Algebraic structure of quadratic algebras and set-theoretic solutions of the Yang–Baxter equation

Eric Jespers Vrije Universiteit Brussel, Belgium

Young Researchers Algebra Conference 2023

July 25–29, 2023 L'Aquila, Italy

INTRODUCTION Structure algebra and monoid

Let X be a set and let $r: X \times X \to X \times X$ be a map. Its structure algebra is

$$\begin{aligned} \mathcal{A}(X,r) &= K\langle x \in X \rangle / (xy = uv \text{ if } r(x,y) = (u,v), x, y \in X) \\ &= K[M(X,r)] \text{ (monoid algebra)} \\ &= K\langle X \mid xy = uv \text{ if } r(x,y) = (u,v), x, y \in X \rangle \end{aligned}$$

The monoid

$$M = M(X, r) = \langle X \mid xy = uv \text{ if } r(x, y) = (u, v), x, y \in X \rangle$$

is the structure monoid of (X, r).

This algebra (monoid) is the associative ring (monoid) theoretic tool to investigate the map r and has attracted a lot of attention in case r satisfies the braided relation, i.e. (X, r) is a set-theoretic solution of the Yang-Baxter equation.

General Aim: the link between r and the algebraic structure of $\mathcal{A}(X, r)$.

Eric Jespers Vrije Universiteit Brussel, Belgium Young Researchers Algebra Co Structure Algebra

1.2 Set theoretic solutions of the Yang–Baxter equation (YBE)

(X, r) is a set-theoretic solution of the YBE if

 $r_{12}r_{23}r_{12}=r_{23}r_{12}r_{23},$

where $r_{12} = r \times id$ and $r_{23} = id \times r$ are maps $X^3 \rightarrow X^3$. Write

$$r(x,y) = (\lambda_x(y), \rho_y(x)).$$

One says that (X, r) is:

- finite if $|X| < \infty$.
- bijective if r is a bijective map.
- involutive if $r^2 = id$.
- idempotent if $r^2 = r$.
- left (respectively right) non-degenerate if all the maps λ_x (respectively ρ_y) are bijective.
- non-degenerate if (X, r) is left and right non-degenerate.

In this series of three lectures we explain some intriguing relationship between the algebraic structure of the structure algebras $\mathcal{A}_{\mathcal{K}}(X, r)$ and the finite (mainly left non-degenerate) set-theoretic solutions (X, r) of the Yang-Baxter equation. We focus on the following ring theoretical properties of such algebras:

- left/right Noetherian
- prime
- semiprime
- representability
- Gelfand-Kirillov dimension
- the dimension of the degree 2-part of the algebra
- construction of such algebras
- What if r is not a set-theoretic solution?

Also attention will be given to the methods used: a combination of ring-, semigroup- and group techniques.

If (X, r) is a set-theoretic solution of the Yang-Baxter equation then M(X, r) is called a Yang-Baxter monoid and K[M(X, r)] is called a Yang-Baxter algebra.

Monoid algebras and quadratic algebras arise in a variety of areas, including

- (non-)commutative ring theory
- (non-)commutative geometry
- algebras of low dimension
- quantum groups and Hopf algebras
- close relationship with group algebras
- via the solutions of the YBE widening into other fields, including mathematical physics

Theorem (Zelmanov (1977))

K a field, *S* a cancellative semigroup. The following conditions are equivalent:

- K[S] satisfies a polynomial identity, i.e. there exists $0 \neq f(X_1, ..., X_n) \in K\langle X_1, ..., X_n \rangle$ so that $f(r_1, ..., r_n) = 0$ for all $r_1, ..., r_n \in K[S]$.
- **2** S has a group of quotients G so that K[G] satisfies a PI.
- (Passman) G is abelian-by-finite and char(K) = 0, or G is (finite p-group)-by-(abelian-by-finite) group and char(K) = p > 0.

If a semigroup ring K[S] of a semigroup S over a ring K is (right) Artinian, then the same is true for K and S is finite. These conditions on K and S are also sufficient for K[S] to be (right) Artinian for a semigroup S with identity (for group algebras I. Connell). It is known that in this case the following conditions are equivalent:

- K[S] is semiprime
- K[G] is semiprime
- char(K) = 0 or char(K) = p > 0 and the torsion part of the finite conjugacy centre Δ(G) of G is a p'-group.

When is a monoid algebra K[S] Noetherian?

