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Outline
▶ Preliminaries on vectorial functions

▶ Main mathematical problems in symmetric
cryptography in block cipher

▶ the main problem in solving equations over finite fields
▶ On the famous equation x2k+1 + x + a = 0 in F2n

▶ Ingredients for the resolution

▶ The two related problems for solving x2k+1 + x + a = 0 in F2n

with gcd(n, k) = 1

▶ Solving the two problems

▶ Impacts (results obtained in 2021, 2022 and 2023)

▶ On the APN-ness property of Kasami functions

▶ On the bijectivity property of an "exceptional" family of
quadrinomials

▶ On the resolution of a new equation F(x + 1) + F(x) = b
where F is a power "cryptographic" function

2 / 34



Cryptography

- Decryption- -Encryptionplaintext ciphertext plaintext

public
channel

KE KD

3 / 34



Boolean functions : cryptographic framework
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Notation :

▶ F2n the finite field of order 2n.

▶ The absolute trace over F2 of an element x ∈ F2n equals
Tr2n/2(x) =

∑n−1
i=0 x2i

.
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Symmetric cryptography

Let
F : F2n → F2m

▶ The (Boolean) functions : x 7→ b · F(x) := Tr2m/2(bF(x)), b ∈ F2m

where b ̸= 0 are called the components of F
where Tr2n/2(x) :=

∑n−1
i=0 x2i

(trace function).
▶ The discrete Hadamard Walsh (Fourier) transform of F :

WF(a, b) :=
∑

x∈F2n

(−1)Tr2m/2(bF(x))−Tr2n/2(ax)

where (a, b) ∈ F2n × F2m \ {0}
▶ three main important cryptographic parameters for F

1. Nonlinearity and higher-order nonlinearity
2. Differential uniformity
3. Boomerang uniformity
☞ To make the cryptanalysis very difficult to implement, we

must pay attention when choosing the vectorial function F,
which has to follow. several recommendations :
cryptographic criteria !
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☞ Linear Cryptanalysis [Matsui (1993)] ⇒ nonlinearity Nl(F) de
F : Fn

2 → Fm
2 ,

Nl(F) = min
b∈F2m ,b ̸=0

{nl(Tr2m/2(bF))} = 2n−1−1
2

max
a∈Fn

2,b∈Fm
2 ,b ̸=0

|WF(a, b)|.

✭ The higher the value of Nl(F), the better resistance to linear
cryptanalysis.

✭ When n = m odd, Nl(F) is bounded by 2n−1 − 2
n−1

2 . The functions
reaching this upper bound are the AB functions.

✭ When m = 1, Nl(F) is bounded by 2n−1 − 2
n
2 −1. The functions

reaching this upper bound are the bent functions (n even).

↪→ A very difficult parameter to study mathematically ! !
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☞ Differential cryptanalysis [Biham, Shamir (1991)] ⇒
▶ Difference Distribution Table

DDTF(a, b) = #{x ∈ F2n , F(x + a) + F(x) = b}, (1)

▶ Differential uniformity [Nyberg (1992-1993)]

δF = max
a,b∈F2n ,a ̸=0

DDTF(a, b). (2)

✭ The smaller the δF value, the better the resistance to differential
cryptanalysis.

✭ For any function F with m ≤ n, δF ≥ pn−m and δF ≥ 2 if p = 2.

✭ If δF = 1, the function F (p odd) is non-perfect linear (PN).

✭ If δF = 2, the function F (p = 2) is almost perfectly nonlinear
(APN).

8 / 34



A variation of differential cryptanalysis : boomerang cryptanalysis

☞ Boomerang cryptanalysis [Wagner (1999)] ⇒
▶ Boomerang Connectivity Table [Cid. al. (2018)]

BCTF(a, b) = #{x ∈ F2n , F−1(F(x)+b)+F−1(F(x+a)+b) = a}.
(3)

▶ Boomerang uniformity ([Bourra, Canteaut (2018)])

βF = max
a,b∈F2n ,a ̸=0

BCTF(a, b), (4)

✭ The smaller the value of βF, the better the boomerang
cryptanalysis resistance (here n = m and F bijective).

