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Bent functions

In 1966 : the first paper written by Oscar Rothaus (published in 1976).

In 1972 and 1974 : two documents written by John Dillon.

In 1975 : a paper based on Dillon’s thesis.

In this preliminary period, several people were interested in bent
functions, particularly Lloyd Welch and Gerry Mitchell.

It seems that bent functions have been studied by V.A. Eliseev and O.P.
Stepchenkov in the Soviet Union already in 1962, under the name of
minimal functions. Some results were published as technical reports but
never declassified.
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Background on p-ary functions : representation

Let q be a power of a prime p and r be a positive integer. The trace
function Trqr/q : Fqr → Fq is defined as :

Trqr/q(x) :=
r−1∑
i=0

xqi
= x + xq + xq2

+ · · ·+ xqr−1
.

The trace function from Fqr = Fpn to its prime subfield Fp is called the
absolute trace function.

☞ Here, we shall use the following notation in characteristic 2 :

DEFINITION (ABSOLUTE TRACE OVER F2 )

Let k be a positive integer. For x ∈ F2k , the (absolute) trace Trk
1(x) of x over F2

is defined by :

Trk
1(x) :=

k−1∑
i=0

x2i
= x + x2 + x22

+ · · ·+ x2k−1
∈ F2
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Background on Boolean functions : representation

f : Fn
2 → F2 an n-variable Boolean function.

DEFINITION (ALGEBRAIC NORMAL FORM (A.N.F))

Let f : Fn
2 → F2 be a Boolean function. Then f can be expressed as :

f (x1, . . . , xn) =
⊕

I⊂{1,...,n}

aI

(∏
i∈I

xi

)
=
⊕
u∈Fn

2

auxu, aI ∈ F2

where I = supp(u) = {i = 1, . . . , n | ui = 1} and xu =

n∏
i=1

xui
i .

The A.N.F exists and is unique.

DEFINITION (THE ALGEBRAIC DEGREE)

The algebraic degree deg(f ) is the degree of the A.N.F.

Affine functions f (deg(f ) ≤ 1) :

f (x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn, ai ∈ F2
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Background on Boolean functions : representation

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ϵ(1 + x2n−1), aj ∈ F2o(j)

Γn is the set obtained by choosing one element in each cyclotomic class
of 2 modulo 2n − 1,

o(j) is the size of the cyclotomic coset containing j ( that is o(j) is the
smallest positive integer such that j2o(j) ≡ j (mod 2n − 1))

ϵ = wt(f ) modulo 2

DEFINITION (THE HAMMING WEIGHT OF A BOOLEAN FUNCTION)

wt(f ) = #supp(f ) := #{x ∈ F2n | f (x) = 1}
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Background on Boolean functions : representation

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ϵ(1 + x2n−1), aj ∈ F2o(j)

☞ The algebraic degree of f denoted by deg(f ), is the maximum Hamming
weight of the binary expansion of an exponent j for which aj ̸= 0 if ϵ = 0
and to n if ϵ = 1.

Affine functions : Trn
1(ax) + λ, a ∈ F2n , λ ∈ F2.
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Background on Boolean functions : representation

DEFINITION (THE BIVARIATE REPRESENTATION (UNIQUE))

Let n = 2m, let Fn
2 ≈ F2m × F2m .

f (x, y) =
∑

0≤i,j≤2m−1

ai,jxiyj; ai,j ∈ F2m

.

Then the algebraic degree of f equals max(i,j) | ai,j ̸=0(w2(i) + w2(j)).

And f being Boolean, its bivariate representation can be written in the
form f (x, y) = Trm

1 (P(x, y)) where P(x, y) is some polynomial over F2m .
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The discrete Fourier (Walsh) Transform of Boolean functions

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a) =
∑
x∈Fn

2

(−1)f (x)+a·x, a ∈ Fn
2

where "·" is the canonical scalar product in Fn
2 defined by

x · y =
∑n

i=1 xiyi,∀x = (x1, . . . , xn) ∈ Fn
2, ∀y = (y1, . . . , yn) ∈ Fn

2.

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a) =
∑

x∈F2n

(−1)f (x)+Trn
1(ax), a ∈ F2n

where "Trn
1" is the absolute trace function on F2n .

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a, b) =
∑

x,y∈F2m

(−1)f (x,y)+Trm
1 (ax+by), a, b ∈ F2m .
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A main cryptographic criterion for (cryptographic) Boolean functions

DEFINITION (THE HAMMING DISTANCE)

f , g : F2n → F2 two Boolean functions. The Hamming distance between f and
g : dH(f , g) := #{x ∈ F2n | f (x) ̸= g(x)}.

DEFINITION (NONLINEARITY)

f : F2n → F2 a Boolean function. The nonlinearity denoted by nl(f ) of f is

nl(f ) := minl∈An dH(f , l)

where An := {l : F2n → F2, l(x) := a · x + b ; a ∈ F2n , b ∈ F2 ( where "·" is an
inner product in F2n )} is the set of affine functions on F2n .

➔ The nonlinearity of a function f is the minimum number of truth table
entries that must be changed in order to convert f to an affine function.
☛ Any cryptographic function must be of high nonlinearity, to prevent the
system from linear attacks and correlation attacks.
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General upper bound on the nonlinearity of Boolean functions

The Nonlinearity of f is equals :

nl(f ) = 2n−1 − 1
2
max
a∈Fn

2

|χ̂f (a)|

➔Thanks to Parseval’s relation :
∑

a∈Fn
2
χ̂f

2(a) = 22n

we have : maxa∈Fn
2
(χ̂f (a))

2 ≥ 2n

Hence : for every n-variable Boolean function f , the nonlinearity is always
upper bounded by 2n−1 − 2

n
2 −1

➔It can reach this value if and only if n is even.