Even for group algebras K[G] the answer is unknown.

Some known results for group algebras K[G].

- K[G] is left noetherian if and only if K[G] is right noetherian (because of the involution g → g⁻¹).
- If G is polycyclic-by-finite then K[G] is Noetherian (easy, comes down to R[x, x⁻¹, σ], skew Laurent polynomial algebra, is Noetherian if R is Noetherian).
- If G is torsion-free and polycyclic-by-finite then K[G] is a domain (not easy and proved via some homological properties, Farkas-Snider 1976, Cliff 1980).
- If G is polycyclic-by-finite then K[G] is Noetherian prime maximal order if and only if Δ⁺(G) = {1} and G is dihedral free (for example if G is torsion-free). (K. Brown 1985, 1988, E. Jespers-P. Smith 1985)
- If G is finitely generated torsion-free abelian-by-finite then K[G] is a Noetherian PI maximal order and all its height one prime ideals P are generated by a normal element, i.e. P = K[G]α = αK[G]. So it behaves as a (non-commutative) UFD. (K. Brow 1985, 1988)

Theorem (Jespers-Okniński)

Let *S* be a submonoid of a polycyclic-by-finite group. The following properties are equivalent:

- S satisfies the ascending chain on right ideals,
- K[S] is right Noetherian,
- S ⊆ G = SS⁻¹, H a subgroup of finite index in G, [H, H] ⊆ S and S ∩ H is finitely generated,
- K[S] is left Noetherian,
- S satisfies the ascending chain on left ideals.

So, for such monoids, the answer is left-right symmetric.

Interested reader: Jespers, Okniński, Noetherian Semigroup Algebras, Springer, Series: Algebra and Applications, 2007.

Theorem (Ananin)

Any finitely generated right Noetherian PI algebra over a field is representable, i.e. embedded into a matrix algebra over a field.

Construction of quadratic algebras with "nice" properties via set-theoretic solutions of YBE I-type monoids

An exciting link between quadratic algebras and set-theoretic solutions of the Yang-Baxter equation has been initiated by Gateva-Ivanova and Van den Bergh (1998) (and also Etingof, Schedler, and Soloviev (1999)).

A monoid S generated by a set $X = \{x_1, ..., x_n\}$ is said to be of (left) *I*-type if there exists a bijection

$$v:\mathrm{FaM}_n\to S$$

such that, for all $a \in FaM_n = \langle u_1, \dots, u_n \rangle$, the free abelian monoid of rank n,

$$v(1) = 1$$
 and $\{v(u_1a), \dots, v(u_na)\} = \{x_1v(a), \dots, x_nv(a)\}.$

Theorem (Gateva-Ivanova, Van den Bergh 1998)

A monoid M generated by $X = \{x_1, ..., x_n\}$ is of left I-type if and only if there exists a mapping $r : X^2 \to X^2$ so that

•
$$r^2 = id$$

- In non-degenerate,
- (X, r) is a set-theoretic solution of the YBE.

Furthermore, M has a group of fractions

$$\begin{array}{lll} G = G(X,r) &=& \operatorname{gr}(X \mid xy = \lambda_x(y)\rho_y(x), \; x, y \in X) \\ &\subseteq & \{(a,\lambda_a) \mid a \in \operatorname{Fa}_n\} \subseteq \operatorname{Fa}_n \rtimes \operatorname{Sym}_n \end{array}$$

which is torsion-free abelian-by-finite, where Fa_n is the free abelian group of rank n. As a consequence one can show that often M can be decomposed as products of monoids and groups of the same type but on less generators (many such groups are poly-infinite cyclic). Minimal prime ideals of M, and height one primes of K[M] are principal and generated by a normal element; all semiprime ideals of M are described. The latter yields an ideal chain of S with factors that are semigroups of matrix type over cancellative semigroups.

Theorem (Gateva-Ivanova and Van den Bergh 1998)

 $K[M(X, r)] = K\langle X \rangle / (xy - \lambda_x(y)\rho_y(x) \mid x, y \in X)$

- is a Noetherian PI domain,
- has GK-dimension |X|,
- is a maximal order
- all height one primes that intersect *M* non-trivially are generated by a normal element.

Hence, this algebra "shares" many properties with commutative polynomial algebras.

Some background on Gelfand-Kirillov dimension

Let *R* be a finitely generated *K*-algebra over a field *K*. The Gelfand-Kirillov dimension GKdim(R) measures the rate of growth of *R* (in terms of generating sets). For monoid algebras K[M] it measures the rate of growth of *M*.

