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Outline

▶ Preliminaries on p-ary functions and some
applications

▶ The (practical) case of Boolean functions in
cryptography

▶ The main mathematical problems in symmetric
cryptography
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Background on p-ary functions : representation

Let q be a power of a prime p and r be a positive integer. The trace
function Trqr/q : Fqr → Fq is defined as :

Trqr/q(x) :=
r−1∑
i=0

xqi
= x + xq + xq2

+ · · ·+ xqr−1
.

The trace function from Fqr = Fpn to its prime subfield Fp is called the
absolute trace function.
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Background on functions over finite fields

DEFINITION
Let q = pr where p is a prime.

▶ A vectorial function Fn
q → Fm

q (or Fqn → Fqm ) is called an
(n,m)-q-ary function.

▶ When q = 2, an (n,m)-2-ary function will be simply denoted an
(n,m)-function. They are called S-boxes (substitution-boxes).
when they are used in a block cipher (in symmetric
cryptography).

▶ A Boolean function is an (n, 1)-function, i.e. a function Fn
2 → F2

(or F2n → F2).
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p-ary functions in cryptography and coding theory

☞ Functions from the finite field Fpn to the prime field Fp = Z/pZ
(p-ary functions) play an important role in coding theory and
cryptography !

Functions Fpn → Fp

Symmetric cryptosystems
(secret key)

Families of codes
ex. Reed-Muller codes

Coding theory Cryptography
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Cryptographic framework for Boolean functions

STREAM CIPHERS :

⊕?

Key stream (pseudo-random sequence)

-Plaintext -Ciphertext

▶ To generate the key stream, we use models ( eg. the combiner
model, the filtered model ) involving Boolean functions.

▶ The key stream has to follow properties related to the two
fundamental principles introduced by Shannon : confusion and
diffusion.

▶ The level of security of the cryptosystem against the known
attacks can be quantified through some fundamental
characteristics of the Boolean functions.
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Boolean functions : cryptographic framework

Pseudo-random
generator with

a Boolean function

⊕
Ciphertext

Plaintext

Stream ciphers

Encrypting

operation
Key

x1 xn

· · ·

y1 ym

· · ·

Plaintext

Ciphertext
outputs of Boolean functions

(depending on the key) over x1, · · · , xn

Block ciphers (AES, DES, etc)
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Cryptographic framework for Boolean functions

The two models of pseudo-random generators with a Boolean
function :
COMBINER MODEL :

mt : plain text
ct : cipher text
kt : key stream ⊕6

6

-

mt

ct

ktf

LFSR 1 -x(t)
1

LFSR 2 -x(t)
2

LFSR n -x(t)
n

...

LFSR : Linear Feedback Shift Register

• A Boolean function combines the outputs of several LFSR to
produce the keystream : a combining (Boolean) function f .
•The initial state of the LFSR’s depends on a secret key.
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Cryptographic framework for Boolean functions
FILTER MODEL :

si+L−1 · · · si+1 si

666

⊕⊕⊕
��

-

? ? ?

x1 xi xn

f (x1, x2, · · · , xn)

?
output : key stream

• A Boolean function takes as inputs several bits of a single
LFSR to produce the keystream : a filtering (Boolean)
function f

☞ To make the cryptanalysis very difficult to implement, we
have to pay attention when choosing the Boolean function :
several recommendations (cryptographic criteria) !
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Main cryptographic criteria for Boolean functions
• CRITERION 1 : To protect the system against distinguishing attacks,
the cryptographic function f must be balanced, that is, its Hamming
weight wt(f ) := #{x ∈ F2n , f (x) ̸= 0} equals 2n−1.

• CRITERION 2 : The cryptographic function must have a high
algebraic degree to protect against the Berlekamp-Massey attack.

The Hamming distance dH(f , g) := #{x ∈ F2n | f (x) ̸= g(x)}.
• CRITERION 3 : To protect the system against linear attacks and
correlation attacks, the Hamming distance from the cryptographic
function to all affine functions must be large. i.e. high nonlinearity
nl(f ) := min

l∈An
dH(f , l) ; l : affines functions.

