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Outline .. . . .
» Preliminaries on vectorial functions

» Main mathematical problems in symmetric
cryptography in block cipher

» the main problem in solving equations over finite fields

» On the famous equation x2+! + x +a = 0 in Fa
» Ingredients for the resolution

> The two related problems for solving x> +' +x +a = 0 in Fy
with ged(n, k) = 1

» Solving the two problems
» Impacts (results obtained in 2021, 2022 and 2023)
» On the APN-ness property of Kasami functions

> On the bijectivity property of an "exceptional" family of
quadrinomials

> On the resolution of a new equation F(x+ 1) + F(x) = b
where F is a power "cryptographic" function
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Boolean functions : cryptographic framework
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Notation :
» T, the finite field of order 2".

» The absolute trace over I, of an element x € F,. equals
Trynja(x) = S0y #%.
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Symmetric cryptography

Let

F FZn — Fzm

> The (Boolean) functions : x — b - F(x) := Tryn /»(bF(x)), b € Fon
where b # 0 are called the components of F

n—1 7l

where Try 5 (x) := > —y x* (trace function).
» The discrete Hadamard Walsh (Fourier) transform of F :
We(a,b) := S (_1)Trz”l/z(bF(x))*T’z’t/z(“x)

XEFm

where (a,b) € Fp x Fon \ {0}
» three main important cryptographic parameters for F

1.

2.
3.
(=3

Nonlinearity and higher-order nonlinearity

Differential uniformity

Boomerang uniformity

To make the cryptanalysis very difficult to implement, we
must pay attention when choosing the vectorial function F,
which has to follow. several recommendations :
cryptographic criteria!
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ww Linear Cryptanalysis [Matsui (1993)] = nonlinearity N1(F) de
F:F% — Fy,

NIF) = min {nl(Trp o(bF))} = 2"~ 5

We(a,b)|.
bEFm b0 zungglea}F?#O\ r(a,b)|

# The higher the value of NI(F), the better resistance to linear
cryptanalysis.

% When n = m odd, NI(F) is bounded by 2"~! — 2"7". The functions
reaching this upper bound are the AB functions.

# When m = 1, NI(F) is bounded by 2"~! — 25—, The functions
reaching this upper bound are the bent functions (n even).

— A very difficult parameter to study mathematically !!
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ww Differential cryptanalysis [Biham, Shamir (1991)] =
» Difference Distribution Table

DDTr(a,b) = #{x € Fpu, F(x+a) + F(x) =b}, (1)
» Differential uniformity [Nyberg (1992-1993)]

61-" = 1171731%23::),27&0 DDTF(a, b) (2)

% The smaller the ¢ value, the better the resistance to differential
cryptanalysis.

# For any function F withm < n, 6 > p"~™ and 6 > 2 if p = 2.
# If 5 = 1, the function F (p odd) is non-perfect linear (PN).

# If 5 = 2, the function F (p = 2) is almost perfectly nonlinear
(APN).
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A variation of differential cryptanalysis : boomerang cryptanalysis

iz Boomerang cryptanalysis [Wagner (1999)] =
» Boomerang Connectivity Table [Cid. al. (2018)]

BCTr(a,b) = #{x € Fou, F~ (F(x)+b)+F ' (F(x+a)+b) = a}.
3)

» Boomerang uniformity ([Bourra, Canteaut (2018)])

6’7 = a,bgl‘}j);;éOBCTF(a,b)? (4)

# The smaller the value of g, the better the boomerang
cryptanalysis resistance (here n = m and F bijective).

# To secure a block cipher against cryptanalysis boomerang, it
must use a function with a value of Sr small.

— You have to know how to solve equations over finite fields or at
least count the number of solutions : mathematically difficult !
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An important example : solving the equation
P(x) == x>+t + x+a =0 over Fa.