➔ The functions used as combining or filtering functions should have
nonlinearity close to this maximum.
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A main definition of a bent function

General upper bound on the nonlinearity of any n-variable Boolean
function :nl(f ) ≤ 2n−1 − 2

n
2 −1

DEFINITION (BENT FUNCTION [ROTHAUS, 1975])

f : F2n → F2 (n even) is said to be a bent function if nl(f ) = 2n−1 − 2
n
2 −1

Bent functions have been studied for more than 40 years (initiators : [Dillon,
1974], [Rothaus, 1975]).
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Characterization of bent functions

A main characterization of "bentness" :

(f is bent ) ⇐⇒ χ̂f (ω) = ±2
n
2 , ∀ω ∈ F2n

Parseval’s identity allows one to determine the number of occurrences of
each value of the Walsh transform of a bent function.

Table – Walsh spectrum of bent functions f with f (0) = 0

Value of χ̂f (ω), ω ∈ F2n Number of occurrences
2

n
2 2n−1 + 2

n−2
2

−2
n
2 2n−1 − 2

n−2
2
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Characterization of bent functions in terms of derivatives

Let f be a Boolean function over F2n and a ∈ F2n . The derivative of f with
respect to a is defined as :

Daf (x) = f (x) + f (x + a); x ∈ F2n .

For (a, b) ∈ F2n × F2n , the second-order derivative of f with respect (a, b) is
defined as :

DbDaf (x) = Db(Daf )(x) = f (x) + f (x + b) + f (x + a) + f (x + a + b),∀x ∈ F2n .

The linear kernel of f is the linear subspace of vectors a such that Daf is a
constant function. Any element of the linear kernel is called a linear structure
of f .

☞ A function f is bent if and only if all the derivatives Daf , a ∈ F⋆
2n , are

balanced (Dillon reports that D. Lieberman has first observed this).
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Bent functions : applications
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Bent Boolean functions in cryptography

From a cryptographic viewpoint, bent functions have two main interests :
1 Their derivatives Daf : x 7→ f (x) + f (x + a) are balanced, therefore any

addition of a nonzero vector to the input to f induces 2n−1 changes
among the 2n outputs ; this has an important relationship with the
differential attack on block ciphers, which was already known at the NSA
in the seventies.

2 The Hamming distance between f and the set of affine Boolean
functions takes optimal value 2n−1 − 2

n
2 −1 (n even) ; this has a direct

relationship with the fast correlation attack [Meier-Staffelbach 1988] on
stream ciphers and the linear attack [Matsui 1993] on block ciphers.

Two main drawbacks :
1 Bent functions are not balanced and can hardly be used, for instance, in

stream ciphers.
2 A pseudo-random generator using a bent function as a combiner or filter

is weak against some attacks, like the fast algebraic attack [Courtois
2003], even if the bent function has been modified to make it balanced,
as Dobbertin described.
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Linear codes

Let q be a prime power and n be a positive integer.

DEFINITION

The support of a vector a = (a0, . . . , an−1) ∈ Fn
q is defined as

supp(a) := {0 ≤ i ≤ n − 1 : ai ̸= 0}. The Hamming weight of a ∈ Fn
q, denoted

by wt(a), is the cardinality of its support, i.e., wt(a) := #supp(a).

DEFINITION (LINEAR CODES)

A linear [n, k, d]q code C over a field Fq is a k-dimensional subspace of Fn
q with

minimum Hamming distance d with d := d(C) = minā,b̄∈C,ā̸=b̄d(ā, b̄) where the
distance d(ā, b̄) between two vectors ā and b̄ is the number of coordinates in
which they differ.
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Bent functions in coding theory

Bent functions and covering radius of Reed-Muller codes
Bn = {f : Fn

2 → F2}

The Reed-Muller code RM(r, n) can be defined in terms of Boolean
functions : RM(r, n) is the set of all n-variable Boolean functions Bn of
algebraic degrees at most r. More precisely, it is the linear code of all
binary words of length 2n corresponding in the truth tables of these
functions.

For every 0 ≤ r ≤ n, the Reed-Muller code RM(r, n) of order r, is a
linear code :  2n︸︷︷︸

length

,

r∑
i=0

(
n
i

)
︸ ︷︷ ︸

dimension

, 2n−r︸︷︷︸
minimum distance



18 / 67



Bent functions in coding theory

A cryptographic parameter for Boolean functions : the r th-order
nonlinearity

DEFINITION (r-TH-ORDER NONLINEARITY : nlr(f ) (r ∈ N, r ≤ n))

The r-th order nonlinearity of f is the minimum Hamming distance between f
and the set of all the n-variable Boolean functions of algebraic degree at most
r : nlr(f ) = min

g∈RM(r,n)
dH(f , g)

The r th-order nonlinearity nlr(f ) generalizes the (standard) nonlinearity nl(f )
and is an important parameter in cryptography : it measures the capacity for
resisting low-degree approximation attack.

☞ We were interested in the maximal value of nlr(f ) (r > 1) of n-variable
Boolean functions f
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Bent functions in coding theory

Covering radius of the Reed-Muller code RM(r, n)

☞ The maximal nonlinearity of order r of n-variable Boolean functions
coincides with the covering radius of RM(r, n).

DEFINITION (COVERING RADIUS OF THE REED-MULLER CODE RM(r, n))

Covering radius of the Reed-Muller code RM(r, n) of order r and length 2n :

•ρ(r, n) := max
f∈Bn

min
g∈RM(r,n)

dH(f , g) = max
f∈Bn

nlr(f )

where Bn := {f : Fn
2 → F2}. Or :

•ρ(r, n) := min{d ∈ N | ∪
x∈RM(r,n)

B(x, d) = Fn
2}

where B(x, d) := {y ∈ Fn
2 | dH(x, y) ≤ d}(Hamming ball)
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Bent functions in coding theory

Bent functions and covering radius of Reed-Muller codes

☞ The covering radius plays an important role in error correcting codes :
measures the maximum errors to be corrected in the context of
maximum-likelihood decoding.

