Classes of set-theoretical solutions to the pentagon equation

Marzia Mazzotta

Università del Salento

YRAC 2023

due mari

28 July 2023, L'Aquila

The **pentagon equation (PE)** classically originates from the field of Mathematical Physics and belongs to an infinite family of equations, called the *polygon equations* [Dimakis, Müller-Hossein - 2014].

Let *V* be a vector space over a field *K*. A linear map $S: V \otimes V \rightarrow V \otimes V$ is a **solution of the PE** if it satisfies

 $S_{12}S_{13}S_{23} = S_{23}S_{12},$

where $S_{12} = S \otimes id_V$, $S_{23} = id_V \otimes S$, $S_{13} = (\Sigma \otimes id_V) S_{12}(\Sigma \otimes id_V)$ (Σ denotes the flip operator $v \otimes w \mapsto w \otimes v$).

The **pentagon equation (PE)** classically originates from the field of Mathematical Physics and belongs to an infinite family of equations, called the *polygon equations* [Dimakis, Müller-Hossein - 2014].

Let *V* be a vector space over a field *K*. A linear map $S: V \otimes V \rightarrow V \otimes V$ is a **solution of the PE** if it satisfies

 $S_{12}S_{13}S_{23} = S_{23}S_{12},$

where $S_{12} = S \otimes id_V$, $S_{23} = id_V \otimes S$, $S_{13} = (\Sigma \otimes id_V)S_{12}(\Sigma \otimes id_V)$ (Σ denotes the flip operator $v \otimes w \mapsto w \otimes v$).

The PE has appeared in various contexts with different terminologies as:

The **pentagon equation (PE)** classically originates from the field of Mathematical Physics and belongs to an infinite family of equations, called the *polygon equations* [Dimakis, Müller-Hossein - 2014].

Let *V* be a vector space over a field *K*. A linear map $S: V \otimes V \rightarrow V \otimes V$ is a **solution of the PE** if it satisfies

 $S_{12}S_{13}S_{23} = S_{23}S_{12},$

where $S_{12} = S \otimes id_V$, $S_{23} = id_V \otimes S$, $S_{13} = (\Sigma \otimes id_V)S_{12}(\Sigma \otimes id_V)$ (Σ denotes the flip operator $v \otimes w \mapsto w \otimes v$).

The PE has appeared in various contexts with different terminologies as:

 if H is a Hilbert space, a unitary operator on H ⊗ H is called multiplicative if it is a solution of the PE [Baaj, Skandalis, 1993];

The **pentagon equation (PE)** classically originates from the field of Mathematical Physics and belongs to an infinite family of equations, called the *polygon equations* [Dimakis, Müller-Hossein - 2014].

Let *V* be a vector space over a field *K*. A linear map $S: V \otimes V \rightarrow V \otimes V$ is a **solution of the PE** if it satisfies

 $S_{12}S_{13}S_{23} = S_{23}S_{12},$

where $S_{12} = S \otimes id_V$, $S_{23} = id_V \otimes S$, $S_{13} = (\Sigma \otimes id_V) S_{12}(\Sigma \otimes id_V)$ (Σ denotes the flip operator $v \otimes w \mapsto w \otimes v$).

The PE has appeared in various contexts with different terminologies as:

- if H is a Hilbert space, a unitary operator on H ⊗ H is called multiplicative if it is a solution of the PE [Baaj, Skandalis, 1993];
- for a fixed braided monoidal category V, an arrow in V is named a fusion operator if it is a solution of the PE [Street, 1998].

Definition (Kashaev, Sergeev, 1998)

A set-theoretical solution of the pentagon equation, or *PE* solution, on a set *X* is a map $s: X \times X \rightarrow X \times X$ which satisfies the relation

$s_{23}s_{13}s_{12} = s_{12}s_{23},$

where $s_{12} = s \times id_X$, $s_{23} = id_X \times s$ and $s_{13} = (id_X \times \tau) s_{12} (id_X \times \tau)$ (here τ denotes the flip map $(x, y) \rightarrow (y, x)$).

Definition (Kashaev, Sergeev, 1998)

A set-theoretical solution of the pentagon equation, or *PE* solution, on a set *X* is a map $s: X \times X \rightarrow X \times X$ which satisfies the relation

$\pmb{s_{23}s_{13}s_{12}} = \pmb{s_{12}s_{23}},$

where $s_{12} = s \times id_X$, $s_{23} = id_X \times s$ and $s_{13} = (id_X \times \tau) s_{12} (id_X \times \tau)$ (here τ denotes the flip map $(x, y) \rightarrow (y, x)$).