= the polynomial P,(x) (@ € F3,) appears in this cryptographic
context (APN functions [Budaghyan, Carlet 2006], [Bracken, Tan,
Tan 2014], [Canteaut, Perrin, Tian 2019])

but not only since there is an interest in other contexts :
» the general theory of finite fields
» the inverse Galois problem [Abhyankar, Cohen, Zieve, 2000];

» the construction of difference sets with Singer parameters [Dillon
2002];

» finding cross-correlation between m-sequences [Helleseth,
Kholosha, Ness, 2007];

» constructing error correcting codes [Bracken, Helleseth 2009];
» constructions designs [Tang 2019];

> eftc.
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Solving x**! + x + a = 0 over F,.

What do we know ? (before 2020)

» Solution for k = 1 [Berlekamp-Rumsey-Solomon 1967-Williams,
1975]

> Partial results
Let N, be the number of solutions of the equation

P,(x) := ZH x4+ a=0inTFy.

» In 2004 : [Bluher, 2004] the number of solutions N, are only
0, 1 and 3 when ged(k,n) = 1.

» In 2008 : [Helleseth-Kholosha 2008] got criteria for N, = 1
and an explicit expression of the unique solution when
ged(k,n) = 1.

» In 2014 : [Bracken-Tan-Tan 2014] presented a criterion for
N, =0 when n is even and gcd(k,n) = 1.

After 2020 : [Kim and SM, FFA 2020] solving completely P,(x) =0
(but further in 2021 for any n, k and characteristic p) [papers published
in the FFA journal with Kim and some members of his research team]
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Main ingredients for the resolution of P,(x) := x> ! + x +a = 0 over F,.

Ingredient 1 : Dickson polynomials

» Definition The Dickson polynomial of the first kind of degree & in
indeterminate x and with parameter a € F3, is

W2 s
Dk(x,a)zzkii i) ;

i=0

where |k/2] denotes the largest integer less than or equal to k/2.
In this talk, we consider only Dickson polynomials Dy (x, 1), that
we shall denote Dy (x).

> A lot of properties For all x € F,., for any integer i,k > 0.
deg Dy = k;

Di(x+ 1) =x+&;

Dy permutation over F,. if and only if ged(k,2%" — 1) = 1;

th(x) = Dh(Dk(x)) ;
etc.

VVyVYVYY
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Main ingredients for the resolution of P,(x) := x> ! + x +a = 0 over F,.

Let k and n be two positive integers.
Ingredient 2 : Miiller-Cohen-Matthews polynomials f; , are defined
over [, as follows : .
Ti(X¢
Jea(X) == %
where

k=1

Te(X):=> X* and cd=2"+1.

i=0

A basic property for such polynomials f; 5, (wWhen ged(k,n) = 1) :
1. If kis odd, then f; »«, is a permutation on F». ([Miiller, Cohen,
Matthews 1994]).

2. If k is even, then f; 5, is 2-to-1 on F». ([Dillon, Dobbertin 2004]).
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The two related problems for solving P, (x) := x9™' + x+a = 0; g = 2%,
ged(n, k) =1

If k is odd, since ged(g — 1,2" — 1) = 1, the zeros of P,(x) are the
images of the zeros of P,(x9~!) by the map x ~ x91.

Now fi 4+1 is @ permutation polynomial of F». by Ingredient 2.
Therefore, for any a € F3,, there exists a unique Y in I}, such that
a = —L1 . Hence, we have

Juog (7))

1

— (5)
fk«,qul (%)

P, (xqfl) = xqul +x? 4

ENIN)

Substituting zx to X in the above identity with ' =1 = v, (1)?, we
get:

1 ) k ;
)= (s (S o)
Y (gt ()

Qo
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The two related problems for solving P,(x) := x/*! + x +a = 0; g = 2%,

ged(n, k) =1

we use a key polynomial identity involving Dickson
polynomials : a key result due to [Bluher, 2016] :
In the polynomial ring F,[X, Y] (where g := 2¥) we have the identity

k
X7 4 (Z Yq2‘> x4y =[] (Dg1(wX) = ¥).