• CRITERION 4 : To be resistant against correlation attacks on
combining registers, a combining function f must be m-resilient where
m is as large as possible. i.e. f must stay balanced if we fix at most m
coordinates.
• CRITERION 5 : To be resistant against algebraic attacks, f must be
of high algebraic immunity that is, close to the maximum ⌈ n

2⌉.
Algebraic immunity of f : AI(f ) is the lowest degree of any nonzero
function g such that f · g = 0 or (1 + f ) · g = 0.
But this condition is insufficient because of Fast Algebraic Attacks !
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Representations of p-ary functions

There is a unique representation of F from Fpn to Fpn :
F(x) =

∑2n−1
i=0 aixi with ai ∈ Fpn . A unique univariate form of a p-ary

function, called trace representation, is given by

f (x) =
∑
j∈Γn

Trpo(j)/p(Ajxj) + Apn−1xpn−1

▶ Γn is the set of integers obtained by choosing the smallest
element, called the coset leader, in each p- cyclotomic coset
modulo pn − 1 ;

▶ o(j) is the size of the cyclotomic coset containing j (that is the
smallest positive integer such that jpo(j) ≡ j (mod pn − 1) ; o(j)
divides n ;

▶ Aj ∈ Fpo(j) and Apn−1 ∈ Fp.

The algebraic degree of f : deg(f ) := max{wp(j) | Aj ̸= 0} where wp(j)
is the number of nonzero entries in the p-ary expansion of j. For
example, affine functions f : dalg(f ) = 1.
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Background on Boolean functions : existence of the polynomial form

Any function f : F2n → F2n admits a unique representation :
f (x) =

∑2n−1
j=0 Ajxj ;Aj ∈ F2n ;

• f is Boolean iff
A0,A2n−1 ∈ F2 and A2j mod 2n−1 = (Aj mod 2n−1)

2; 0 < j < 2n − 1
• [1, 2n − 2] = ∪c

r=1Γr ;
Γr = {jr mod 2n − 1, 2jr mod 2n − 1, · · · , 2o(jr)−1jr mod 2n − 1}

f (x) = A0 + A2n−1x2n−1 +

c∑
r=1

o(jr)−1∑
s=0

A2sjr mod 2n−1x2sjr

= A0 + A2n−1x2n−1 +

c∑
r=1

o(jr)−1∑
s=0

(Ajr mod 2n−1xjr)2s

= A0 + A2n−1x2n−1 +
c∑

r=1

Tr2o(jr)/2(Ajr mod 2n−1xjr)

where A0,A2n−1 ∈ F2, Ajr mod 2n−1 ∈ F2o(jr) .
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Background on Boolean functions : representation
Example : Let n = 4. f : F24 → F2,
f (x) =

∑
j∈Γ4

Tr2o(j)/2(Ajxj) + A24−1x24−1;
Γ4 is the set obtained by choosing one element in each cyclotomic
class of 2 modulo 2n − 1 = 24 − 1 = 15. C(j) the cyclotomic coset of 2
modulo 15 containing j.
C(j) = {j, j2, j22, j23, · · · , j2o(j)−1} where o(j) is the smallest positive
integer such that j2o(j) ≡ j (mod 2n − 1).
The cyclotomic cosets modulo 15 are :
C(0) = {0}
C(1) = {1, 2, 4, 8}
C(3) = {3, 6, 12, 9}
C(5) = {5, 10}
C(7) = {7, 14, 11, 13}
We find Γ4 = {0, 1, 3, 5, 7}
f (x) =
Tro(1)/2(A1x1)+Tro(3)/2(a3x3)+Tro(5)/2(A5x5)+Tro(7)/2(A7x7)+A0+A15x15

= Tr4/2(A1x) + Tr4/2(A3x3) + Tr2/2(A5x5) + Tr4/2(A7x7) + A0 + A15x15

where A1,A3,A7 ∈ F24 , A5 ∈ F22 and A0,A15 ∈ F2 ;
Tr4/2 : F24 → F2 ; x 7→ x + x2 + x22