☞ The best upper bound of ρ(r, n) (r > 1) ([Carlet-SM, 2007]).

When n is odd, ρ(1, n) < 2n−1 − 2
n
2 −1

When n is even, ρ(1, n) = 2n−1 − 2
n
2 −1 and the associated n-variable

Boolean functions are the bent functions.
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Bent Boolean functions in combinatorics

Bent functions are combinatorial objects :

DEFINITION

Let G be a finite (abelian) group of order µ. A subset D of G of cardinality
k is called (µ, k, λ)-difference set in G if every element g ∈ G, different
from the identity, can be written as d1 − d2, d1, d2 ∈ D, in exactly λ
different ways.

Hadamard difference set in elementary abelian 2-group :
(µ, k, λ) = (2n, 2n−1 ± 2

n
2 −1, 2n−2 ± 2

n
2 −1).

THEOREM (DILLON 74)

A Boolean function f over Fn
2 is bent if and only if

supp(f ) := {x ∈ Fn
2 | f (x) = 1} is a Hadamard difference set in Fn

2.

22 / 67



Bent Boolean functions in combinatorics

Example : Let f a Boolean function defined on F4
2 (n = 4) by

f (x1, x2, x3, x4) = x1x4 + x2x3 The support of f is
Supp(f ) = {(1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0)} is a
Hadamard (16, 6, 2)-difference set of F4

2.
d1 d2 d1 + d2

1001 1011 0010
1001 1101 0100
1001 0110 1111
1001 0111 1110
1001 1110 0111
1011 1101 0110
1011 0110 1101
1011 0111 1100
1011 1110 0101
1101 0110 1011
1101 0111 1010
1101 1110 0011
0110 0111 0001
0110 1110 1000
0111 1110 1001 23 / 67



Bent functions : properties, classification, enumeration
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On Boolean bent functions

Main properties of bent functions :

if f is bent then wt(f ) = 2n−1 ± 2
n
2 −1.

If f is bent then χ̂f (ω) = 2
n
2 (−1)f̃ (ω), for all ω ∈ Fn

2, defines the dual
function f̃ of f .
-It has been also shown by [Carlet 1999] that, denoting by F(f ) the
character sum

∑
x∈Fn

2
(−1)f (x), and by ℓa the linear form ℓa(x) = a · x, we

have : F(Da f̃ + ℓb) = F(Dbf + ℓa).
-It is shown by [Hou 2000] that the algebraic degrees of any n-variable
bent function and of its dual satisfy :

m − deg f ≥ m − deg f̃

deg f̃ − 1
.

If f is bent then deg f ≤ n
2
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On Boolean bent Boolean functions

Recall that the algebraic degree of any bent function on F2n : deg(f ) ≤ n
2 .

Therefore, for any bent Boolean function f defined over F2n :

Polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) , aj ∈ F2o(j)

– Γn is the set obtained by choosing one element in each cyclotomic
class of 2 modulo 2n − 1,

– o(j) is the size of the cyclotomic coset containing j,
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Bent functions

Equivalence :

DEFINITION

Two Boolean functions f and f ′ defined on F2n are called extended affine
equivalent (EA-equivalent) if f ′ = f ◦ ϕ+ ℓ where the mapping ϕ is an affine
automorphism on F2n and ℓ is an affine Boolean function .

☞ The bentness is an affine invariant.

☞ All bent quadratic functions are EA-equivalent.

☞ There exist other equivalence notions coming from design theory [Dillon
1974, Kantor 1975, Dillon-Schatz 1987].
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Bent functions

Classification and enumeration :
There does not exist for n ≥ 10 a classification of bent functions under the the
action of the general affine group.

☞ The classification of bent functions for n ≥ 10 and even counting them
are still wide-open problems.

The number of bent functions is known for n ≤ 8 (the number of
8-variable bent functions has been found recently
[Langevin-Leander-Rabizzoni-Veron-Zanotti 2008]).

n 2 4 6 8
# of bent functions 8 = 23 896 = 29.8 5, 425, 430, 528

≈ 232.3 2106.3

Only bounds on their number are known (cf. [Carlet-Klapper 2002]).

The problem of determining an efficient lower bound on the number of
n-variable bent functions is open.
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Bent functions : constructions
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Constructions of bent functions

To understand better the structure of bent functions, we can try to design
constructions of bent functions. It is also useful to deduce constructions
of highly nonlinear balanced functions.

Some of the known constructions of bent functions are direct ; that is, do
not use previously constructed bent functions as building blocks. We will
call primary constructions these direct constructions. The others,
sometimes leading to recursive constructions, will be called secondary
constructions.
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General Primary constructions of bent functions

Maiorana-Mc Farland’s class M : the best-known construction of bent
functions defined in bivariate form (explicit construction).
fπ,g(x, y) = x · π(y) + g(y), with π : Fm

2 → Fm
2 be a permutation and

g : Fm
2 → F2 any mapping.

Dillon’s Partial Spreads class PS− : well-known construction of bent
functions whose bentness is achieved under a condition based on a
decomposition of its supports (not explicit construction) :
supp(f ) =

⋃2m−1

i=1 E⋆
i where {Ei, 1 ≤ i ≤ 2m−1} are m-dimensional

subspaces with Ei ∩ Ej = {0}.

Dillon’s Partial Spreads class PSap : a subclass of PS−’s class.
Functions in PSap are defined explicitly in bivariate form :
f (x, y) = g(xy2m−2) with g is a balanced Boolean function on F2m which
vanishes at 0.