Let V be a finite dimensional subspace of R that generates R as an algebra. Put $R_n = \sum_{i=0}^n V^i$, a finite dimensional subspace.

$$GKdim(R) = \lim \sup_{n \to \infty} \left(\frac{\log \dim_{K} R_{n}}{\log n} \right).$$

It is independent of the choice of V.

- GKdim(R) = 0: R is finite dimensional.
- $GKdim(R) < \infty$: $dim_K(R_n) \le n^m$ for sufficiently large n
- $GKdim(R) \in \{0, 1, 2, r \mid r \in \mathbb{R}\} \cup \{\infty\}$
- $GKdim(R[x_1,\ldots,x_n]) = GKdim(R) + n$

- if R satisfies a PI then $GKdim(R) < \infty$
- if *R* satisfies a PI and *R* is right Noetherian then *GKdim*(*R*) = *clKdim*(*R*)
- if S is a finitely generated cancellative semigroup then the following conditions are equivalent:
 - $GKdim(K[S]) < \infty$
 - S has a group of quotients G and $\mathit{GKdim}(K[G]) < \infty$
 - *S* has a group of quotients that is nilpotent-by-finite. (Gromov 1981 and Grigorchuk 1988).

Moreover, in these cases GKdim(K[S]) = GKdim(K[G]).

V. G. Drinfel'd. (On some unsolved problems in quantum group theory. In Quantum groups (Leningrad, 1990), volume 1510 of Lecture Notes in Math., pages 1–8. Springer, Berlin, 1992):

"Maybe it would be interesting to study set-theoretical solutionsThe only thing I know about set-theoretical solutions is the following couple of examples."

Example 1 (V.V.Lyubashenko). If r(x, y) = (f(y), g(x)) then r is a set-theoretic solution of the YBE if and only if fg = gf.

Example 2: If $r(x, y) = (x, x \circ y)$ for some operation \circ on X then being a solution of the YBE is equivalent to the following distributivity identity: $x \circ (y \circ z) = (x \circ y) \circ (x \circ z)$." Determine and classify all (finite) set-theoretic solutions of the Yang-Baxter equation on a set X:

2.3 Examples of set-theoretic solutions of YBE

X a set.

- If r(x,y) = (y,x) for x, y ∈ X (all λ_x = ρ_x = id) then K[M(X,r)] = K[X] commutative polynomial algebra. It is a unique factorisation domain and it only is Noetherian if X is finite.
- (2) If r(x, y) = (x, y) (all λ_x and ρ_x are constant maps onto {x}) then K[M(x, r)] = K(X) the free algebra on X. Only left or right Noetherian if |X| = 1. This is a degenerate example.
- (3) If $X = \{1,2,3\}$ and $r(x,y) = (y,\rho_y(x))$ for $x, y \in X$, where $\rho_1 = (2 \ 3), \rho_2 = (1 \ 3)$ and $\rho_3 = (1 \ 2)$ then (X,r) is a non-degenerate bijective solution (with $r^3 = id$) and

$$\mathcal{K}[\mathcal{M}(X,r)] \cong \mathcal{K}\langle x,y,z \mid xy = yz = zx \text{ and } zy = yx = xz \rangle$$

is Noetherian and PI, but not semiprime (let alone domain).

- (4) If |X| > 1 then r(x, y) = (y, y) is an idempotent solution, K[M(X, r)] is left Noetherian and it only is right Noetherian if |X| = 1. Note that (x^{2d} - y^{2d})M = x^{2d} - y^{2d} and thus ∑_{d≥1}(x^{2d} - y^{2d}) is a nilpotent right ideal that is not finitely generated. So this algebra is not semiprime, not right Noetherian. But it is left Noetherian.
- (5) K[M(X, r)]/(xy | x, y ∈ X) ≅ K + ⊕_{x∈X}Kx̄ is a commutative algebra with large radical J = ⊕_{x∈X}Kx̄ and this is only finitely generated when X is finite.

To obtain "nice" properties on Yang-Baxter algebras (for example being left/right Noetherian) one needs to impose some restrictions on the solutions, restrictions on the λ 's and/or ρ 's.