✭ To secure a block cipher against cryptanalysis boomerang, it
must use a function with a value of βF small.

↪→ You have to know how to solve equations over finite fields or at
least count the number of solutions : mathematically difficult !
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An important example : solving the equation
Pa(x) := x2k+1 + x + a = 0 over F2n

☞ the polynomial Pa(x) (a ∈ F⋆
2n ) appears in this cryptographic

context (APN functions [Budaghyan, Carlet 2006], [Bracken, Tan,
Tan 2014], [Canteaut, Perrin, Tian 2019])

but not only since there is an interest in other contexts :

▶ the general theory of finite fields

▶ the inverse Galois problem [Abhyankar, Cohen, Zieve, 2000] ;

▶ the construction of difference sets with Singer parameters [Dillon
2002] ;

▶ finding cross-correlation between m-sequences [Helleseth,
Kholosha, Ness, 2007] ;

▶ constructing error correcting codes [Bracken, Helleseth 2009] ;

▶ constructions designs [Tang 2019] ;

▶ etc.
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Solving x2k+1 + x + a = 0 over F2n

What do we know? (before 2020)

▶ Solution for k = 1 [Berlekamp-Rumsey-Solomon 1967-Williams,
1975]

▶ Partial results
Let Na be the number of solutions of the equation
Pa(x) := x2k+1 + x + a = 0 in F2n .

▶ In 2004 : [Bluher, 2004] the number of solutions Na are only
0, 1 and 3 when gcd(k, n) = 1.

▶ In 2008 : [Helleseth-Kholosha 2008] got criteria for Na = 1
and an explicit expression of the unique solution when
gcd(k, n) = 1.

▶ In 2014 : [Bracken-Tan-Tan 2014] presented a criterion for
Na = 0 when n is even and gcd(k, n) = 1.

After 2020 : [Kim and SM, FFA 2020] solving completely Pa(x) = 0
(but further in 2021 for any n, k and characteristic p) [papers published
in the FFA journal with Kim and some members of his research team]
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Main ingredients for the resolution of Pa(x) := x2k+1 + x + a = 0 over F2n

Ingredient 1 : Dickson polynomials

▶ Definition The Dickson polynomial of the first kind of degree k in
indeterminate x and with parameter a ∈ F∗

2n is

Dk(x, a) =
⌊k/2⌋∑
i=0

k
k − i

(
k − i

i

)
akxk−2i,

where ⌊k/2⌋ denotes the largest integer less than or equal to k/2.
In this talk, we consider only Dickson polynomials Dk(x, 1), that
we shall denote Dk(x).

▶ A lot of properties For all x ∈ F2n , for any integer h, k > 0.

▶ degDk = k ;
▶ Dk

(
x + 1

x

)
= xk + 1

xk ;
▶ Dk permutation over F2n if and only if gcd(k, 22n − 1) = 1 ;
▶ Dhk(x) = Dh(Dk(x)) ;
▶ etc.
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Main ingredients for the resolution of Pa(x) := x2k+1 + x + a = 0 over F2n

Let k and n be two positive integers.
Ingredient 2 : Müller-Cohen-Matthews polynomials fk,d are defined
over F2n as follows :

fk,d(X) :=
Tk(Xc)

d

X2k

where

Tk(X) :=
k−1∑
i=0

X2i
and cd = 2k + 1.

A basic property for such polynomials fk,2k+1 (when gcd(k, n) = 1) :

1. If k is odd, then fk,2k+1 is a permutation on F2n ([Müller, Cohen,
Matthews 1994]).

2. If k is even, then fk,2k+1 is 2-to-1 on F2n ([Dillon, Dobbertin 2004]).
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The two related problems for solving Pa(x) := xq+1 + x + a = 0 ; q = 2k,

gcd(n, k) = 1

If k is odd, since gcd(q − 1, 2n − 1) = 1, the zeros of Pa(x) are the
images of the zeros of Pa(xq−1) by the map x 7→ xq−1.