Let *X* be a finite set, *s* a PE solution on *X*, and *S* the linear operator from $K^{X \times X}$ into itself given by

S(f)(x,y) = f(s(x,y)),

for all $x, y \in X$. Then, S is a solution of the pentagon equation. Furthermore, if the map s is bijective, S is invertible.

Examples of solutions

Let S be a semigroup and γ an idempotent endomorphism of S, i.e., γ² = γ. Then, the map s(x, y) = (xy, γ(y)) is a PE solution on S.

Examples of solutions

- Let S be a semigroup and γ an idempotent endomorphism of S, i.e., γ² = γ. Then, the map s(x, y) = (xy, γ(y)) is a PE solution on S.
- (2) Let X be a set and f, g idempotent maps from X into itself such that fg = gf. Then, the map s(x, y) = (f(x), g(y)) is a PE solution on X that belongs to the class of P-QYBE solutions [Catino, M., Stefanelli 2020].

Examples of solutions

- Let S be a semigroup and γ an idempotent endomorphism of S, i.e., γ² = γ. Then, the map s(x, y) = (xy, γ(y)) is a PE solution on S.
- (2) Let X be a set and f, g idempotent maps from X into itself such that fg = gf. Then, the map s(x, y) = (f(x), g(y)) is a PE solution on X that belongs to the class of P-QYBE solutions [Catino, M., Stefanelli 2020].
- (3) Let G be a group with univocal factorization (A, B), p₁ : G → A, and p₂ : G → B the projection maps such that every x ∈ G can be written as x = p₁(x) p₂(x). Then, the map

$$s(x,y) = (p_2(yp_1(x)^{-1})x, yp_1(x)^{-1})$$

is a PE solution on G [Zakrzewski - 1992].

Let X be a set, $\cdot: X \times X \to X$ a binary operation, and $\theta_x : X \to X$ a map, for every $x \in X$. The map $s(x, y) = (x \cdot y, \theta_x(y))$ is a **PE** solution on X if and only if

Let X be a set, $\cdot: X \times X \to X$ a binary operation, and $\theta_x : X \to X$ a map, for every $x \in X$. The map $s(x, y) = (x \cdot y, \theta_x(y))$ is a **PE** solution on X if and only if

1. (X, \cdot) is a semigroup,

Let X be a set, $\cdot: X \times X \to X$ a binary operation, and $\theta_x : X \to X$ a map, for every $x \in X$. The map $s(x, y) = (x \cdot y, \theta_x(y))$ is a **PE** solution on X if and only if

- 1. (X, \cdot) is a semigroup,
- **2.** $\theta_X(y \cdot z) = \theta_X(y) \cdot \theta_{X \cdot y}(z),$
- **3.** $\theta_{\theta_x(y)}\theta_{x\cdot y} = \theta_y$,

for all $x, y, z \in X$.

Let X be a set, $\cdot: X \times X \to X$ a binary operation, and $\theta_x : X \to X$ a map, for every $x \in X$. The map $s(x, y) = (x \cdot y, \theta_x(y))$ is a **PE** solution on X if and only if

- 1. (X, \cdot) is a semigroup,
- **2.** $\theta_{X}(y \cdot z) = \theta_{X}(y) \cdot \theta_{X \cdot y}(z),$
- **3.** $\theta_{\theta_x(y)}\theta_{x\cdot y} = \theta_y$,

for all $x, y, z \in X$.

All the PE solutions on a group (G, \cdot) can be determined by means of the normal subgroups of *G* [Catino, M., Miccoli - 2020].

Let X be a set, $\cdot: X \times X \to X$ a binary operation, and $\theta_x : X \to X$ a map, for every $x \in X$. The map $s(x, y) = (x \cdot y, \theta_x(y))$ is a **PE** solution on X if and only if

- 1. (X, \cdot) is a semigroup,
- **2.** $\theta_{X}(y \cdot z) = \theta_{X}(y) \cdot \theta_{X \cdot y}(z),$
- **3.** $\theta_{\theta_x(y)}\theta_{x\cdot y} = \theta_y$,

for all $x, y, z \in X$.

All the PE solutions on a group (G, \cdot) can be determined by means of the normal subgroups of *G* [Catino, M., Miccoli - 2020].

