivations

One of the tools to prove Kemer's Representability Theorem was the introduction of the so called **fundamental algebras**. The main reason lies on one of their properties.

Any finite-dimensional algebra has the <u>same identities</u> as a finite direct sum of fundamental algebras.

Algebra index 3 Fundamental Algebras

Fix a finite-dimensional algebra A.

Wedderburn Malcev Decomposition

 $A = A_{ss} + J(A),$

where J(A) is the **Jacobson radical** (which is a nilpotent ideal of <u>nilpotency index</u> $s_A + 1$) and where A_{ss} is a **maximal semisimple subalgebra** of A. A_{ss} can be written as a direct sum of simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Algebra index 3 Fundamental Algebras

Fix a finite-dimensional algebra A.

Wedderburn Malcev Decomposition

 $A = A_{ss} + J(A),$

where J(A) is the **Jacobson radical** (which is a nilpotent ideal of <u>nilpotency index</u> $s_A + 1$) and where A_{ss} is a **maximal semisimple subalgebra** of A. A_{ss} can be written as a direct sum of simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Definition

The t- $s(A) := (dim_F(A_{ss}), s_A)$ is said to be the **algebra index** of A.

Understanding Fundamental Algebras

3 Fundamental Algebras

- 1. Id(A) is completely determined by the *multilinear polynomials* it contains.
- 2. Restrict our attention on evaluations on a given fixed <u>basis</u> of our algebra

Understanding Fundamental Algebras

3 Fundamental Algebras

1. Id(A) is completely determined by the *multilinear polynomials* it contains.

2. Restrict our attention on evaluations on a given fixed <u>basis</u> of our algebra

Facts

If f is alternating in $d > dim_F(A)$ variables, then $f \in Id(A)$.

Now assume that you have a polynomial f alternating in an arbitrary number of sets each with $d \leq \dim_F(A_{ss})$ variables. It might be that there exists a non-zero evaluation in A_{ss} . Now if you allow some of these sets (say s) to be of cardinality $\dim_F(A_{ss}) + 1$, you might find a non-zero evaluation on A only if you require that $s \leq s_A$, where $s_A + 1$ is the nilpotency index of J(A).

Now, in some sense, a *fundamental algebra* is an "extreme" algebra, in the sense that it realizes the maximal possible number of alternations.

Understanding Fundamental Algebras 3 Fundamental Algebras

(almost a) Definition

A is **fundamental** if there exists a polynomial $f \notin Id(A)$ which is alternating in an arbitrary number of sets, each of cardinality $\underline{dim_F(A_{ss})}$, and which is also alternating in $\underline{s_A}$ sets of cardinality $\underline{dim_F(A_{ss})} + 1$.

Understanding Fundamental Algebras 3 Fundamental Algebras

(almost a) Definition

A is **fundamental** if there exists a polynomial $f \notin Id(A)$ which is alternating in an arbitrary number of sets, each of cardinality $\underline{dim_F(A_{ss})}$, and which is also alternating in $\underline{s_A}$ sets of cardinality $\underline{dim_F(A_{ss})} + 1$.

We can see this sense of "extreme algebra" also in an other equivalent definition:

An other possible Definition

An algebra A is **fundamental** if it is not PI-equivalent to $C_1 \oplus \cdots \oplus C_r$, where C_i is a finite dimensional algebra with t- $s(C_i) < t$ -s(A) for every $1 \le i \le r$.

Examples of fundamental algebras

3 Fundamental Algebras

- The simple algebra $A \cong M_n(F)$ $(\prod_{i=1}^{\nu} \sum_{\sigma \in S_{n^2}} (-1)^{\sigma} y_1^{(i)} x_{\sigma(1)}^{(i)} y_2^{(i)} x_{\sigma(2)}^{(i)} \dots y_{n^2}^{(i)} x_{\sigma(n^2)}^{(i)} y_{n^2+1}^{(i)});$
- A **nilpotent** algebra with nilpotency index *n* (*x*₁...*x*_{*n*-1});
- The algebra of **upper block triangular matrices** $UT(d_1, \ldots, d_n)$, which is the subalgebra of the matrix algebra M_d , where $d := d_1 + \cdots + d_n$, consisting of all matrices of the type

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ 0 & A_{22} & \dots & A_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_{nn} \end{pmatrix}, A_{ij} \in \mathsf{M}_{d_i \times d_j} \text{ fo every } 1 \le i \le j \le n$$

Graded polynomial identities 4 Graded setting

Some notations:

- A is an associative superalgebra (i.e. $A = A^{(o)} \oplus A^{(1)}$ s.t. $A^{(i)}A^{(j)} \subseteq A^{(i+j)}$ for every $i, j \in \mathbb{Z}_2$),
- $Y:=\{y_1,y_2,\dots\}$ and $Z:=\{z_1,z_2,\dots\}$ are (disjoint) countable sets,
- F⟨Y ∪ Z⟩ is the free associative algebra over F generated by Y ∪ Z (~→ structure of superalgebra: deg y_i = 0, deg z_i = 1 for every i ≥ 1).

