On the arithmetic and geometric means of element orders in a finite group

Carmine Monetta

University of Salerno, Italy

Young Researchers Algebra Conference 2023

$$
\text { July 28, } 2023
$$

Joint work with

Elena Di Domenico
University of Trento

Valentina Grazian
University of Milano-Bicocca

E. Di Domenico, C. Monetta and M. Noce, Upper bounds for the product of element orders of finite groups, J. Algebraic Comb., 57(2023), 1033-1043.

目 V. Grazian, C. Monetta and M. Noce, On the structure of finite groups determined by the arithmetic and geometric means of element orders, preprint available at arXiv:2212.13770 [math.GR]

Functions depending on elements orders

In 2009, Amiri, Jafarian Amiri and Isaacs considered the following function:

$$
\psi(G)=\sum_{x \in G} o(x)
$$

for any finite group G.
荀
H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978-2980

The main problem they addressed was to understand to what extent the value of $\psi(G)$ determines properties of the group G itself.

Some results

Denote by C_{n} the cyclic group of order n.

Some results

Denote by C_{n} the cyclic group of order n.

Amiri - Jafarian Amiri - Isaacs

Let G be a group of order n. Then $\psi(G) \leq \psi\left(C_{n}\right)$ and $\psi(G)=\psi\left(C_{n}\right)$ if and only if G is cyclic.

圊
H. Amiri and S.M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), pp. 187-190.

An exact upper bound

Herzog - Longobardi - Maj

Let G be a non-cyclic group of order n. Then $\psi(G) \leq \frac{7}{11} \psi\left(C_{n}\right)$.
\square M. Herzog, P. Longobardi, M. Maj, An exact upper bound for sums of elements order in non-cyclic finite groups, J. Pure Appl. Algebra 222 (2018), pp. 1628-1642.

An exact upper bound

Herzog - Longobardi - Maj

Let G be a non-cyclic group of order n. Then $\psi(G) \leq \frac{7}{11} \psi\left(C_{n}\right)$.
嗇 M. Herzog, P. Longobardi, M. Maj,
An exact upper bound for sums of elements order in non-cyclic finite groups, J. Pure Appl. Algebra 222 (2018), pp. 1628-1642.

The constant:
$\psi\left(C_{2} \times C_{2}\right)=1+2+2+2=7$
$\psi\left(C_{4}\right)=1+2+2 \cdot 4=11$

An exact upper bound

Herzog - Longobardi - Maj

Let G be a non-cyclic group of order n. Then $\psi(G) \leq \frac{7}{11} \psi\left(C_{n}\right)$.
(M. Herzog, P. Longobardi, M. Maj,
An exact upper bound for sums of elements order in non-cyclic finite groups, J. Pure Appl. Algebra 222 (2018), pp. 1628-1642.

The constant:
$\psi\left(C_{2} \times C_{2}\right)=1+2+2+2=7$
$\psi\left(C_{4}\right)=1+2+2 \cdot 4=11$

$$
\psi\left(C_{2 k} \times C_{2}\right)=\frac{7}{11} \psi\left(C_{4 k}\right)
$$

The product of element orders

In 2013, Tărnăuceanu considered the following function:

$$
\rho(G)=\prod_{x \in G} o(x)
$$

for any finite group G.
\square M. Tărnăuceanu,

A note on the product of element orders of finite abelian groups, Bull. Malays. Math. Sci. Soc. 36 (2) (2013), 123-1126.

Upper bound

Garonzi - Patassini

Let G be a group of order n. Then $\rho(G) \leq \rho\left(C_{n}\right)$ and $\rho(G)=\rho\left(C_{n}\right)$ if and only if G is cyclic.

目
M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra 45 (2016), 677-687.

Natural question

What is the maximal product of element orders among non-cyclic groups of order n ?

Inspiration

$$
\begin{aligned}
& \rho\left(C_{2} \times C_{2}\right)=1 \cdot 2 \cdot 2 \cdot 2=8 \\
& \rho\left(C_{4}\right)=1 \cdot 2 \cdot 4^{2}=32
\end{aligned}
$$

Inspiration

$$
\begin{aligned}
& \rho\left(C_{2} \times C_{2}\right)=1 \cdot 2 \cdot 2 \cdot 2=8 \\
& \rho\left(C_{4}\right)=1 \cdot 2 \cdot 4^{2}=32 \\
& \quad \rho\left(C_{2} \times C_{2}\right)=\frac{1}{4} \rho\left(C_{4}\right)=\frac{1}{2^{2}} \rho\left(C_{4}\right)
\end{aligned}
$$

