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Functions depending on elements orders

Functions depending on elements orders

In 2009, Amiri, Jafarian Amiri and Isaacs considered the following
function:

ψ(G ) =
∑
x∈G

o(x)

for any finite group G .

H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs,
Sums of element orders in finite groups, Comm. Algebra 37 (2009),
2978–2980

The main problem they addressed was to understand to what extent
the value of ψ(G ) determines properties of the group G itself.
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Some invariants

Some results

Denote by Cn the cyclic group of order n.

Amiri - Jafarian Amiri - Isaacs
Let G be a group of order n. Then ψ(G ) ≤ ψ(Cn) and
ψ(G ) = ψ(Cn) if and only if G is cyclic.

H. Amiri and S.M. Jafarian Amiri,
Sum of element orders on finite groups of the same order, J. Algebra
Appl. 10 (2011), pp. 187–190.
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Some invariants

An exact upper bound

Herzog - Longobardi - Maj

Let G be a non-cyclic group of order n. Then ψ(G ) ≤ 7
11ψ(Cn).

M. Herzog, P. Longobardi, M. Maj,
An exact upper bound for sums of elements order in non-cyclic finite
groups, J. Pure Appl. Algebra 222 (2018), pp. 1628–1642.

The constant:

ψ(C2 × C2) = 1 + 2+ 2+ 2 = 7

ψ(C4) = 1 + 2+ 2 · 4 = 11

ψ(C2k × C2) =
7
11
ψ(C4k)
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The product of element orders

The product of element orders

In 2013, Tărnăuceanu considered the following function:

ρ(G ) =
∏
x∈G

o(x)

for any finite group G .

M. Tărnăuceanu,
A note on the product of element orders of finite abelian groups,
Bull. Malays. Math. Sci. Soc. 36 (2) (2013), 123–1126.
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Some bounds

Upper bound

Garonzi - Patassini
Let G be a group of order n. Then ρ(G ) ≤ ρ(Cn) and
ρ(G ) = ρ(Cn) if and only if G is cyclic.

M. Garonzi and M. Patassini,
Inequalities detecting structural properties of a finite group, Comm.
Algebra 45 (2016), 677–687.
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Some bounds

Natural question

What is the maximal product of element orders
among non-cyclic groups of order n?
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Some bounds

Inspiration

ρ(C2 × C2) = 1 · 2 · 2 · 2 = 8

ρ(C4) = 1 · 2 · 42 = 32

ρ(C2 × C2) =
1
4
ρ(C4) =

1
22 ρ(C4)
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Conjecture

Conjecture - Di Domenico - M. - Noce
Let G be a non-cyclic group of order n, and assume that q is
the smallest prime dividing n. Then

ρ(G ) ≤ 1
qq

ρ(Cn).
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Our contribution

Some positive results

Di Domenico - M. - Noce
Let G be a non-cyclic group of order n and let q be the smallest
prime dividing n. If either

G admits a Sylow tower, or
n = pαqβ , or
G is a Frobenius group,

then
ρ(G ) ≤ 1

qq
ρ(Cn)

A group G admits a Sylow tower if there exists a normal series

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

such that each Gi+1/Gi is isomorphic to a Sylow subgroup of G for
every i ∈ {0, . . . , n − 1}.
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Our contribution

We can do better...

Di Domenico - M. - Noce
Let G be a non-cyclic nilpotent group. Then

ρ(G ) ≤ 1

q
n
q
(q−1) ρ(Cn).

Notice that

1

q
n
q
(q−1) ≤

1
qq
⇐⇒ qq ≤ q

n
q
(q−1) ⇐⇒ q2

q − 1
≤ n

Unless the case n = 4, the inequality is always strict!
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Our contribution

An example

If Q8 denotes the quaternion group of order 8, then

ρ(Q8) = 1 · 2 · 46 = 213

ρ(C8) = 1 · 2 · 42 · 84 = 217

ρ(Q8) =
1
24 ρ(C8) =

1

2
8
2 (2−1)

ρ(C8)
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New directions

Other interesting function

F Consider the functions

ψ′′(G ) =
ψ(G )

|G |2
and l(G ) =

ρ(G )1/|G |

|G |
.