Dillon’s class H : a nice original construction of bent functions in
bivariate representation but less known because Dillon could only exhibit
functions that already belonged to the well-known Maiorana-McFarland
class. The bentness is achieved under some non-obvious conditions.
The class H has been extended ([Carlet-SM, 2010]).
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Partial spreads and spreads

Partial spreads and spreads play an important role in some constructions of
bent functions.

DEFINITION (PARTIAL SPREAD)

For a group G of order M2, a partial spread is a family S = {H1,H2, · · · ,HN} of
subgroups of order M which satisfy Hi ∩ Hj = {0} for all i ̸= j.

DEFINITION (SPREAD)

With the previous notation, if N = M + 1 (which implies ∪M+1
i=1 Hi = G) then S is

called a spread.

We will call the subgroups of a spread also spread elements.
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Spread of F2n

DEFINITION ( n
2 -SPREAD)

Let n = 2m be an even integer. An m-spread of F2n is a set of pairwise
supplementary m-dimensional subspaces of F2n whose union equals F2n

Hence a collection {E1, · · · ,Es} of F2n is an m-spread of F2n (n = 2m) if

1 Ei ∩ Ej = {0} for i ̸= j ;

2
⋃s

i=1 Ei = F2n ;

3 dimF2 Ei = m, ∀i ∈ {1, · · · , s}.
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The Desarguesian spread

EXAMPLE (A CLASSICAL EXAMPLE OF m-SPREAD : THE DESARGUESIAN
SPREAD)

Let consider the additive group (Fpn ,+) of the finite field Fpn with n = 2m.

(In univariate form) Let S1 := {uiFpm , i = 1, · · · , pm + 1} where
{ui | i = 1, · · · , pm + 1} is the set of representatives of the cosets of the
subgroup F⋆

pm of the multiplicative group F⋆
pn . S1 is a spread of Fpn .

(In bivariate form) Let S2 be the family of subgroups of Fpm × Fpm given by
S2 = ∪s∈Fpm {(x, sx) | x ∈ Fpm}∪{(0, y), y ∈ Fpm}. S2 is a spread of Fpm ×Fpm .

EXAMPLE (THE DESARGUESIAN m-SPREAD (IN CHARACTERISTIC 2))

in F2n : {uF2m , u ∈ U} where U := {u ∈ F2n | u2m+1 = 1}

in F2n ≈ F2m × F2m : {Ea, a ∈ F2m} ∪ {E∞} where Ea := {(x, ax) ; x ∈ F2m}
and E∞ := {(0, y) ; y ∈ F2m} = {0} × F2m .
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Partial Spread (PS) class

Let {E1, · · · ,Es} be a partial spread of F2n and f a Boolean function over F2n .
Assume that
f =

∑s
i=1 1Ei − 2⌊ s

2⌋δ0, 1Ei are the the indicators of the Ei’s and δ0 is the Dirac
symbol.
We have : f is then bent if and only if

1 s = 2m−1 (in which case f is said to be in the PS− class)

2 or s = 2m−1 + 1 (in which case f is said to be in the PS+ class).
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Class H of Dillon

Dillon introduces in a family of bent functions that he denotes by H,
whose bentness is achieved under some non-obvious conditions. He
defines these functions in bivariate form (but they can also be seen in
univariate form). The functions of this family are defined as
f (x, y) = Trm

1 (y + xG(yx2m−2)) ; x, y ∈ F2m ; where G is a permutation of
F2m such that G(x) + x does not vanish and, for every β ∈ F⋆

2m , the
function G(x) + βx is two-to-one.
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Class H

Extension of the class H of Dillon :

DEFINITION (CLASS H-CARLET-SM 2011)
We call H the class of functions f defined on F2m × F2m by

f (x, y) = Trm
1 (µy + xG(yx2m−2))

with
1 G : F2m → F2m is a permutation ;
2 ∀β ∈ F⋆

2m , the function z 7→ G(z) + βz is 2-to-1 on F2m .

Functions f in the class H are whose restrictions to elements of
the m-spread {Ea,E∞} are linear
The class H of Dillon is a subclass of H. Indeed, if we take (in the
definition of functions in class H) µ = 1 and G such that G(z) + z
does not vanishes then, we get functions in H.
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Class H and Niho bent functions

A first contribution thanks to the introduction of the class H :

☞ Functions of class H in univariate form are the known Niho bent
functions.

PROPOSITION

A Boolean function f (x) =
∑2n−2

d=0 adxd (f (0) = 0) has linear restrictions to the
uF2m ’s if and only if all exponents d such that ad ̸= 0 are congruent with
powers of 2 modulo 2m − 1. An integer d is said to be an exponent of type
Niho if d ≡ 2i (mod 2m − 1). Niho-bent functions are bent functions in which
their polynomial form involves exponents of type Niho.

Functions in the previous proposition have already been investigated as Niho
bent functions.
Known bent functions of type Niho :

1 one monomial (that is, if the form x 7→ Trn
1(axs) where s is a Niho

exponent).
2 three binomials (that is, if the form x 7→ Trn

1(a1xs1 + a2xs2), where s1 and s2
are two Niho exponents).

3 one multinomial (that is, of the form x 7→
∑

i Trn
1(aixsi) where si are Niho

exponents).
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Class H and o-polynomials

A second contribution thanks to the introduction of the class H :

PROPOSITION ([CARLET-SM 2012])

Let G satisfies the condition :
∀β ∈ F⋆

2m , the function z 7→ G(z) + βz is 2-to-1 on F2m . if and only if

for every γ ∈ F2m , the function Hγ : z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z ̸= 0
0 if z = 0

is a

permutation on F2m .