Now fk,q+1 is a permutation polynomial of F2n by Ingredient 2.
Therefore, for any a ∈ F∗

2n , there exists a unique Y in F∗
2n such that

a = 1

fk,q+1( 1
Y )

2
q
. Hence, we have

Pa
(
xq−1) = xq2−1 + xq−1 +

1

fk,q+1
( 1

Y

) 2
q

(5)

Substituting tx to X in the above identity with tq2−q = YqTk
( 1

Y

)2
, we

get :

Pa
(
xq−1) = 1

Yq−1
(
fk,q+1

( 1
Y

)) 2
q

(
Xq2−1 +

(
k∑

i=1

Yq−2i

)
Xq−1 + Yq−1

)
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The two related problems for solving Pa(x) := xq+1 + x + a = 0 ; q = 2k,

gcd(n, k) = 1

we use a key polynomial identity involving Dickson
polynomials : a key result due to [Bluher, 2016] :
In the polynomial ring Fq [X,Y] (where q := 2k) we have the identity

Xq2−1 +

(
k∑

i=1

Yq−2i

)
Xq−1 + Yq−1 =

∏
w∈F∗

q

(Dq+1(wX)− Y) .

thus

Pa
(
xq−1) = 1

Yq−1
(
fk,q+1

( 1
Y

)) 2
q

∏
w∈F∗

q

(Dq+1(wX)− Y)

 .

☞ when k is odd, finding the zeros of Pa(xq−1) amounts to
determine preimages of Y under the Dickson polynomial Dq+1.
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The two related problems for solving Pa(x) := xq+1 + x + a = 0 ; q = 2k,

gcd(n, k) = 1

When k is even, fk,q+1 is 2-to-1, fortunately, we can go back to the odd
case by rewriting the equation. Indeed, for x ∈ F2n ,

Pa(x) = x2k+1 + x + a =
(

x2n−k+1 + x2n−k
+ a2n−k

)2k

=
(
(x + 1)2n−k+1 + (x + 1) + a2n−k

)2k

and so

{x ∈ F2n | Pa(x) = 0} =
{

x + 1 | x2n−k+1 + x + a2n−k
= 0, x ∈ F2n

}
. (6)

☞ If k is even, then n − k is odd, and we can reduce it to the odd
case.
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The two related problems for solving Pa(x) := xq+1 + x + a = 0 ; q = 2k,

gcd(n, k) = 1
To summarize all the above discussions :
Let k and n be two positive integers such that gcd(k, n) = 1.

1. Let k be odd and q = 2k. Let Y ∈ F∗
2n be (uniquely) defined by

a = 1

fk,q+1( 1
Y )

2
q
. Then,

{x ∈ F2n | Pa(x) = 0} =

 zq−1

YTk
( 1

Y

) 2
q
|Dq+1(z) = Y, z ∈ F2n

 .

2. Let k be even and q′ = 2n−k. Let Y ′ ∈ F∗
2n be (uniquely) defined

by aq′ = 1

fn−k,q′+1( 1
Y′ )

2
q′

. Then,

{x ∈ F2n | Pa(x) = 0} =

1 +
zq′−1

Y ′Tn−k
( 1

Y′

) 2
q′
|Dq′+1(z) = Y ′, z ∈ F2n

 .
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The two related problems for solving Pa(x) := xq+1 + x + a = 0 ; q = 2k,

gcd(n, k) = 1

☞ we can split the problem of finding the zeros in F2n of Pa into two
independent problems : with odd k.