A list of **202** PE solutions, up to isomorphism, on the **semigroups of** order 3 can be found in my Ph.D. thesis **[M. - 2021]**.

Involutive PE solutions

Theorem (Colazzo, Jespers, Kubat - 2020)

Let *S* be a semigroup and *s* an involutive PE solution on *S*, i.e., $s^2 = id_{S \times S}$. Then,

 $S = E \times G$ & $S = S_E \times S_G$,

where

- *E* is a left zero semigroup,
- G is an elementary abelian 2-group,
- $s_E(i,j) = (i, \theta_i(j))$ the unique bijective solution on E,
- $s_G(g, h) = (gh, h)$ the unique bijective solution on *G*. Moreover, the converse is also true.

Theorem (M. - 2023)

Let *M* be a monoid such that $E(M) \subseteq Z(M)$. Let $\mu : M \to E(M)$ an idempotent homomorphism such that, for every $x \in M$, $\mu(x) = e_x$, with e_x a right identity for *x*.

Theorem (M. - 2023)

Let *M* be a monoid such that $E(M) \subseteq Z(M)$. Let $\mu : M \to E(M)$ an idempotent homomorphism such that, for every $x \in M$, $\mu(x) = e_x$, with e_x a right identity for *x*.

Theorem (M. - 2023)

Let *M* be a monoid such that $E(M) \subseteq Z(M)$. Let $\mu : M \to E(M)$ an idempotent homomorphism such that, for every $x \in M$, $\mu(x) = e_x$, with e_x a right identity for *x*. Moreover, let $\{\theta_e : M \to M \mid e \in \operatorname{Im} \mu\}$ be a family of maps such that $\theta_1 = \mu$ and

6

Theorem (M. - 2023)

Let *M* be a monoid such that $E(M) \subseteq Z(M)$. Let $\mu : M \to E(M)$ an idempotent homomorphism such that, for every $x \in M$, $\mu(x) = e_x$, with e_x a right identity for *x*. Moreover, let $\{\theta_e : M \to M \mid e \in \operatorname{Im} \mu\}$ be a family of maps such that $\theta_1 = \mu$ and

- 1. $\forall e \in \text{Im } \mu, \forall x, y \in M, f = \mu(ex) \quad \theta_e(xy) = \theta_e(x)\theta_f(y),$
- **2.** $\forall e, f \in \text{Im } \mu$ $\theta_e = \theta_e \theta_{ef}$,
- 3. $\forall e \in \operatorname{Im} \mu, \forall x \in M, f = \mu(x) \quad \theta_{ef}\theta_e(x) = \theta_e(x).$

6

Theorem (M. - 2023)

Let *M* be a monoid such that $E(M) \subseteq Z(M)$. Let $\mu : M \to E(M)$ an idempotent homomorphism such that, for every $x \in M$, $\mu(x) = e_x$, with e_x a right identity for *x*. Moreover, let $\{\theta_e : M \to M \mid e \in \operatorname{Im} \mu\}$ be a family of maps such that $\theta_1 = \mu$ and

- 1. $\forall e \in \text{Im } \mu, \forall x, y \in M, f = \mu(ex) \quad \theta_e(xy) = \theta_e(x)\theta_f(y),$
- **2.** $\forall e, f \in \text{Im } \mu$ $\theta_e = \theta_e \theta_{ef}$,

3. $\forall e \in \operatorname{Im} \mu, \forall x \in M, f = \mu(x) \quad \theta_{ef}\theta_e(x) = \theta_e(x).$

Then, the map $s(x, y) = (xy, \theta_{\mu(x)}(y))$ is an idempotent PE solution on *M*.

Conversely, every idempotent PE solution on M can be so constructed.

PE solutions on Clifford semigroups

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

PE solutions on Clifford semigroups

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

Note that $E(S) = \{aa^{-1} \mid a \in S\}$ and if |E(S)| = 1, then S is a group.

PE solutions on Clifford semigroups

A semigroup *S* is called *inverse* if, for each $a \in S$, there exists a unique $a^{-1} \in S$ satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

Note that $E(S) = \{aa^{-1} \mid a \in S\}$ and if |E(S)| = 1, then S is a group.

An inverse semigroup *S* is a *Clifford semigroup* if it has central idempotents.