Theorem (Gateva-Ivanova, Majid 2008)

- the maps λ_x and ρ_y can be extended to the monoid M = M(X, r) so that a ∘ b = λ_a(b) ∘ ρ_b(a) for all a, b ∈ M.
- r_M : M² → M² : (a, b) → (λ_a(b), ρ_b(a)) also is a solution of the YBE, called the associated solution. Obviously, r_M restricts to r.
- r_M is bijective non-degenerate if and only if r is bijective non-degenerate.

Theorem (Castelli, Catino and Stefanelli 2021 and Colazzo, Jespers, Van Antwerpen, Verwimp 2022)

Let (X, r) be a finite left non-degenerate solution of the YBE. Then, r is bijective if and only if r is right non-degenerate.

For a proof of the necessity Castelli, Catino and Stefanelli used q-cycle sets and and Cedo, Jespers, Van Antwerpen, Verwimp used semitrusses to prove the equivalence.

Assumption:

 $r: X^2 \to X^2: (x, y) \mapsto (\lambda_x(y), \rho_y(x))$ is a finite left non-degenerate solution of the YBE

i.e. X is finite and all λ_x bijective, and $M = (M(X, r), \circ)$ is its Yang-Baxter monoid. $r: X^2
ightarrow X^2: (x,y) \mapsto (\lambda_x(y),
ho_y(x))$ left non-degenerate solution YBE

Its derived solution of the YBE

$$\begin{split} s: X^2 \to X^2: & (x, \lambda_x(y)) \mapsto (\lambda_x(y), \lambda_{\lambda_x(y)}(\rho_y(x))) \\ s: X^2 \to X^2: & (x, y) \mapsto (y, \lambda_y \rho_{\lambda_x^{-1}(y)}(x)) = (x, \sigma_y(x)). \end{split}$$

with associated Yang-Baxter monoid

$$A = A(X, \mathbf{r}) = M(X, \mathbf{s}) = \langle a_1, \dots, a_n \mid a_i + a_j = a_j + \sigma_{a_j}(a_i) \rangle \rangle.$$

Note *s* encodes "behaviour" of r^2 :

$$(x,y) \stackrel{r}{\mapsto} (\lambda_x(y), \rho_y(x)) \stackrel{r}{\mapsto} (\lambda_{\lambda_x(y)}(\rho_y(x), \rho_{\rho_y(x)}(\lambda_x(y))).$$

Focus only on first coordinates

$$(x, \lambda_x(y)) \stackrel{s}{\mapsto} (\lambda_x(y), \lambda_{\lambda_x(y)}(\rho_y(x))).$$

Lemma

For all $a \in A$:

$$A + a \subseteq a + A$$
.

- Right ideals of A are two-sided ideals of A.
- If r is also right non-degenerate (so bijective) then A + a = a + A for all a ∈ A.

So elements of A are normal elements.

If r is involutive (i.e. r² = id) then A is a free abelian monoid with basis X.

3. The Noetherian problem for K[(X, r)]3.1 First main step to deal with Noetherian problem

Theorem (Cedo-Jespers-Verwimp 2021)

There exists a bijective map $\pi : M(X, r) \to A(X, r)$, with $\pi(x) = x$ for $x \in X$, so that (we identify A with M)

- **9** $\lambda : (M, \circ) \rightarrow Aut(A, +) : a \mapsto \lambda_a$, monoid homomorphism,
- $\circ \rho: (M, \circ) \to Map(A, A): a \mapsto \rho_a \text{ monoid anti-homomorphism},$
- $M(X,r) \to A(X,r) \rtimes Im(\lambda) : a \mapsto (a,\lambda_a) \text{ monoid embedding.}$

In particular, the size of M and A are the same and thus

$$GKdimK[M] = GKdimK[A] \le |X| < \infty.$$

Warning: one can not extend this theorem to groups G(X, r) except if r is bijective (Lu, Yan, Zhu).

3.2 Second main step to deal with Noetherian problem: the derived solution and K[A]

X a finite set , r a solution with each $\lambda_x = \operatorname{id}$. Thus r = s and

$$A = A(X, r) = \langle x \in X \mid x + y = y + \sigma_y(x) \rangle$$

For all $a, b \in A$,

$$a+b=b+\sigma_b(a)$$

with monoid antihomomorphism

$$\sigma: (A, +) \rightarrow \mathit{End}(A, +) \ \mathsf{and} \ \sigma_{\mathsf{a}+\mathsf{b}} = \sigma_{\mathsf{b}} \circ \sigma_{\mathsf{a}}$$

and the finite monoid

$$\mathcal{C} = \mathcal{C}(A) = \{\sigma_a \mid a \in A\} = \langle \sigma_x \mid x \in X \rangle$$

and, for some large enough v

$$\sigma_a \circ \mathcal{C} \subseteq \mathcal{C} \circ \sigma_a$$
 and $\sigma_x^v = \sigma_{vx} = \sigma_{vx}^2$

So right ideals are two-sided ideals and σ_x^v is idempotent.