Definition

An element $f(y_1, \ldots, y_m, z_1, \ldots, z_n)$ of $F\langle Y \cup Z \rangle$ is a \mathbb{Z}_2 -graded polynomial identity or a superidentity ($f \equiv o$) for a superalgebra $A = A^{(o)} \oplus A^{(1)}$ if $f(a_1, \ldots, a_m, b_1, \ldots, b_n) = o_A$ for every $a_1, \ldots, a_m \in A^{(o)}$ and $b_1, \ldots, b_n \in A^{(1)}$.

Examples 4 Graded setting

Let us look at some graded polynomial identities:

•
$$A := \left\{ \begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix} \right\} \subseteq M_3(F) \text{ with grading defined by } A^{(0)} = \operatorname{span}_F\{e_{13}\} \text{ and} A^{(1)} = \operatorname{span}_F\{e_{12}, e_{23}\}.$$

$$e_{12}e_{23} = e_{13} \neq O_A \Rightarrow z_1z_2 \not\equiv O$$

But: $y_1y_2 \equiv O$.

• $B := M_2(F)$ with grading defined by $B^{(0)} = \text{span}_F\{e_{11}, e_{22}\}$ and $B^{(1)} = \text{span}_F\{e_{12}, e_{21}\}.$

 $[y_1,y_2]\equiv 0.$

Superindices 5 Fundamental Superalgebras

Fix a finite-dimensional superalgebra A.

Wedderburn Malcev Decomposition

$$A = A_{ss} + J(A),$$

where J(A): Jacobson radical (which is a homogeneous nilpotent ideal) and where A_{ss} is a maximal semisimple subalgebra of A having an induced \mathbb{Z}_2 -grading. A_{ss} can be written as a direct sum of graded simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Main definition 5 Fundamental Superalgebras

Definition

A is **fundamental** if there exists a superpolynomial $f \notin Id_2(A)$ which is alternating in an arbitrary number of couple of sets $\{Y_i, Z_i\}_i$, each of cardinality $(dim_F(A_{ss}^{(o)}), dim_F(A_{ss}^{(1)}))$, and which is also alternating in a even sets of cardinality $dim_F(A_{ss}^{(o)}) + 1$ and in b odd sets of cardinality $dim_F(A_{ss}^{(1)}) + 1$, where $a + b = s_A$, the nilpotency index of J(A).

Recap on Simple Superalgebras

5 Fundamental Superalgebras

A \mathbb{Z}_2 -grading on M_m is called **elementary** if there exists an *m*-tuple $(g_1, \ldots, g_m) \in \mathbb{Z}_2^m$ such that $e_{ij} \in M_m^{(g)}$ if, and only if $g = g_i - g_j$.

Let A be a simple superalgebra. A is (isomorphic to) a superalgebra of the following type

(a) M_{k,l} := M_{k+l} with k ≥ l ≥ 0, k ≠ 0, endowed with the grading induced by the (k + l)-tuple (0,...,0, 1,...,1); k times (lines)
(b) M_m + tM_m, where t² = 1_F, with grading (M_m, tM_m). It can be realized as the homogeneous subalgebra { (C D D D C) } of the full matrix algebra M_{2m} with the grading induced by the (2m)-tuple (0,...,0, 1,...,1). m times

Examples of Fundamental Superalgebras

5 Fundamental Superalgebras

Proposition

Every finite-dimensional simple superalgebra is fundamental.

Elena Pascucci | Main features of fundamental (graded) algebras

Upper block triangular matrix algebras 6 New Results

Let $((A_1, \alpha_1) \dots, (A_n, \alpha_n))$ be a sequence of simple superalgebras, each with grading $\alpha_j := (\alpha_{j,1}, \dots, \alpha_{j,s_j}) \in \mathbb{Z}_2^{s_j}$, where

$$s_j := \begin{cases} k_j + l_j & \text{if } A_j \cong \mathsf{M}_{k_j, l_j}, \\ 2n_j & \text{if } A_j \cong \mathsf{M}_{n_j} + t\mathsf{M}_{n_j} \end{cases},$$

and set $\eta_n = s_1 + \cdots + s_n$.