Every Clifford semigroup *S* gives rise to the following PE solutions:

$$\mathcal{I}(a,b) = (ab,b), \qquad \mathcal{F}(a,b) = (ab,bb^{-1}), \qquad \mathcal{E}(a,b) = (ab,e),$$

where $e \in E(S)$.

New classes of PE solutions

Definition (M., Stefanelli, Pérez-Calabuig - 2023)

Let s be a PE solution on a semigroup S. Then, s is said to be

- *idempotent-invariant* if $\theta_a(e) = \theta_a(f)$,
- idempotent-fixed if θ_a(e) = e,

for all $a \in S$ and $e, f \in E(S)$.

New classes of PE solutions

Definition (M., Stefanelli, Pérez-Calabuig - 2023)

Let s be a PE solution on a semigroup S. Then, s is said to be

- *idempotent-invariant* if $\theta_a(e) = \theta_a(f)$,
- idempotent-fixed if θ_a(e) = e,

for all $a \in S$ and $e, f \in E(S)$.

Observe that the PE solution $\mathcal{E}(a, b) = (ab, e)$ is idempotent-invariant, while the PE solutions $\mathcal{I}(a, b) = (ab, b)$ and $\mathcal{F}(a, b) = (ab, bb^{-1})$ are idempotent-fixed.

New classes of PE solutions

Definition (M., Stefanelli, Pérez-Calabuig - 2023)

Let s be a PE solution on a semigroup S. Then, s is said to be

- *idempotent-invariant* if $\theta_a(e) = \theta_a(f)$,
- idempotent-fixed if θ_a(e) = e,

for all $a \in S$ and $e, f \in E(S)$.

Observe that the PE solution $\mathcal{E}(a, b) = (ab, e)$ is idempotent-invariant, while the PE solutions $\mathcal{I}(a, b) = (ab, b)$ and $\mathcal{F}(a, b) = (ab, bb^{-1})$ are idempotent-fixed.

We completely describe the idempotent-invariant PE solutions and provide a construction of idempotent-fixed PE solutions on Clifford semigroups.

E(S)-invariant PE solutions on a Clifford S

Theorem (M., Stefanelli, Pérez-Calabuig - 2023)

Let S be a Clifford semigroup. Consider

- ρ a congruence on *S* such that S/ρ is a group,
- *R* a system of representatives of *S*/ρ,
- $\mu: S \to \mathcal{R}$ a map such that

 $\forall a, b \in S \quad \mu(ab) = \mu(a) \mu(a)^{-1} \mu(ab) \quad \& \quad \mu(a) \in [a]_{\rho}.$

Then, $s(a, b) = (ab, \mu(a)^{-1} \mu(ab))$ is an E(S)-invariant PE solution on S.

E(S)-invariant PE solutions on a Clifford S

Theorem (M., Stefanelli, Pérez-Calabuig - 2023)

Let S be a Clifford semigroup. Consider

- ρ a congruence on *S* such that S/ρ is a group,
- *R* a system of representatives of *S*/ρ,
- $\mu: S \to \mathcal{R}$ a map such that

 $\forall a, b \in S \quad \mu(ab) = \mu(a) \mu(a)^{-1} \mu(ab) \quad \& \quad \mu(a) \in [a]_{\rho}.$

Then, $s(a, b) = (ab, \mu(a)^{-1} \mu(ab))$ is an E(S)-invariant PE solution on S.

Conversely, if $s(a, b) = (ab, \theta_a(b))$ is an E(S)-invariant PE solution on S, then

• there exists a congruence $\rho_{(K,\tau)}$ such that $S/\rho_{(K,\tau)}$ is a group, where

 $K = \{a \in S \mid \forall e \in \mathsf{E}(S), e \le a \quad \theta_e(a) \in \mathsf{E}(S)\} \quad \& \quad \tau = \mathsf{E}(S) \times \mathsf{E}(S),$

- $\theta_{e}(S)$ is a system of representatives $S/\rho_{(K,\tau)}$,
- $\forall e \in \mathsf{E}(S), a, b \in S \quad \theta_e(ab) = \theta_e(a)\theta_e(a)^{-1}\theta_e(ab) \quad \& \quad (\theta_e(a), a) \in \rho_{(K,\tau)}.$

Moreover, $\theta_a(b) = \theta_e(a)^{-1}\theta_e(ab)$, for all $a, b \in S$.

PE solutions on groups

Corollary (Catino, M., Miccoli - 2020)

Let G be a group and $K \trianglelefteq G$. Moreover, consider

- R a system of representatives of G/K,
- $\mu: G \to R$ a map such that $\mu(a) \in Ka$, for every $a \in G$.