+ x23
;

Tr2/2 : F22 → F2 ; x 7→ x + x2.
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Representations of p-ary functions

Viewed over Fn
p, a p-ary function f has a representation as a unique

multinomial in x1, · · · , xn, where the variables xi occur with exponent
at most p − 1. This is called the multivariate representation or
algebraic normal form (ANF) of f :

f (x1, . . . , xn) =
∑

(j1,...,jn)∈Fn
p

a(j1,...,jn)

n∏
i=1

xji
i ,

with coefficients a(j1,...,jn) ∈ Fp. The degree of a monomial
∏n

i=1 xji
i . is

j1 + · · ·+ jn.
The algebraic degree of f (denoted by dalg(f )) is the global (total)
degree of its multivariate representation, that is, the largest degree of
all monomials in its ANF with a nonzero coefficient a(j1,...,jn).
Example : A Boolean function f (x) = f (x1, . . . , xn) can be (uniquely)
written as f (x) =

⊕
I⊆{1,...,n} aI

(∏
i∈I xi

)
;

where “ ⊕ " is the addition is made modulo 2 and aI belongs to F2.
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Background on Boolean functions

Example : Let n = 3.
x1 x2 x3 f (x1, x2, x3) g(x1, x2, x3) h(x1, x2, x3)
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 1 1 0
0 1 1 1 1 1
1 0 0 1 1 0
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 0 0 0

f (x1, x2, x3) = x1 + x2 + x1x2 + x1x3 ; dalg(f ) = 2 ;
g(x1, x2, x3) = x1 + x2 + x3 + x1x2 + x2x3 + x1x2x3 ; dalg(g) = 3 ;
h(x1, x2, x3) = 1 + x1 + x2 + x3 ; dalg(h) = 1.
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Symmetric encryption

F : F2n → F2m

☞ How does symmetric cryptography work?
Attack on a cryptographic system ⇒ cryptographic parameter of
F ⇒ cryptographic criterion
Main Goal : Design "optimal" cryptographic functions to resist
attacks !

☞ two big problems :

1. it is also necessary to study the properties of the functions which
satisfy several of them cryptographic criteria (and not just one)
compromise ↪→ to be found mathematically !

2. space too large (doubling exponential 22n
if m = 1) ↪→ need

math !
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☞ mathematical work to do for each cryptographic property :

a studies its algebraic properties of the function F satisfying
cryptographic properties ;

b provides an efficient mathematical characterisation of each
cryptographic criterion ;

c design functions F (given by their algebraic representations),
which are optimal with respect to a cryptographic property.

And that is not enough : they must also be classified (think of the
notions of equivalence) !

☞ Key tool to study f : need discrete Fourier theory
f : Fpn → Fp (resp. F : Fpn → Fpm ), p prime

The discrete Hadamard Walsh (Fourier) transform Wf de f (resp.
de F) :
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Symmetric Cryptography
☞ Key tool to study f : need discrete Fourier theory

f : Fpn → Fp (resp. F : Fpn → Fpm ), p prime

The discrete Hadamard Walsh (Fourier) transform Wf of f (resp.
of F) :

Wf (a) :=
∑

x∈Fpn

ζ
f (x)−Trpn/p(ax)
p

WF(a, b) :=
∑

x∈Fpn

ζ
Trpm/p(bF(x))−Trpn/p(ax)
p

where (a, b) ∈ Fpn × Fpm \ {0}

▶ The p-ary functions Fb : x 7→ b · F(x) := Trpm/p(bF(x)), b ∈ Fpm

where b ̸= 0 (F0 is the null function) are called the components
of F

▶ Wf (resp. WF) is with values in the cyclotomic field Q(ζp) where
ζp = exp

( 2πi
p

)
is a p-th primitive root of the unit.
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▶ There is an algorithm for calculating Wf (resp. WF) but that is not
enough ! (complexity too high ↪→ evaluate Wf mathematically !)