Note that if Hγ is a permutation on F2m then G is a permutation on F2m .
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o-polynomials

DEFINITION

Let m be any positive integer. A permutation polynomial G over F2m is called
an o-polynomial if, for every γ ∈ F2m , the function Hγ :

z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z ̸= 0
0 if z = 0

is a permutation on F2m .

The notion of o-polynomial comes from Finite Projective Geometry :

☞ There is a close connection between "o-polynomials" and "hyperovals" :

DEFINITION (A HYPEROVAL OF PG2(2n))

Denote by PG2(2n) the projective plane over F2n .
A hyperoval of PG2(2n) is a set of 2n + 2 points no three collinear.

A hyperoval of PG2(2n) can then be represented by
D(f ) = {(1, t, f (t)), t ∈ F2n} ∪ {(0, 1, 0), (0, 0, 1)} or
D(f ) = {(f (t), t, 1), t ∈ F2n} ∪ {(0, 1, 0), (1, 0, 0)} where f is an o-polynomial.

☞ There exists a list of only 9 classes of o-polynomials found by the
geometers in 40 years
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Class H, Niho bent functions and o-polynomial

To summarize :
Class H (bent functions in bivariate forms ; contains a class H introduced by
Dillon in 1974).

Class H Niho bent functions

o-polynomials

(1)
(2)

1 The correspondence (1), offers a new framework to study the properties
of Niho bent functions. We have used a such framework to answer many
questions left open in the literature. Further open problems are still left
open.

2 Thanks to the connection (2) and thanks to the results of the geometers
(obtained in 40 years), we can construct several potentially new families
of bent functions in H and thus new bent functions of type Niho.
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5) :
The direct sum : if f and g are bent in n and r variables
respectively, then f (x) + g(y), x ∈ Fn

2, y ∈ Fr
2, is bent as well.

Rothaus’ construction which uses three initial n-variable bent
functions h1, h2, h3 to build an n + 2-variable bent function f : let
x ∈ Fn

2 and xn+1, xn+2 ∈ F2 ; let h1(x), h2(x), h3(x) be bent functions
on Fn

2 such that h1(x) + h2(x) + h3(x) is bent as well, then the
function defined at every element (x, xn+1, xn+2) of Fn+2

2 by :

f (x, xn+1, xn+2) = h1(x)h2(x) + h1(x)h3(x) + h2(x)h3(x)
+[h1(x) + h2(x)]xn+1 + [h1(x) + h3(x)]xn+2
+xn+1xn+2

is a bent function in n + 2 variables.

42 / 67



Secondary constructions of Boolean bent functions

Main secondary constructions (1/5)
The indirect sum and its generalizations : use four bent functions :
let f1, f2 be bent on Fr

2 (r even) and g1, g2 be bent on Fs
2 (s even) ;

define

h(x, y) = f1(x) + g1(y) + (f1 + f2)(x) (g1 + g2)(y), x ∈ Fr
2, y ∈ Fs

2, (1)

then h is bent and

h̃(x, y) = f̃1(x) + g̃1(y) + (̃f1 + f̃2)(x) (g̃1 + g̃2)(y), x ∈ Fr
2, y ∈ Fs

2.

☞ Two generalizations of the indirect sum needing initial
conditions are given and a modified indirect sum is also
introduced
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5)
A construction without extension of the number of
variables([Carlet 2006]) :
Let f1, f2 and f3 be three Boolean functions on Fn

2. Consider the
Boolean functions s1 = f1 + f2 + f3 and s2 = f1f2 + f1f3 + f2f3 (sums
performed in F2). Then

χ̂f1 + χ̂f2 + χ̂f3 = χ̂s1 + 2 χ̂s2 (2)

(sums performed in Z), and if f1, f2 and f3 are bent then :
1. if s1 is bent and if s̃1 = f̃1 + f̃2 + f̃3, then s2 is bent, and
s̃2 = f̃1 f̃2 + f̃1 f̃3 + f̃2 f̃3 ;
2. if χ̂s2(a) is divisible by 2m for every a (e.g. if s2 is bent), then s1 is
bent.
It has been observed in [SM 2014] that the converse of 1. is also
true : if f1, f2, f3 and s1 are bent, then s2 is bent if and only if
f̃1 + f̃2 + f̃3 + s̃1 = 0.
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5)
There exist also bent functions associated with some vectorial
(n, n)-functions called almost bent (AB). Almost bent functions are
those vectorial (n, n)-functions having maximal nonlinearity
2n−1 − 2

n−1
2 (n odd). Given such function F, the indicator γF of the

set {(a, b) ∈ (Fn
2 \ {0})× Fn

2; ∃x ∈ Fn
2, F(x) + F(x + a) = b} is a

bent function. The known AB power functions F(x) = xd, x ∈ F2m

are given in Table 2.
Functions Exponents d Conditions

Gold 2i + 1 gcd(i,m) = 1, 1 ≤ i < m/2

Kasami-Welch 22i − 2i + 1 gcd(i,m) = 1, 2 ≤ i < m/2

Welch 2k + 3 m = 2k + 1

Niho 2k + 2
k
2 − 1, k even m = 2k + 1

2k + 2
3k+1

2 − 1, k odd

Table – Known AB power functions xd on F2m .
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5) The bent functions γF

associated to known AB functions :
Gold : γF(a, b) = Trm

1 (
b

a2i+1 ) with 1
0 = 0 ;

Kasami-Welch, Welch, Niho : we have F(x + 1) + F(x) = q(x2s
+ x),

gcd(s,m) = 1, where q is in each case a permutation determined
by Dobbertin and F(x + 1) + F(x) = b has solutions if and only if
Trm

1 (q
−1(b)) = 0. Then :

γF(a, b) =
{

Trm
1 (q

−1(b/ad)) + 1 if a ̸= 0,
0 otherwise ;

Some specific values of s and q have been investigated
(Kasami-Welch, Welch and Niho).