Notice that

|G | · ψ′′(G ) and |G | · l(G )

coincide with the arithmetic and geometric means of element orders
of G .
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New directions

Advantage

The function l(G ) is multiplicative.

Therefore studying the function l(G ) allows to use a larger variety
of techniques.
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Recent results

Theorem (Azad - Khosravi)

Let G be a finite group and let f ∈ {ψ′′, l}.
(a) If f (G ) > f (C2 × C2), then G is cyclic.
(b) If f (G ) > f (Q8), then G is abelian.
(c) If f (G ) > f (S3), then G is nilpotent.
(d) If f (G ) > f (A4), then G is supersoluble.
(e) If f (G ) > f (A5), then G is soluble.

M. Tărnăuceanu,
Detecting structural properties of finite groups by the sum of
element orders, Isr. J. Math., 238 (2020), 629–637.

M. B. Azad and B. Khosravi,
Properties of finite groups determined by the product of their
element orders, Bull. Aust. Math. Soc. 103 (2021), no. 1, 88–95.
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Our question

What about the p-nilpotency of a finite group?

A finite group G is said to be p-nilpotent when all its elements of
p′-order determine a subgroup.
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2-nilpotency

2-nilpotency

The smallest non-2-nilpotent finite group is the alternating group of
degree 4, namely, A4.

Observing that any supersoluble group is 2-nilpotent, one easily get

l(G ) > l(A4) =⇒ G is supersoluble =⇒ G is 2-nilpotent
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p-nilpotency, p odd

p-nilpotency, p odd

Denote by D2n the dihedral group of order 2n.

Theorem A [Grazian - M. - Noce]

Let G be a finite group and let p be an odd prime dividing the
order of G .

If l(G ) ≥ l(D2p), then either

l(G ) = l(D2p) and G ∼= D2p or

l(G ) > l(D2p) and G = Op(G )× Op′(G ) with Op(G ) cyclic.

In particular, if l(G ) > l(D2p), then G is p-nilpotent.

Where we denote by Op(G ) andOp′(G ) the largest normal p-subgroup
and p′-subgroup of G , respectively.
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p-nilpotency, p odd

Remark 1

We point out that if n is an odd integer

l(G ) = l(D2n) 6=⇒ G ' D2n

For instance, if n = 9 we have l(S3 × C3) = l(D18).
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p-nilpotency, p odd

Remark 2

Grazian - M. - Noce
Let G be a finite group whose order is divisible by the odd prime p,
and suppose l(G ) > l(D2p).

1 If p = 3 then G is cyclic.
2 If p ≤ 5 then G is nilpotent.
3 If p ≤ 13 then G is supersoluble.

N.B. The choice of primes in this result is sharp

if p > 3 then l(Cp × Q8) > l(D2p) and Cp × Q8 is not cyclic

if p > 5 then l(Cp × S3) > l(D2p) and Cp × S3 is not nilpotent

if p > 13 then l(Cp × A4) > l(D2p) and Cp × A4 is not
supersoluble
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Consequences of Theorem A

A consequence of Theorem A

Corollary
Let G be a finite group of odd order and let p be the smallest
prime divisor of |G |.
(a) If l(G ) > l(D2p) then G is cyclic.

(b) If the number of distinct primes dividing |G | is at most p+1
2 ,

then G is cyclic if and only if l(G ) > l(D2p).
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Consequences of Theorem A

The condition

the number of distinct primes dividing |G | is at most p+1
2

seems necessary.

Indeed the cyclic group of order 315 = 32 ∗ 5 ∗ 7 satisfies

smallest prime 3;

number of distinct primes is 3 with 3 >
3+ 1
2

;

l(C315) < l(D2·3).
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Thanks!
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