A For a ∈ F∗
2n , find the unique element Y in F∗

2n such that

a
q
2 =

1
fk,q+1

( 1
Y

) . (7)

B For Y ∈ F∗
2n , find the preimages in F2n of Y under the Dickson

polynomial Dq+1, that is, find the elements of the set

D−1
q+1(Y) = {z ∈ F⋆

2n | Dq+1(z) = Y}. (8)
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On Problem A : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

Solve Problem A

▶ We used

1. Müller-Cohen-Matthews polynomials
2. machinery for computing the computational inverse of a

family of polynomials

▶ Problem A amounts to finding the solutions to a linear equation
of the form xq + x = b.
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An approach to compute the computational inverse of an element of a

family of polynomials

For any x ∈ F2n , define

Q′
k,k′(x) =

xq+1∑k′
i=1 xqi

(9)

where q := 2k, k′ < n is the inverse of k modulo n.
We have

▶ if gcd(n, k) = 1 and k′ is odd, then Q′
k,k′ is a permutation on F2n

([Dillon, Dobbertin, 1999]) ;

▶ a relation ([Dillon, 1999]) :

∆k(X) = Q′
k,k′

(
X + X2k

)
= fk,q+1(X + X2). (10)

where ∆k(X) = (X + 1)22k−2k+1 + X22k−2k+1 + 1 ;
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An approach to compute the computational inverse of an element of a

family of polynomials [continued]

▶ the polynomial representation of the inverse Rk,k′ of Q′
k,k′ on F2n

has been studied in [Dillon, Dobbertin, 2004] by introducing the
following sequences of polynomials :

A1(x) = x, A2(x) = xq+1, Ai+2(x) = xqi+1
Ai+1(x)+xqi+1−qi

Ai(x), i ≥ 1,

B1(x) = 0, B2(x) = xq−1, Bi+2(x) = xqi+1
Bi+1(x)+xqi+1−qi

Bi(x), i ≥ 1.

The polynomial expression of Rk,k′ is then
Rk,k′(x) =

∑k′

i=1 Ai(x) + Bk′(x).
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On Problem A : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

Solve Problem A :

▶ we use the fact : ∆k(X) = Q′
k,k′

(
X + X2k

)
= fk,q+1(X + X2) ;

▶ we use a well-known key decomposition : every element z of F⋆
2n

can be written (twice) z = c + 1
c where c ∈ F⋆

2n ∪ M with c ̸= 1 and
where M = {ζ ∈ F22n | ζ2n+1 = 1}

▶ One has Y = T + 1
T where T ∈ F2n \ F2 or T ∈ M \ {1} where

M =
{
ζ ∈ F22n | ζ2n+1 = 1

}
(observe that M \ {1} ⊂ F22n \ F2n ).

Consequently :
1
Y

=

(
1

T + 1

)2

+
1

T + 1
.
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On Problem A : find Y such that a
q
2 = 1

fk,q+1( 1
Y )

Solve Problem A : We get

a
q
2 =

(
fk,q+1

(
1
Y

))−1

⇐⇒ a−
q
2 = ∆k

(
1

T + 1

)
⇐⇒ a−

q
2 = Q′

k,k′

((
1

T + 1

)q

+

(
1

T + 1

))
(11)

Next, Problem A amounts to finding the solutions to a linear equation
of the form xq + x = b, that we solved.
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On Problem B : find D−1
q+1(Y) = {z ∈ F⋆

2n | Dq+1(z) = Y}

Solve Problem B :

1. Write z = c + 1
c where c ∈ F⋆

2n or c ∈ M \ {1}, where
M = {ζ ∈ F22n | ζ2n+1 = 1} ;
One gets (using properties of Dickson polynomials)
Y = Dq+1(z) = cq+1 + 1

cq+1 = T + 1
T with T = cq+1.

The equation T + 1
T = Y has two solutions in F⋆

2n ∪ M for any
Y ∈ F⋆

2n because it is equivalent to the quadratic equation( T
Y

)2
+ T

Y = 1
Y2 and that Tr22n/2

( 1
Y

)
= 0.