Upper block triangular matrix algebras 6 New Results

Finally, let us define $UT(A_1, ..., A_n) \subseteq UT(s_1, ..., s_n)$ consisting of all matrices of the type

$$\begin{pmatrix} A_{11} & * & \dots & * \\ 0 & A_{22} & \dots & * \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_{nn} \end{pmatrix}, A_{ii} \in A_i \text{ for every } i \in [1, n].$$

Upper block triangular matrix algebras 6 New Results

Finally, let us define $UT(A_1, \ldots, A_n) \subseteq UT(s_1, \ldots, s_n)$ consisting of all matrices of the type

$$\begin{pmatrix} \mathsf{A}_{11} & \ast & \dots & \ast \\ \mathsf{o} & \mathsf{A}_{22} & \dots & \ast \\ \vdots & \ddots & \ddots & \vdots \\ \mathsf{o} & \dots & \mathsf{o} & \mathsf{A}_{nn} \end{pmatrix}, \ \mathsf{A}_{ii} \in \mathsf{A}_i \ \text{for every} \ i \in [1, n].$$

Define $\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_2^{\eta_n}$ and, for any *n*-tuple $\tilde{g} := (g_1, \ldots, g_n) \in \mathbb{Z}_2^n$,

$$\alpha_{\tilde{g}} := (\alpha_1 \hat{+} g_1, \ldots, \alpha_n \hat{+} g_n) =$$

$$(\alpha_{1,1}+g_1,\ldots,\alpha_{1,s_1}+g_1,\ldots,\alpha_{n,1}+g_n,\ldots,\alpha_{n,s_n}+g_n)$$

Denote any such a \mathbb{Z}_2 -graded algebra (regardless of \tilde{g}) by $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$.

Why are we studying these algebras?

Theorem [O.M. Di Vincenzo, V.R.T. da Silva, E. Spinelli]

A variety of \mathbb{Z}_2 -graded PI-algebras of finite basic rank is minimal of superexponent $d \ge 2$ if, and only if, it is generated by a \mathbb{Z}_2 -graded algebra $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$ satisfying $\dim_F(A_1 \oplus \ldots \oplus A_n) = d$.

Why are we studying these algebras?

Theorem [O.M. Di Vincenzo, V.R.T. da Silva, E. Spinelli]

A variety of \mathbb{Z}_2 -graded PI-algebras of finite basic rank is minimal of superexponent $d \ge 2$ if, and only if, it is generated by a \mathbb{Z}_2 -graded algebra $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$ satisfying $\dim_F(A_1 \oplus \ldots \oplus A_n) = d$.

We have proved:

Theorem [A. Giambruno, E. Spinelli, E.P.]

The superalgebras $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$ are fundamental.

Upper block triangular matrix algebras with identification 6 New Results

Let (A_1, \ldots, A_n) be a sequence of simple superalgebras. For any partition \mathcal{I} of $\{1, 2, \ldots, n\}$ such that

if $u \in \mathcal{I}$, then $A_i \cong A_j \ \forall i, j \in u$,

let us denote by $\mathbf{A} := \mathbf{UT}_{\mathbb{Z}_2}^{\mathcal{I}}(\mathbf{A}_1, \dots, \mathbf{A}_n)$ the subalgebra of $B := \mathbf{UT}_{\mathbb{Z}_2}(\mathbf{A}_1, \dots, \mathbf{A}_n)$ (with grading defined by the map $\alpha_{\tilde{g}}$) obtained from B by identifying all the simple components A_i whose subscript indices i belong to the same element of \mathcal{I} .

ExampleIf
$$n = 3$$
 and $\mathcal{I} := \{\{1,3\}, \{2\}\}, UT^{\mathcal{I}}_{\mathbb{Z}_2}(F,F,F) = \left\{ \begin{pmatrix} a & c & d \\ o & b & e \\ o & o & a \end{pmatrix}, a,b,c,d \in F \right\}.$

Theorem [A. Giambruno, E. Spinelli, E.P.]

The superalgebra $UT_{\mathbb{Z}_2}^{\mathcal{I}}(A_1, \ldots, A_n)$ is <u>not fundamental</u> if, and only if, there exists $\{i, i+1\} \in \mathcal{I}$ such that $A_i \cong M_{k_i, l_i}$ and $g_i = g_{i+1}$.

Thank you for listening!