The functions γF associated to Kasami-Welch, Welch and Niho
functions with m = 7, 9, are neither in completed M class, nor in
completed PSap class.
The other known infinite classes of AB functions are quadratic ; their
associated γF belong to completed M class.
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Known Infinite classes of bent functions in univariate trace form

Primary constructions in univariate trace form (1/2)
f (x) = Trn

1

(
ax2j+1

)
, where a ∈ F2n \ {x2j+1; x ∈ F2n}, n

gcd(j,n) even
This class has been generalized to functions of the form
Trn

1(
∑m−1

i=1 aix2i+1) + cmTrm
1 (amx2m+1), ai ∈ F2.

f (x) = Trn
1

(
ax22j−2j+1

)
, where a ∈ F2n \ {x3; x ∈ F2n}, gcd(j, n) = 1

f (x) = Trn
1

(
ax(2

n/4+1)2
)
, where n ≡ 4 [mod 8], a = a′b(2

n/4+1)2
,

a′ ∈ wF2n/4 , w ∈ F4 \ F2, b ∈ F2n ;
f (x) = Trn

1

(
ax2n/3+2n/6+1

)
, where 6 | n, a = a′b2n/3+2n/6+1, a′ ∈ F2m ,

Trm
m/3(a

′) = 0, b ∈ F2n ;

f (x) = Trn
1

(
a[x2i+1 + (x2i

+ x + 1)Trn
1(x

2i+1)]
)

, where n ≥ 6, m does
not divide i, n

gcd(i,n) even, a ∈ F2n \ F2i ,

{a, a + 1} ∩ {x2i+1; x ∈ F2n} = ∅ ;
f (x) = Trn

1

(
a
[(

x + Trn
3

(
x2(2i+1) + x4(2i+1)

)
+Trn

1(x)Trn
3

(
x2i+1 + x22i(2i+1)

))2i+1]) (under some conditions).
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Known Infinite classes of bent functions in univariate trace form

Primary constructions in univariate trace form (2/2)
The 5 known classes of Niho bent functions ;
3 classes of bent (in fact, hyper-bent) functions via Dillon-like
exponents and others coming from their generalizations : Dillon’s
and generalized Dillon’s functions, 2 classes by SM and their
generalizations ;
Bent functions have been also obtained by Dillon and McGuire as
the restrictions of functions on F2n+1 , with n + 1 odd, to a
hyperplane of this field.
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Bent functions in bivariate representation

Known infinite classes of bent functions in bivariate trace form

Functions from the Maiorana McFarland class M ;

Functions from Dillon’s PSap ;

An isolated class : f (x, y) = Trm
1 (x

2i+1 + y2i+1 + xy), x, y ∈ F2n where n is
co-prime with 3 and i is co-prime with m ;

Bent functions in a bivariate representation related to Dillon’s H class
obtained from the known o-polynomials ;

Bent functions associated to AB functions ;

Several new infinite families of bent functions and their duals ;

Several new infinite families of bent functions from new permutations
and their duals ;

Several new infinite families of bent functions from involutions and their
duals.

☞ Other primary constructions of bent functions have been obtained as
restrictions and extensions.
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Bent functions and their variance (subclasses, extensions,
generalizations)
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Hyper-bent Boolean functions

DEFINITION (HYPER-BENT BOOLEAN FUNCTION [YOUSSEF-GONG 01])

f : F2n → F2 (n even) is said to be a hyper-bent if the function x 7→ f (xi) is
bent, for every integer i co-prime to 2n − 1.

Characterization : f is hyper-bent on F2n if and only if its extended Hadamard
transform takes only the values ±2

n
2 .

DEFINITION (THE EXTENDED DISCRETE FOURIER (WALSH) TRANSFORM)

∀ω ∈ F2n , χ̂f (ω, k) =
∑

x∈F2n

(−1)f (x)+Trn
1(ωxk),with gcd(k, 2n − 1) = 1.

Hyper-bent functions were initially proposed by [Golomb-Gong 1999] as
a component of S-boxes to ensure the security of symmetric
cryptosystems.

Hyper-bent functions have properties stronger than bent functions ; they
are rarer than bent functions.

☞ Hyper-bent functions are used in S-boxes (DES).
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Hyper-bent Boolean functions

The most relevant results on hyper-bent functions are related to Dillon bent
functions from partial spreads.
Primary constructions and characterizations of hyper-bent functions in
univariate form have been made for (Dillon exponent : r(2m − 1))

1 Monomial hyper-bent functions via Dillon exponents ([Dillon 1975]) ;

2 Binomial hyper-bent functions via Dillon exponents ([Mesnager 2009])

3 Multimonomial hyper-bent functions via Dillon exponents
([Charpin-Gong 2008, Mesnager 2010, Mesnager-Flori 2012]).

4 Very recently, [Tang-Qi 2014] have identified hyperbent functions by
considering a particular form of functions with Dillon exponents over F22m .

☞ A new criterion [Canteaut-Rotella, 2016] given on filtered LFSRs has
revived the interest in hyper-bent functions.

☞ New results on (p-ary and generalized) hyper-bent functions [Mesnager,
2020].

52 / 67



Characterizations of hyper-bent Boolean functions in polynomial forms

NOTATION

We denote by Dn the set of bent functions f defined on F2n by
f (x) =

∑
i Tr2o(j)/2(aixdi) with ∀i, di ≡ 0 (mod 2m − 1) such that f (0) = 0.

All the known constructions of hyper-bentness are obtained for functions
in Dn.