- $B = B(v) = \{m_1vx_1 + \dots + m_nvx_n \mid m_1, \dots, m_n \ge 0\}$ is a monoid.
- A = B(v) + F(v) with $F(v) = \{m_1x_1 + \dots + m_nx_n \mid v > m_1, \dots, m_n \ge 0\},$ A is a finite left module over B(v).

• Put
$$\sigma_j = \sigma_{y_j}$$
, $X(v) = \{y_1 = vx_1, \dots, y_n = vx_n\}$.

• $B(v) = A(X(v), s_{X_v})$ with s_{X_v} induced solution from s.

•
$$\sigma_{j_l}\cdots\sigma_{j_k}\sigma_{j_l}=\sigma_{j_l}\cdots\sigma_{j_k}$$

- $C(B(v)) = \{\sigma_{j_1} \cdots \sigma_{j_k} \mid 1 \le j_1, \dots, j_k \le n\} \cup \{id\}$ is a band, semigroup of idempotents.
- Put $t_k = y_1 + \dots + y_k$, $B_{\kappa(t_k)} = \langle y_{\kappa(i)} | 1 \le i \le k \rangle$ and $T = \{\kappa(t_k) | 1 \le k \le n, \kappa \in \text{Sym}_n\}.$
- Each $w \in B$ can be written $w = w_t + t$ with $t \in T$ and $w_t \in B_t$. Also $\sigma_w = \sigma_t$.
- For a, b ∈ B_t: a + b + t = b + a + t. Hence each B_t + t is an abelian semigroup.
- $B(v) = \{0\} \cup \bigcup_{t \in T} (B(v)_t + t)$, a finite union of abelian semigroups.

•
$$\kappa(t_k) + y_{\kappa(l)} = y_{\eta(l')} + \eta(t_k).$$

K[B_t + t] is left K[B_t] module (with a ⋅ (d + t) = a + d + t). It is a cyclic module over K[B_t]/[K[B_t], , K[B_t]] a commutative finitely generated ring and hence a Noetherian module.

• Definine
$$R_k = \sum_{\kappa \in \operatorname{Sym}_n} K[B_{\kappa(t_k)} + \kappa(t_k)]$$

Theorem (Colazzo, Jespers, Van Antwerpen, Verwimp 2022)

- $B_n \subseteq B_n \cup B_{n-1} \subseteq \cdots \subseteq B_n \cup \cdots \cup B_2 \cup B_1 \subseteq B$, an ideal chain of B(v).
- A satisfies the ascending chain condition on left ideals
- {0} ⊆ K[B_n] ⊆ K[B_n] + K[B_{n-1}] ⊆ ··· ⊆ K[B_n] + ··· + K[B₂] + K[B₁] ⊆ K[B], an ideal chain with each factor a Noetherian left K[B] module that is a finite sum of commutative rings (in particular a PI-ring).

Corollary (Colazzo, Jespers, Van Antwerpen, Verwimp)

If |X| = n then K[A] is a left Noetherian PI-ring with $GKdimK[A] \le n$.

Corollary (Colazzo, Jespers, Van Antwerpen, Verwimp)

Let (X, r) be a finite left non-degenerate solution. Then, $K[A \rtimes Im(\lambda)]$ is a finitely generated left Noetherian PI-algebra and thus a representable algebra. In particular, K[M(X, r)] is a representable algebra and M(X, r)is a **linear semigroup**, i.e. a subsemigroup of the multiplicative semigroup $M_n(F)$ with F a field.

Corollary

Let (X, r) be a finite left non-degenerate solution. The mapping $R \mapsto R^e = \{(a, \lambda_a) \mid a \in R\}$ is a bijection between the right ideals of A(X, r) and those of M(X, r). Thus, M(X, r) satisfies the ascending chain condition on right ideals.