i=1 weF;

thus

Py (¥71) = 1 p (H (Dg1(wX) — Y)) :

Vi (fger (1) \icis

= when k is odd, finding the zeros of P,(x?~!) amounts to
determine preimages of Y under the Dickson polynomial D ;.
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The two related problems for solving P, (x) := x9™' + x+a = 0; g = 2%,
ged(n, k) =1

When k is even, fi 411 is 2-to-1, fortunately, we can go back to the odd
case by rewriting the equation. Indeed, for x € Fy,

2k
k n—k n—k n—k
P(x)=x""4x+a= (x2 e 44 )

k

n— n— 2
- ((Hl)2 1) +d? )
and so

{X € Fo

Pu(x) = 0} = {x P12 xr =00 e an} . (6)

i |f k is even, then n — k is odd, and we can reduce it to the odd
case.
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The two related problems for solving P,(x) := x/*! + x +a = 0; g = 2%,
ged(n, k) =1

To summarize all the above discussions :

Let k and n be two positive integers such that ged(k,n) = 1.

1. Let k be odd and g = 2*. Let Y € F3, be (uniquely) defined by
a=—1—.Then,
Jear1 ()

< |

7471

YTi (7)

{x € Fou | Pa(x) = O} =

Dyyi(z) =Y, z € Fo

YIS}

2. Letkbe evenand ¢’ =2"*. Let Y’ € F}, be (uniquely) defined
bya? = ——1— Then,
fn*’«t]’%(%)

ol

{x S ]an

-1
Pa(x)ZO}: {1+2|Dql+1(Z)—Y,,Z€F2n}.
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The two related problems for solving P, (x) := x9™' + x+a = 0; g = 2%,
ged(n, k) =1

= we can split the problem of finding the zeros in F,. of P, into two
independent problems : with odd &.

A For a € F3,, find the unique element Y in F;, such that

1
i (3)

[N

a

B For Y € IF3,, find the preimages in [F,. of Y under the Dickson
polynomial D, 1, that is, find the elements of the set

D (Y)={z€ P

Dyt1(z) =Y} (8)
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On Problem A : find Y such that o> = ; !

‘k#+1(

')

Solve Problem A
» We used

1. Miiller-Cohen-Matthews polynomials
2. machinery for computing the computational inverse of a
family of polynomials

» Problem A amounts to finding the solutions to a linear equation
of the form x? + x = b.
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An approach to compute the computational inverse of an element of a

family of polynomials

For any x € F,., define

Q) = ©
i (X

E:l 1xﬂ
where g := 2%, k' < n is the inverse of k modulo 7.

We have

» if ged(n,k) = 1 and k' is odd, then Qi,k, is a permutation on Fa.
([Dillon, Dobbertin, 1999]);

» a relation ([Dillon, 1999]) :
Af(X) = Qe (X +X7) = figur (X +X). (10)

where Ay(X) = (X + 1)2%2@1 xR

20/34



An approach to compute the computational inverse of an element of a

family of polynomials [continued]

» the polynomial representation of the inverse Ry« of Q; ;, on Fa
has been studied in [Dillon, Dobbertin, 2004] by mtroducmg the
following sequences of polynomials :

i+1

A(x) =x, Ay(x) =29 Ao (x) = x7 A (x —|—x"i+l_"iA,- x), i>1,
+

Bi(x) =0, By(x) = x4 Bija(x) = qu]B,-H(x)—i—x‘/iJrl_‘/iBi(x), i>1.

The polynomial expression of Ry is then

Rir (x) = S5, Ai(x) + B (x).
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On Problem A : find Y such that a? = ; 1( y
Jk,qg+1\y

Solve Problem A :
> we use the fact : Ay(X) = Q; 1 (X+X2k) = frgr1 (X +X?);

> we use a well-known key decomposition : every element z of F3,
can be written (twice) z = ¢ + % where ¢ € I3, UM with ¢ # 1 and
where M = {¢ € Fp. | (P! =1}

> Onehas Y =T+ 1 where T € F». \F, or T € M\ {1} where
M = {¢ € Fp | (¥ =1} (observe that M\ {1} C Fyu \ Far).