[SM-Mandal-Tang, 2020] provided characterizations of the
hyper-bentness property and a new algorithm method to construct (but
complex !) hyper-bent Boolean functions
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Vectorial bent functions

An (n, r)-function F : Fn
2 7→ Fr

2 being given, the component functions of F
are the Boolean functions l ◦ F, where l ranges over the set of all the
nonzero linear forms over Fr

2. Equivalently, they are the functions of the
form v · F, v ∈ Fr

2 \ {0}, where "·" denotes an inner product in Fr
2.

The vector spaces Fn
2 and Fr

2 can be identified, if necessary, with the
Galois fields F2n and F2r of orders 2n and 2r respectively.

Hence, (n, r)-functions can be viewed as functions from Fn
2 to Fr

2 or as
functions from F2n to F2r . In the latter case, the component functions are
the functions Trr

1(vF(x)).
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Vectorial bent functions

Because of the linear cryptanalysis and the fast correlation attack on stream
ciphers, the notion of nonlinearity has been generalized to (n, r)-functions and
studied by [Nyberg 1991-1993] and further studied by [Chabaud-Vaudenay
1995].

F is bent if and only if all of its component functions are bent ;
equivalently, χ̂v·F (a) = ±2m for all a ∈ Fn

2 and all v ∈ Fr
2 \ {0}.

Hence, F is bent if and only if, for every v ∈ Fr
2 \ {0} and every

a ∈ Fn
2 \ {0}, the function v · (F(x) + F(x + a)) is balanced. An

(n, r)-function F is balanced (i.e. takes every value of Fr
2 the same

number 2n−r of times) if and only if all its components are balanced.

F is then bent if and only if, for every a ∈ Fn
2, the derivative

F(x) + F(x + a) of F is balanced.
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p-ary functions

In characteristic p (p prime), the trace function Trpn

pk from the finite field Fpn of
order pn to the subfield Fpk is defined as

Trpn

pk =

n
k −1∑
i=0

xpki
.

For k = 1 we have the absolute trace and use the notation trn(·) for Trpn

p (·).
A p-ary function is a function from Fn

p to Fp.

Fn
p ≈ Fpn , a p-ary functions can be described in the so-called univariate

form, which is a unique polynomial over Fpn of degree at most pn − 1 or in
trace form trn(F(x)) for some function F from Fpn to Fpn (non unique).

A p-ary function has a representation as a unique multinomial in
x1, · · · , xn, where the variables xi occur with exponent at most p − 1. This
is called the multivariate representation or ANF.
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Bent functions in characteristic p

The Walsh-Hadamard transform can be defined for p-ary functions
f : Fpn → Fp :

Sf (b) =
∑

x∈Fpn

ζ f (x)−trn(bx)
p ,

where ζp = e
2πi

p is the complex primitive pth root of unity and elements of Fp

are considered as integers modulo p.

DEFINITION

A p-ary function f is called bent if all its Walsh-Hadamard coefficients satisfy
|Sf (b)|2 = pn. A bent function f is called regular bent if for every b ∈ Fpn ,
p− n

2 Sf (b) = ζ
f⋆(b)
p for some p-ary function f ⋆ : Fpn → Fp.

DEFINITION

The bent function f is called weakly regular bent if there exists a complex
number u with |u| = 1 and a p-ary function f ⋆ such that up− n

2 Sf (b) = ζ
f⋆(b)
p for

all b ∈ Fpn . Weakly regular bent functions allow construction of strongly
regular graphs and association schemes.
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Bent functions in characteristic p

Walsh-Hadamard transform coefficients of a p-ary bent function f with odd p
satisfy

p− n
2 Sf (b) =

{
±ζ

f⋆(b)
p , if n is even or n is odd and p ≡ 1 (mod 4),

±iζ f⋆(b)
p , if n is odd and p ≡ 3 (mod 4),

(3)

where i is a complex primitive 4-th root of unity. Therefore, regular bent
functions can only be found for even n and for odd n with p ≡ 1 (mod 4).
Moreover, for a weakly regular bent function, the constant u (defined above)
can only be equal to ±1 or ±i.

58 / 67



p-ary bent functions (p odd)

Bent functions m p∑⌊m/2⌋
i=0 Trpm/p(aixpi+1

) arbitrary arbitrary∑pk−1
i=0 Trpm/p(aixi(pk−1)) + Trpl/p(δx

pm−1
e ), e|pk + 1 m = 2k arbitrary

Trpm/p(ax
3m−1

4 +3k+1) m = 2k p = 3

Trpm/p(xp3k+p2k−pk+1 + x2) m = 4k arbitrary

Trpm/p(ax
3i+1

2 ) ; i odd, gcd(i,m) = 1 arbitrary p = 3

Table – Known weakly regular bent functions over Fpm , p odd
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p-ary bent functions (p odd)

in [Tang, Li, Qi, Zhou, Helleseth, 2016], introduced a very interesting
special class RF of p-ary weakly regular bent functions such that
f (0) = 0; and there exists an integer h such that (h − 1, p − 1) = 1 and
f (cx) = chf (x) for any c ∈ F∗

p and x ∈ F∗
pn .

all the known weakly regular bent functions belong to RF . Recently [Du,
Jin, SM 2021] completed results from [Xu, Cao, Xu, 2017] and we
obtained some constructions of p-ary weakly regular bent functions
(outside RF) :

f (x) = Trm
1 (λxpm+1) + Trn

1(ux)Trn
1(vx)l, for all n = 2m and λ ∈ F∗

pm ,
f (x) = Trn

1(λ1x2) + Trn
1(ux)Trn

1(vx)l, for all integers n > 2 and λ1 ∈ F∗
pn ,

f (x, y) = Trm
1 (xπ(y)) + Trm

1 (y) + Trm
1 (u1x + u2y)Trm

1 (v1x + v2y)l, where
l ∈ {p − 1, p−1

2 }, u, v ∈ F∗
pn such that u, v are not both in Fp, π is a

linearized permutation polynomial over Fpm and
(u1, u2), (v1, v2) ∈ Fpm × Fpm .