Theorem (Okniński)

Assume S is a finitely generated monoid with an ideal chain

$$\emptyset = S_{m+1} \subseteq S_m \subseteq S_{m-1} \subseteq \cdots \subseteq S_1 \subseteq S_0 = S$$

such that each factor S_j/S_{j+1} (for $0 \le j \le m$) is either power nilpotent or a uniform subsemigroup of a Brandt semigroup. If K is a field and S satisfies the ascending chain condition on right ideals and GKdimK[S] is finite then K[S] is right Noetherian.

A semigroup T with zero θ is power nilpotent if $T^m = \{\theta\}$ for some m > 0.

A completely 0-simple semigroup $\mathcal{M}^0(G, n, m, P)$ over a group G is a semigroup of $n \times m$ - matrices with at most one nonzero entry in $g \in G$ at spot (i, j), denoted (g, i, j), and with multiplication

$$(g,i,j) (h,k,l) = (gp_{jk}h,i,l)$$

where P is an $m \times n$ -matrix with entries in $G^{\theta} = G \cup \{\theta\}$.

If n = m and P is the identity matrix I this is a Brandt semigroup. A subsemigroup T of $\mathcal{M}^0(G, k, k, I)$ is said to be uniform if each \mathcal{H} -class (i.e., all the matrices with non-zero entries in a fixed (i, j)-spot) of $\mathcal{M}^0(G, k, k, I)$ intersects non-trivially T and the maximal subgroups of $\mathcal{M}^0(G, k, k, I)$ are generated by their intersection with T.

Let K be a field. Let (S, \cdot) be a semigroup and I an ideal of S then K[I] is an ideal of K[S] and

$$K[S]/K[I] = \operatorname{vect}_K(S \setminus I).$$

In this algebra all elements of I "become" 0. Let $S/I = (S \setminus I) \cup \{\theta\}$ with multiplication \circ defined by

$$s \circ t = s \cdot t$$
 if $s, t \in (S \setminus I)$ and $s \cdot t \in (S \setminus I)$,

otherwise $s \circ t = \theta$.

This is a semigroup, called the Rees factor of S by I, so that

$$K[S]/K[I] = K[S/I]/K\theta := K_0[S/I],$$

called the contracted semigroup algebra of S/I.

Let $A = M_n(F)$ be a matrix algebra over a field F and (A, \cdot) its multiplicative semigroup. Put $A_i = \{a \in A \mid rk(a) \le i\}$, a subsemigroup, for $0 \le i \le n$. Then

$$0 = A_0 \subset A_1 \subset \cdots \subset A_n = A$$

are the only ideals of the monoid A and

$$A_i/A_{i-1} \cong \mathcal{M}^0(GL_i(F), X_i, Y_i; Q_j),$$

where Y_i are all matrices if rank *i* which are in the reduced row elementary form and $X_i = Y_i^t$ and $Q_i = (q_{yx})$ is defined for $x \in X_i$, $y \in Y_i$ by $q_{yx} = yx$ if yx is of rank *i* and θ otherwise. The groups $GL_i(F)$ are the maximal subgroups of (A, \cdot) .

Theorem (Okniński)

Let $S \subseteq A = M_n(F)$ be a linear semigroup. Write $S_i = S \cap A_i$, the matrices of S of rank at most i. Let T_i be the matrices in S_i so that S^1aS^1 does not intersect maximal subgroups of A contained in $A_i \setminus A_{i-1}$. Then we have an ideal chain of S:

 $S_0 \subseteq T_1 \subseteq S_1 \subseteq T_1 \subseteq S_1 \subseteq T_2 \subseteq \cdots \subseteq S_{n-1} = T_n \subseteq S_n = A$

with the following properties:

• $N_i = T_i/S_{i-1}$ is a nilpotent ideal of S/S_{i-1} .

(S_i \ T_i) ∪ {θ} ⊆ M_i/M_{i-1} is a 0-disjoint union of uniform subsemigroups U⁽ⁱ⁾_α, α ∈ A_i, of M_i/M_{i-1} that intersect different R-and different L-classes of M_i/M_{i-1}; moreover N_i does not interesect H-classes of M_i/M_{i-1} intersected by S_i \ T_i.

•
$$U_{\alpha}^{(i)}U_{\beta}^{(i)} \subseteq N_i$$
 for $\alpha \neq \beta$; moreover $U_{\alpha}^{(i)}N_i$, $N_iU_{\alpha}^{(i)} \subseteq N_i$ and $U_{\alpha}^{(i)}N_iU_{\alpha}^{(i)} = \{\theta\}$ in M_i/M_{i-1} .
3.4 How to construct such a chain in M(X, r)?