Consequently :
1y L]
Yy \T+1 T+1
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On Problem A : find Y such that a? = ; 1( y
Jk,qg+1\y

Solve Problem A : We get

. 1\ . 1
i = (han(5)) = t=n (7))
R 1 \? 1
—a Z_Q"”"(<T+1> +<T+1)>

(11)

Next, Problem A amounts to finding the solutions to a linear equation
of the form x? 4+ x = b, that we solved.
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On Problem B : find D!, (Y) = {z € F;,

Dyii(z) = Y}

Solve Problem B :

1. Write z = ¢+ 1 where c € F3, or c € M\ {1}, where
M={CeFu |+ =1};
One gets (using properties of Dickson polynomials)
Y =Dyi(z) = ¢+ e = T+  with T = ¢t
The equation 7 + 1 = Y has two solutions in F3, U M for any
Y € I3, because it is equivalent to the quadratic equation
(L) + 7 = L and that Try. , (1) = 0.

2. We handle the two situations separately of those two cases that
occur depending on the value of Try ; (3) :

» If Trynjp () =0, T+ 7 = Y has two solutions in F: \ F3 ;
» If Tryp (3) = 1, T+ 3 = Y has two solutions in M \ {1}.
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Impacts of the resolution of our main equation

» (1) A short-proof APN-ness property of Kasami functions (in
2021)

> (2) A proof of the bijectivity property of an "exceptional”
cryptographic family of quadrinomials discovered in 2019 from
[Perrin, Udovenko, Biryukov, Crypto’2016] (in 2022)

> (3) Solving the equation X2"+2"+2'~1 L (x 4 1)2"+2"+2'~1 — pin
F,.. and an alternative proof of a conjecture on the differential
spectrum of the related monomial functions (in 2023)
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(1) A direct proof of the APN-ness property of Kasami functions

Kasami (APN) function : F(X) = X7 ~9+!, g = 2k, ged(k,n) = 1

Recall that F is said to be almost perfect nonlinear (APN) if for every
a € F»™ and every b € Fy, the equation F(x) + F(x + a) = b has 0 or

2 solutions.
A power function F(X) = X is APN if and only if, for every b € Fy the
system
X+Y =1
{ X\ +y! =b (12)

has at most one pair {X, Y} of solutions in Fy
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(1) A direct proof of the APN-ness property of Kasami functi9ns
Letn odd, F = G, o G;' where G;(X) = X?*! and G,(x) = X4 .

Equation (12) is equivalent to

Xt pyatl =
{ X gy = p
Theorem : System (13) has at most one pair {x,y} of solutions
proving that F is APN ( [Carlet, Kim, SM, DCC 2021])
Sketch of the proof : Lettingy =x+z,v = Zlande=b+1,

» Proving Equation (13) has at most one pair {x, y} of solutions is
equivalent to proving that (xx) has at most one solution v when
(%) has solutions :

{(z)"+(;) =41 (»

v+ 1D v =0 (%x)

for every ¢ € Fan.
> For every ¢ € F,, the cubic equation (v + 1)"+' +c¢v=0has at
1

most one solution v in F,. such that 7}
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(2) A proof of the bijectivity property of an "exceptional"” cryptographic

family of quadrinomials
In Crypto’2016, [Perrin, Udovenko, Biryukov, 2016] discovered the
butterfly structure (that contains the Dillon APN permutation of six
variables), later generalized [Canteaut, Perrin, Tian, 2019], which
turns out to be a powerful approach that generates infinite families of
cryptographic functions with best-known nonlinearity and differential
properties.
Let m odd, k odd, gcd(m, k) =1, Q = 2™, g = 2*

fE(X) = €1Yq+l + €2YqX + €3YXq + 64)(q+l7 Y = XQ (14)
where

6=(61,62,63,64)={

and («a, 5 € Fyp.)