2. We handle the two situations separately of those two cases that
occur depending on the value of Tr2n/2

( 1
Y

)
:

▶ If Tr2n/2
( 1

Y

)
= 0, T + 1

T = Y has two solutions in F2n \ F2 ;
▶ If Tr2n/2

( 1
Y

)
= 1, T + 1

T = Y has two solutions in M \ {1}.
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Impacts of the resolution of our main equation

▶ (1) A short-proof APN-ness property of Kasami functions (in
2021)

▶ (2) A proof of the bijectivity property of an "exceptional"
cryptographic family of quadrinomials discovered in 2019 from
[Perrin, Udovenko, Biryukov, Crypto’2016] (in 2022)

▶ (3) Solving the equation X23n+22n+2n−1 + (X + 1)23n+22n+2n−1 = b in
F24n and an alternative proof of a conjecture on the differential
spectrum of the related monomial functions (in 2023)
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(1) A direct proof of the APN-ness property of Kasami functions

Kasami (APN) function : F(X) = Xq2−q+1, q = 2k, gcd(k, n) = 1

Recall that F is said to be almost perfect nonlinear (APN) if for every
a ∈ F2n

∗ and every b ∈ F2n , the equation F(x) + F(x + a) = b has 0 or
2 solutions.

A power function F(X) = Xd is APN if and only if, for every b ∈ F2n the
system {

X + Y = 1
Xd + Yd = b (12)

has at most one pair {X,Y} of solutions in F2n
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(1) A direct proof of the APN-ness property of Kasami functions
Let n odd, F = G2 ◦ G−1

1 where G1(X) = Xq+1 and G2(x) = Xq3+1.

Equation (12) is equivalent to{
xq+1 + yq+1 = 1
xq3+1 + yq3+1 = b

(13)

Theorem : System (13) has at most one pair {x, y} of solutions
proving that F is APN ( [Carlet, Kim, SM, DCC 2021] )
Sketch of the proof : Letting y = x + z, v = zq2−1 and c = b + 1,
▶ Proving Equation (13) has at most one pair {x, y} of solutions is

equivalent to proving that (⋆⋆) has at most one solution v when
(⋆) has solutions :{ ( x

z

)q
+
( x

z

)
= 1

v
1

q−1
+ 1 (⋆)

(v + 1)q+1 + cv = 0 (⋆⋆)

for every c ∈ F2n .
▶ For every c ∈ F2n , the cubic equation (v + 1)q+1 + cv = 0 has at

most one solution v in F2n such that Trn
1

(
1

v
1

q−1
+ 1
)

= 0.
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(2) A proof of the bijectivity property of an "exceptional" cryptographic

family of quadrinomials
In Crypto’2016, [Perrin, Udovenko, Biryukov, 2016] discovered the
butterfly structure (that contains the Dillon APN permutation of six
variables), later generalized [Canteaut, Perrin, Tian, 2019], which
turns out to be a powerful approach that generates infinite families of
cryptographic functions with best-known nonlinearity and differential
properties.
Let m odd, k odd, gcd(m, k) = 1, Q = 2m, q = 2k

fϵ(X) := ϵ1Xq+1
+ ϵ2XqX + ϵ3XXq + ϵ4Xq+1, X = XQ (14)

where

ϵ = (ϵ1, ϵ2, ϵ3, ϵ4) =

{
(ε3, ε4, ε1, ε2), if k is odd
(ε1, ε2, ε3, ε4), if k is even,

∈ F4
Q (15)

and (α, β ∈ FQ.) 
ε1 = αq + α+ 1
ε2 = αq+1 + α+ β + 1
ε3 = αq+1 + αq + β + 1
ε4 = αq+1 + αq + α+ β

(16)
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(2) A proof of the bijectivity property of an "exceptional" cryptographic

family of quadrinomials

[Li, Li, Helleseth, Qu, 2021]
φ1 = ϵ1ϵ3 + ϵ2ϵ4, φ2 = ϵ1ϵ2 + ϵ3ϵ4, φ3 = ϵ2

1 + ϵ2
4,

φ4 = ϵ2
1 + ϵ2

2 + ϵ2
3 + ϵ2

4

Γ0 =

{
ϵ is given by (15) and (16) | φ4 ̸= 0,

(
φ2

φ4

)q

=
φ1

φ4

}
.