Inspiration

$$
\begin{aligned}
& \rho\left(C_{2} \times C_{2}\right)=1 \cdot 2 \cdot 2 \cdot 2=8 \\
& \rho\left(C_{4}\right)=1 \cdot 2 \cdot 4^{2}=32 \\
& \quad \rho\left(C_{2} \times C_{2}\right)=\frac{1}{4} \rho\left(C_{4}\right)=\frac{1}{2^{2}} \rho\left(C_{4}\right)
\end{aligned}
$$

Conjecture

Conjecture - Di Domenico - M. - Noce

Let G be a non-cyclic group of order n, and assume that q is the smallest prime dividing n. Then

$$
\rho(G) \leq \frac{1}{q^{q}} \rho\left(C_{n}\right)
$$

Some positive results

Di Domenico - M. - Noce

Let G be a non-cyclic group of order n and let q be the smallest prime dividing n. If either

- G admits a Sylow tower, or
- $n=p^{\alpha} q^{\beta}$, or
- G is a Frobenius group,
then

$$
\rho(G) \leq \frac{1}{q^{q}} \rho\left(C_{n}\right)
$$

A group G admits a Sylow tower if there exists a normal series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G
$$

such that each G_{i+1} / G_{i} is isomorphic to a Sylow subgroup of G for every $i \in\{0, \ldots, n-1\}$.

We can do better...

Di Domenico - M. - Noce

Let G be a non-cyclic nilpotent group. Then

$$
\rho(G) \leq \frac{1}{q^{\frac{n}{q}(q-1)}} \rho\left(C_{n}\right) .
$$

Notice that

Unless the case $n=4$, the inequality is always strict!

We can do better...

Di Domenico - M. - Noce

Let G be a non-cyclic nilpotent group. Then

$$
\rho(G) \leq \frac{1}{q^{\frac{n}{q}(q-1)}} \rho\left(C_{n}\right)
$$

Notice that

$$
\frac{1}{q^{\frac{n}{q}}(q-1)} \leq \frac{1}{q^{q}} \Longleftrightarrow q^{q} \leq q^{\frac{n}{q}(q-1)} \Longleftrightarrow \frac{q^{2}}{q-1} \leq n
$$

Unless the case $n=4$, the inequality is always strict!

We can do better...

Di Domenico - M. - Noce

Let G be a non-cyclic nilpotent group. Then

$$
\rho(G) \leq \frac{1}{q^{\frac{n}{q}(q-1)}} \rho\left(C_{n}\right)
$$

Notice that

$$
\frac{1}{q^{\frac{n}{q}(q-1)}} \leq \frac{1}{q^{q}} \Longleftrightarrow q^{q} \leq q^{\frac{n}{q}(q-1)} \Longleftrightarrow \frac{q^{2}}{q-1} \leq n
$$

Unless the case $n=4$, the inequality is always strict!

An example

If \mathbb{Q}_{8} denotes the quaternion group of order 8 , then

$$
\begin{gathered}
\rho\left(\mathbb{Q}_{8}\right)=1 \cdot 2 \cdot 4^{6}=2^{13} \\
\rho\left(C_{8}\right)=1 \cdot 2 \cdot 4^{2} \cdot 8^{4}=2^{17} \\
\rho\left(\mathbb{Q}_{8}\right)=\frac{1}{2^{4}} \rho\left(C_{8}\right)=\frac{1}{2^{\frac{8}{2}(2-1)}} \rho\left(C_{8}\right)
\end{gathered}
$$

Other interesting function

\star Consider the functions

$$
\psi^{\prime \prime}(G)=\frac{\psi(G)}{|G|^{2}} \quad \text { and } \quad I(G)=\frac{\rho(G)^{1 /|G|}}{|G|} .
$$

Notice that

$$
|G| \cdot \psi^{\prime \prime}(G) \quad \text { and } \quad|G| \cdot I(G)
$$

coincide with the arithmetic and geometric means of element orders

Other interesting function

\star Consider the functions

$$
\psi^{\prime \prime}(G)=\frac{\psi(G)}{|G|^{2}} \quad \text { and } \quad I(G)=\frac{\rho(G)^{1 /|G|}}{|G|} .
$$

Notice that

$$
|G| \cdot \psi^{\prime \prime}(G) \quad \text { and } \quad|G| \cdot I(G)
$$

coincide with the arithmetic and geometric means of element orders of G.

Advantage

The function $I(G)$ is multiplicative.

Therefore studying the function $I(G)$ allows to use a larger variety of techniques.

Advantage

The function $I(G)$ is multiplicative.