(53,84761,62), if k is odd

L = 15
(e1,2,€3,¢4), if kis even, Q (15)

gg=al4+a+1

=o' +a+p+1
s=alt+al+p5+1
=o' +ol+a+p

(16)
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(2) A proof of the bijectivity property of an "exceptional” cryptographic

family of quadrinomials

[Li, Li, Helleseth, Qu, 2021]
p1 = €1€3 + €2€4, P2 = €162 + €3€4, P3 = 6% + Ei,
(,0426%4-6%4-6%4-@21

Ty = {e is given by (15) and (16) | ¢4 # 0, <‘p2)q - ‘Pl} :
P4 P4 17)

Theorem (Sufficiency condition) : f.(X) is a permutation on F .

with boomerang uniformity 4 if e € T'y

Conjecture (Necessity condition) : f.(X) a permutation on F .
with boomerang uniformity 4 only if € € T'y
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(2) A proof of the bijectivity property of an "exceptional” cryptographic
family of quadrinomials
[Kim, SM, Choe, Lee, Lee, Jo, DCC 2022]
Problem : Identify T' = {e € F{, | fc(X) a permutation on Fg: }.
Question : I'=I, ?
fg+1 = {x €Fp [ x0*1 =1}
Proposition : f.(X) is a permutation of IF. if and only if

g.(X) = X7t 1h (X)2~! is a permutation of ug4; \ {1} where
hS(X) = €1Xq+1 + X9 4 53X + €4.

Idea of the proof :
> fg(X) = Xthi(XQil)

> Since ged(g+1,0—1) =1, X9 h (X97") is a permutation of F:
if and only if g.(X) = X9"'h (X)2~! is a permutation of
Ho+1 = {x S FQz |xQ+l = 1} [Zieve, 2009]

> gi(l) =1
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(2) A proof of the bijectivity property of an "exceptional"” cryptographic

family of quadrinomials

[Kim et al., DCC 2022 :
> pori \ {1} = {5 |y € Fo}, 7 € Fp: \Fo, v* = 7 + 1.

» T is the subset of F‘é of all ¢ such that equation

y+ 1+~ a+1+v
86( > = (18)
y+ a+y

has a unique solution y in Fy, for every a € Fy
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(2) A proof of the bijectivity property of an "exceptional"” cryptographic

family of quadrinomials

Linking to “cubic” equations : Introducing polynomials R, S. and
T. in Fo[X] whose coefficients depends on ¢, we prove

@& When ((Rc(a))? + Se(a) = 0, Equation (18) has two solutions in
Fy.

@ When ((R.(a))? + Sc(a) # 0, Equation (18) has one solution in Fy
if and only if
Y + Y+ Ua) =0 (19)
has one solution in Fp where
Y = ((Re(@))? + Se(@)) ™ (v + Re(a)) and Ue(a) = G g et

(Re(@)14Se(a))rtt
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(2) A proof of the bijectivity property of an "exceptional"” cryptographic

family of quadrinomials

Proposition :
q
F:{eéF‘b“@#O,(%) = o Ty (g) :1+k} ST

Theorem [Kim et al. 2022] :
fe(X) a permutation on . if and only if € € T..

Corollary [Kim, SM, Kim, Jo (2022)] : f.(X) a permutation on . with
Boomerang uniformity 4 if and only if € € T.

Proposition [Kim, SM, Kim, Jo (2022)] :
_ ©r0%) _
F\Fo—{§EF|TI"1”( 2 )_1}.
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Conclusion

Still much to do concerning the resolution of equations over
finite fields !

Some open problems (amount many others) :

> Solve the equations in the form F(x) + F(x+ 1) = b, where F is a
power functions of finite fields in characteristic 2.

» Study the boomerang uniformity of known functions F whose
§(F) = 4.
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