(17)
Theorem (Sufficiency condition) : fϵ(X) is a permutation on FQ2

with boomerang uniformity 4 if ϵ ∈ Γ0

Conjecture (Necessity condition) : fϵ(X) a permutation on FQ2

with boomerang uniformity 4 only if ϵ ∈ Γ0

29 / 34



(2) A proof of the bijectivity property of an "exceptional" cryptographic

family of quadrinomials

[Kim, SM, Choe, Lee, Lee, Jo, DCC 2022]
Problem : Identify Γ = {ϵ ∈ F4

Q | fϵ(X) a permutation on FQ2}.

Question : Γ=Γ0 ?

µQ+1 = {x ∈ FQ2 | xQ+1 = 1}
Proposition : fϵ(X) is a permutation of FQ2 if and only if
gϵ(X) = Xq+1hϵ(X)Q−1 is a permutation of µQ+1 \ {1} where
hϵ(X) = ϵ1Xq+1 + ϵ2Xq + ϵ3X + ϵ4.

Idea of the proof :

▶ fϵ(X) = Xq+1hϵ(XQ−1)

▶ Since gcd(q + 1,Q − 1) = 1, Xq+1hϵ(XQ−1) is a permutation of FQ2

if and only if gϵ(X) = Xq+1hϵ(X)Q−1 is a permutation of
µQ+1 = {x ∈ FQ2 | xQ+1 = 1} [Zieve, 2009].

▶ gϵ(1) = 1.
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(2) A proof of the bijectivity property of an "exceptional" cryptographic

family of quadrinomials

[Kim et al., DCC 2022] :

▶ µQ+1 \ {1} = { y+1+γ
y+γ | y ∈ FQ}, γ ∈ FQ2 \ FQ, γ2 = γ + 1.

▶ Γ is the subset of F4
Q of all ϵ such that equation

gϵ

(
y + 1 + γ

y + γ

)
=

a + 1 + γ

a + γ
(18)

has a unique solution y in FQ for every a ∈ FQ

31 / 34



(2) A proof of the bijectivity property of an "exceptional" cryptographic

family of quadrinomials

Linking to “cubic” equations : Introducing polynomials Rϵ, Sϵ and
Tϵ in FQ[X] whose coefficients depends on ϵ, we prove

☛ When ((Rϵ(a))q + Sϵ(a) = 0, Equation (18) has two solutions in
FQ.

☛ When ((Rϵ(a))q + Sϵ(a) ̸= 0, Equation (18) has one solution in FQ

if and only if
Yq+1 + Y + Uϵ(a) = 0 (19)

has one solution in FQ where
Y = ((Rϵ(a))q + Sϵ(a))−1(yq + Rϵ(a)) and Uϵ(a) =

(Rϵ(a)Sϵ(a)+Tϵ(a))q

(Rϵ(a)q+Sϵ(a))q+1 .
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(2) A proof of the bijectivity property of an "exceptional" cryptographic

family of quadrinomials

Proposition :
Γ =

{
ϵ ∈ F4

Q | φ4 ̸= 0,
(

φ2
φ4

)q
= φ1

φ4
,Trm

1

(
φ3
φ4

)
= 1 + k

}
⊋ Γ0

Theorem [Kim et al. 2022] :
fϵ(X) a permutation on FQ2 if and only if ϵ ∈ Γ.

Corollary [Kim, SM, Kim, Jo (2022)] : fϵ(X) a permutation on FQ2 with
Boomerang uniformity 4 if and only if ϵ ∈ Γ0.

Proposition [Kim, SM, Kim, Jo (2022)] :
Γ \ Γ0 =

{
ϵ ∈ Γ | Trm

1

(
φ2φ2

Q

φ2
4

)
= 1
}

.
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Conclusion

Still much to do concerning the resolution of equations over
finite fields !

Some open problems (amount many others) :

▶ Solve the equations in the form F(x) + F(x + 1) = b, where F is a
power functions of finite fields in characteristic 2.

▶ Study the boomerang uniformity of known functions F whose
δ(F) = 4.
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