Therefore studying the function $I(G)$ allows to use a larger variety of techniques.

Recent results

Theorem (Azad - Khosravi)

Let G be a finite group and let $f \in\left\{\psi^{\prime \prime}, /\right\}$.
(a) If $f(G)>f\left(C_{2} \times C_{2}\right)$, then G is cyclic.
(b) If $f(G)>f\left(Q_{8}\right)$, then G is abelian.
(c) If $f(G)>f\left(S_{3}\right)$, then G is nilpotent.
(d) If $f(G)>f\left(A_{4}\right)$, then G is supersoluble.
(e) If $f(G)>f\left(A_{5}\right)$, then G is soluble.

國 M. Tărnăuceanu,
Detecting structural properties of finite groups by the sum of element orders, Isr. J. Math., 238 (2020), 629-637.
嘈
M. B. Azad and B. Khosravi, Properties of finite groups determined by the product of their element orders, Bull. Aust. Math. Soc. 103 (2021), no. 1, 88-95.

Our question

What about the p-nilpotency of a finite group?

A finite group G is said to be p-nilpotent when all its elements of p^{\prime}-order determine a subgroup.

2-nilpotency

The smallest non-2-nilpotent finite group is the alternating group of degree 4, namely, A_{4}.

Observing that any supersoluble group is 2-nilpotent, one easily get

$$
I(G)>I\left(A_{4}\right) \Longrightarrow G \text { is supersoluble } \Longrightarrow G \text { is } 2 \text {-nilpotent }
$$

p-nilpotency, p odd

Denote by $D_{2 n}$ the dihedral group of order $2 n$.

Theorem A [Grazian - M. - Noce]

Let G be a finite group and let p be an odd prime dividing the order of G.

If $I(G) \geq I\left(D_{2 p}\right)$, then either

- $I(G)=I\left(D_{2 p}\right)$ and $G \cong D_{2 p}$ or
- $I(G)>I\left(D_{2 p}\right)$ and $G=O_{p}(G) \times O_{p^{\prime}}(G)$ with $O_{p}(G)$ cyclic.

In particular, if $I(G)>I\left(D_{2 p}\right)$, then G is p-nilpotent.

Where we denote by $O_{p}(G)$ and $O_{p^{\prime}}(G)$ the largest normal p-subgroup and p^{\prime}-subgroup of G, respectively.

Remark 1

We point out that if n is an odd integer

$$
I(G)=I\left(D_{2 n}\right) \nRightarrow G \simeq D_{2 n}
$$

For instance, if $n=9$ we have $I\left(S_{3} \times C_{3}\right)=I\left(D_{18}\right)$.

Remark 2

Grazian - M. - Noce

Let G be a finite group whose order is divisible by the odd prime p, and suppose $I(G)>I\left(D_{2 p}\right)$.
(1) If $p=3$ then G is cyclic.
(2) If $p \leq 5$ then G is nilpotent.
(3) If $p \leq 13$ then G is supersoluble.
N.B. The choice of primes in this result is sharp

- if $p>3$ then $I\left(C_{p} \times Q_{8}\right)>I\left(D_{2 p}\right)$ and $C_{p} \times Q_{8}$ is not cyclic
- if $p>5$ then $I\left(C_{p} \times S_{3}\right)>I\left(D_{2 p}\right)$ and $C_{p} \times S_{3}$ is not nilpotent
- if $p>13$ then $I\left(C_{p} \times A_{4}\right)>I\left(D_{2 p}\right)$ and $C_{p} \times A_{4}$ is not supersoluble

A consequence of Theorem A

Corollary

Let G be a finite group of odd order and let p be the smallest prime divisor of $|G|$.
(a) If $I(G)>I\left(D_{2 p}\right)$ then G is cyclic.

A consequence of Theorem A

Corollary

Let G be a finite group of odd order and let p be the smallest prime divisor of $|G|$.
(a) If $I(G)>I\left(D_{2 p}\right)$ then G is cyclic.
(b) If the number of distinct primes dividing $|G|$ is at most $\frac{p+1}{2}$, then G is cyclic if and only if $I(G)>I\left(D_{2 p}\right)$.

The condition

the number of distinct primes dividing $|G|$ is at most $\frac{p+1}{2}$

seems necessary.

Indeed the cyclic group of order $315=3^{2} * 5 * 7$ satisfies

- smallest prime 3;
- number of distinct primes is 3 with $3>\frac{3+1}{2}$;
- $I\left(C_{315}\right)<I\left(D_{2 \cdot 3}\right)$.

Thanks!