▶ Parseval identity :
∑

b∈Fpn |Wf (b)|2 = p2n

▶ Note that the notion of a Walsh transform refers to a scalar
product, it is convenient to choose the isomorphism such that
the canonical scalar product "·" in Fpn coincides with the
canonical scalar product in Fpn , which is the trace of the product
b · x := Trpn/p(bx).

▶ Walsh transform of a very simple (but important function :
Kloosterman sums on F2m : Km(a) :=

∑
x∈F2m (−1)Tr2m/2(ax+ 1

x ).
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Cryptographic Boolean functions

Extension of the theory of cryptographic Boolean functions to :

1. Vectorial Boolean functions

2. Functions in odd characteristic

3. Generalized functions
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Linear codes

Minimal
codes

LRC

LCD, low
Hull codes

Cryptographic
functions

plateaued

bent,
hyper-bent

APN

”Boomerang”
functionsSymmetric

cryptography
Coding theory

Block Cipher

Stream Cipher

two-party
computation

SCA, FIA

Secret sharing

Storage
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Approaches and tools used to solve problems in this topic
Approaches : an algebraic approach, combinatoric approach,
asymptotic approach, and geometric approach.
Mathematical tools :

▶ discrete Fourier/Walsh transforms

▶ polynomials over finite fields (polynomials, Linearized
polynomials, permutation polynomials, involutions, Dickson
polynomials, polynomials e- to-1, etc.)

▶ functions over finite fields (symmetric functions, quadratic forms,
etc.)

▶ tools from algebraic geometry (algebraic, elliptic curves,
hyper-elliptic curves, etc.)

▶ finite geometry (oval polynomials, hyperovals, etc.)

▶ linear algebra and group theory

▶ tools from combinatorics

▶ tools from arithmetic number theory
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The nonlinearity of p-ary functions (where p = 2)

The nonlinearity of f defined over Fn
2 is the minimum Hamming

distance to the set An of all affine functions :

nl(f ) = ming∈An d(f , g),

where d(f , g) is the Hamming distance between f and g, that is
d(f , g) := #{x ∈ Fn

2 | f (x) ̸= g(x)}. The relationship between
nonlinearity and Walsh spectrum of f is

nl(f ) = 2n−1 − 1
2
max
ω∈Fn

2

|Wf (ω)|.

By Parseval’s identity
∑

ω∈Fn
2

Wf (ω)
2 = 22n, it can be shown that

max{|Wf (ω)| : ω ∈ Fn
2} ≥ 2

n
2 which implies that nl(f ) ≤ 2n−1 − 2

n
2 −1.
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Bent functions

DEFINITION
Let n be an even integer. An n-variable Boolean function is said to be
bent if the upper bound 2n−1 − 2n/2−1 on its nonlinearity nl(f ) is
achieved with equality.

☞ Bent Boolean functions function f defined over F2n exist only
when n is even !

☞ The notion of bent function was introduced by [Rothaus 1976]
and attracted a lot of research of more than four decades. Such
functions are extremal combinatorial objects with several
application areas, such as coding theory, maximum length
sequences, and cryptography !

☞ f is bent over F2n if and only if, Wf (ω) ∈ {2
n
2 ,−2

n
2 }, for all ω ∈ F2n

([Dillon 1974]).
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☞ Linear Cryptanalysis [Matsui (1993)] ⇒ nonlinearity Nl(F) de
F : Fn

2 → Fm
2 ,

Nl(F) = min
b∈F2m ,b ̸=0

{nl(Tr2m/2(bF))} = 2n−1−1
2

max
a∈Fn

2,b∈Fm
2 ,b ̸=0

|WF(a, b)|.

✭ The higher the value of Nl(F), the better resistance to linear
cryptanalysis.

✭ When n = m odd, Nl(F) is bounded by 2n−1 − 2
n−1

2 . The functions
reaching this upper bound are the AB functions.

✭ When m = 1, Nl(F) is bounded by 2n−1 − 2
n
2 −1. The functions

reaching this upper bound are the bent functions (n even).

↪→ A very difficult parameter to study mathematically ! !
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