Then, the map $s(a,b) = (ab, \mu(a)^{-1}\mu(ab))$ for all $a, b \in G$, is a PE solution on *G*.

PE solutions on groups

Corollary (Catino, M., Miccoli - 2020)

Let G be a group and $K \trianglelefteq G$. Moreover, consider

- R a system of representatives of G/K,
- μ : $G \rightarrow R$ a map such that $\mu(a) \in Ka$, for every $a \in G$.

Then, the map $s(a,b) = (ab, \mu(a)^{-1}\mu(ab))$ for all $a, b \in G$, is a PE solution on *G*.

Vice versa, if $s(a, b) = (ab, \theta_a(b))$ is a PE solution on *G*, then

- $K = \{a \in G \mid \theta_1(a) = 1\}$ is a normal subgroup of *G*,
- $\theta_1(G)$ is a system of representatives of G/K,
- $\theta_1(a) \in Ka$, for every $a \in G$,
- $\theta_a(b) = \theta_1(a)\theta_1(ab)^{-1}$, for all $a, b \in G$.

E(S)-fixed solutions on a Clifford S

Bearing that a Clifford semigroup *S* can be seen as a *strong semilattice of groups*, we give a method to construct an idempotent-fixed PE solution on *S* from solutions on each group.

Theorem (M., Stefanelli, Pérez-Calabuig - 2023)

Let $s^{[e]}(a, b) = (ab, \theta_a^{[e]}(b))$ be a PE solution on G_e , for every $e \in E(S)$. Moreover, for all $e, f \in E(S)$, let $\epsilon_{e,f} : G_e \to G_f$ be maps such that $\epsilon_{e,f} = \varphi_{e,f}$ if $e \ge f$. If the following conditions are satisfied

$$\begin{aligned} \theta_{\epsilon_{ef,h}(ab)}^{[h]} &= \theta_{\epsilon_{e,h}(a)\epsilon_{f,h}(b)}^{[h]}, \\ \epsilon_{f,h}\theta_{\epsilon_{e,f}(a)}^{[f]}(b) &= \theta_{\epsilon_{e,h}(a)}^{[h]}\epsilon_{f,h}(b), \end{aligned}$$

for all $e, f, h \in E(S)$ and $a \in G_e$ and $b \in G_f$, then the map

$$s(a,b) = \left(ab, \theta_{\epsilon_{e,f}(a)}^{[f]}(b)\right),$$

for all $a \in G_e$ and $b \in G_f$, is an idempotent-fixed PE solution on S.

Some questions

Recap:

- PE solutions on groups
- Involutive PE solutions
- \blacktriangleright Idempotent PE solutions on monoids with central idempotents \checkmark
- Idempotent-invariant PE solutions on Clifford semigroups

Some problems:

- Describe the idempotent-fixed PE solutions on Clifford semigroups.
- 2. Study other classes of PE solutions on Clifford semigroups.
- 3. Study idempotent, idempotent-fixed or idempotent-invariant PE solutions on specific semigroups.

Some references

13

F. Catino, M. Mazzotta, M.M. Miccoli: Set-theoretical solutions of the pentagon equation on groups, Comm. Algebra 48(2020) 83–92.

F. Catino, M. Mazzotta, P. Stefanelli: Set-theoretical solutions of the Yang-Baxter and pentagon equations on semigroups, Semigroup Forum 100 (3) (2020) 1–26.

I. Colazzo, E. Jespers, L. Kubat: Set-theoretic solutions of the pentagon equation, Comm. Math. Phys. 380 (2) (2020) 1003–1024.

A. Dimakis, F. Muller-Hoissen: *Simplex and Polygon Equations*, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015) Paper 042, 49.

R. M. Kashaev, S. M. Sergeev: On pentagon, Ten-Term, and Tetrahedron Relations, Comm. Math. Phys. 195 (2) (1998) 309–319.

M. Mazzotta: Idempotent set-theoretical solutions of the pentagon equation, preprint arXiv 2301.0164

M. Mazzotta, V. Pérez-Calabuig, P. Stefanelli: Set-theoretical solutions of the pentagon equation on Clifford semigroups, preprint arXiv 2301.09944

S. Zakrzewski: *Poisson Lie groups and pentagonal transformations*, Lett. Math. Phys. 24 (1) (1992) 13–19