Problem : find new strategies to derive new weakly regular bent
functions
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Plateaued functions

Vectorial (plateaued) p-ary functions can be defined as follows.

A p-ary function is called a plateaued function if the Walsh transform Wf

takes at most three values. Because of Parseval identify,
|Wf (a)|2 ∈ {0, µ2} where µ2 = pn+s for some positive integer s such that
0 ≤ s ≤ n. The power µ := p

n+s
2 is called the amplitude of f and we say

that f is an s-plateaued.

Bent functions are the 0-plateaued.

A vectorial function F from Fpn to Fpm is called vectorial plateaued if all its
components Fu from Fpn to Fp (defined by Fu(x) = Trpm/p(uF(x)) for every
x ∈ Fpn ) are su-plateaued for every u ∈ F⋆

pm with possibly different
amplitudes. In particular, F is called vectorial s-plateaued if Fu are
s-plateaued with the same amplitude µ for every u ∈ F⋆

pm .
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On p-ary plateaued functions

We have the following main results :

Let f : Fpn → Fp be an s-plateaued function. Then for ω ∈ Fpn , |Wf (ω)|2
takes pn−s times the value pn+s and pn − pn−s times the value 0 (SM
2014]).

It have shown by [Hyun-Lee-Lee, 2016] that the Walsh transform
coefficients of p-ary s-plateaued f satisfy

Wf (a) =


±p

n+s
2 ζ

g(a)
p , 0 if n + s is even or

n + s is odd and p ≡ 1 (mod 4),
±ip

n+s
2 ζ

g(a)
p , 0 if n + s is odd and p ≡ 3 (mod 4),

(4)

where i is a complex primitive 4-th root of unity and g is a p-ary function
over Fpn with g(a) = 0 for all a ∈ Fpn \ supp(Wf ) (recall : the support of a
vectorial function F : Fqn → Fqm is the set Supp(F) := {x ∈ Fqn | f (x) ̸= 0}.)
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On p-ary plateaued functions

[SM, Özbudak, Sınak, 2017] have introduced the notion of weakly regular
plateaued functions in odd characteristic, which covers a non-trivial subclass
of the class of plateaued functions.

Let p be an odd prime and f : Fpn → Fp be a p-ary s-plateaued function,
where s is an integer with 0 ≤ s ≤ n. Then, f is called weakly regular
p-ary s-plateaued if there exists a complex number u such that |u| = 1
and u does not depend on ω. such that

Wf (ω) ∈
{

0, up
n+s

2 ξ
g(ω)
p

}
for all ω ∈ Fpn , where g is a p-ary function over

Fpn with g(ω) = 0 for all ω ∈ Fpn \ supp(Wf ) ;

otherwise, f is called non-weakly regular p-ary s-plateaued.

In particular, weakly regular p-ary s-plateaued f is called regular p-ary
s-plateaued when u = 1.
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p-ary plateaued functions

Examples : let F2
⋆
33 = ⟨ζ⟩ with ζ3 + 2ζ + 1 = 0.

f (x) = Tr33/3(ζ
5x11 + ζ20x5 + ζ11x4 + ζ2x3 + ζx2) is regular 3-ary

1-plateaued over F233

The function f (x) = Tr33/3(ζx13 + ζ7x4 + ζ7x3 + ζx2) is weakly
regular 3-ary 1-plateaued over F233 .
The function f (x) = Tr33/3(ζ

16x13 + ζ2x4 + ζ2x3 + ζx2) is non-weakly
regular 3-ary 2-plateaued over F233 .
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On p-ary plateaued functions

It has been shown by [SM, Özbudak,Sınak, 2017] that :

Let p be an odd prime and f : Fpn → Fp be a weakly regular s-plateaued
function. For all ω ∈ supp(Wf ), Wf (ω) = ϵ

√
p∗n+s

ζ
g(ω)
p , where ϵ = ±1 is the

sign of Wf , p∗ denotes
(

−1
p

)
p (where ( ·· ) denotes the Legendre symbol)

and g is a p-ary function over supp(Wf ).

For p-ary plateaued functions (any prime p), we have a lot of
characterizations [Carlet, SM, Meidl, Özbudak, Sınak, etc.], some properties
but quite very few constructions [Hodzic, Pasalic, Wei, Zhang 2019], [SM,
Özbudak,Sınak, 2021] , etc.
Generic constructions are necessary !
Problem : Find (primary) constructions plateaued functions and, more
importantly, generic constructions !
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f : Fpn → Fp (resp. F : Fpn → Fpm ) :

☞ Families of functions according to the spectrum of values of Wf (resp.
WF) : bent and their variants.

f bent : |Wf (a)| = pn/2,∀a ∈ Fpn

F vectorial bent : all the components Trpm/p(bF(x)), b ̸= 0, are bent

f weakly regular bent : Wf (λ) = ε
√

p∗m
ζ

f∗(λ)
p , ε = ±1

F almost bent (AB) : WF(a, b) ∈ {0,±2
n+1

2 }, a ∈ F2n , b ∈ F2n

f plateaued : Wf takes at most 3 values |Wf (a)| ∈ {0, µ} for all a ∈ Fpn

F plateaued : all the components Trpm/p(bF(x)), b ̸= 0, are plateaued

f weakly regular s-plateaued : Wf (a) ∈ {0, up
m+s

2 ζ
g(a)
p }, |u| = 1

F plateaued of amplitude µ : all the components Trpm/p(bF(x)), b ̸= 0 are
plateaued of amplitude µ
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