Let
$$1 \leq i \leq n = |X|$$
. Let

 $M_i = \bigcup_{Y \subseteq X, |Y|=i} \{a \in M \mid a = y \ b(y), \text{ for each } y \in Y \text{ and some } b(y) \in M \}$

= all elements of *M* left divisible by at least *i* elements of *X*

This yields an ideal chain in M = M(X, r):

$$\emptyset = M_{n+1} \subseteq M_n \subseteq \cdots \subseteq M_1 \subseteq M_0 = M.$$

Refine the chain

$$M_{i+1} \subseteq B_i \subseteq U_i \subseteq M_i$$

such that

- B_i/M_{i+1} and M_i/U_i are power nilpotent (if M_i/M_{i+1} is power nilpotent then B_i = U_i = M_i).
- if M_i/M_{i+1} is not power nilpotent then U_i/B_i is a disjoint union of semigroups S₁,..., S_m such that S_kS_l ⊆ M_{i+1} for k ≠ l.
- each (S_i ∪ M_{i+1})/M_{i+1} is a uniform subsemigroup of a Brandt semigroup.

The intermediate ideals B_i and U_i are build with the use of the sets $Y, Z \subseteq X$, with |Y| = |X| = i,

$$M_{YZ} = \{(a, \lambda_a) \mid a \text{ left divisible precisely by elements of } Y$$

and $\lambda_a(Z) = Y\}$

If $Y \subseteq X$ and M_{YY} is a non-empty semigroup then there exists

$$m_Y = (a_Y, \mathrm{id}) \in M_{YY}.$$

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let K be a field.

- If for each Y ⊆ X for which M_{YY} is a (non-empty) semigroup there exists a d ≥ 1 such that m^d_YM_{YY} is a cancellative semigroup then K[M] is right Noetherian.
- the cancellative assumption holds for the semigroup m^d_YM_{YY} if and only if a^kb^k = b^ka^k for all a, b ∈ m^d_YM_{YY} (for example if A is abelian).
- K[M] is right Noetherian if and only if K[S] is right Noetherian, with $S = \{m \in M : \lambda_m = id\}$ a submonoid of both A(X, r) and M(X, r).
- if M also satisfies the ascending chain condition on left ideals (for example if r also is bijective) then K[M] also is left Noetherian.
- explicit formula for the Gelfand-Kirillov dimension of K[M(X, r)] in terms of the number of orbits in X under actions of certain finite monoids derived from (X, r).

Corollary (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

- If K[A] is right Noetherian then so is K[M].
- If A is abelian then K[M] is left and right Noetherian. Moreover, M(X, r) is an epimorphic image of the Yang-Baxter monoid of a finite involutive solution.
- If K[M] is right Noetherian or semiprime, then M^d_{XX} is cancellative for some positive integer d. In particular, M^d_{XX} has a group of fractions that is abelian-by-finite.

 If (X, r) is a finite left non-degenerate idempotent solution of YBE then

- K[M] is left Noetherian and GKdimK[M] = 1.
- K[M] is right Noetherian if and only if the set Λ = {q(x) = λ_x⁻¹(x) : x ∈ X} is a singleton.
- K[M] is right Noetherian if and only if there exists a positive integer k such that a^kb^k = b^ka^k for all a, b ∈ M.

Let (X, r) be a finite left non-degenerate solution of the YBE. We know that K[A(X, r)] is left Noetherian, but not necessarily right Noetherian.

Problem 1: Is K[M(X, r)] always left Noetherian?

4. When is a Yang-Baxter algebra (semi)prime?

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

The following conditions are equivalent for a finite left non-degenerate solution of YBE.

- (X, r) is an involutive solution.
- **2** *M* is a cancellative monoid and Ω_{λ} is a trivial group.
- **§** K[M] is a prime algebra and Ω_{λ} is a trivial group.
- K[M] is a domain.

• GKdim(K[M(X, r)]) = |X| if and only if (X, r) is involutive.

Moreover, if the diagonal map $q: X \to X : x \mapsto \lambda_x^{-1}(x)$, is bijective then Ω_λ is a trivial group (for example if r is bijective).

Let $v = eke_{\sigma}$ with $e = \exp(\operatorname{Im}(\lambda))$, $\sigma_x^{e_{\sigma}}$ idempotent for each $x \in X$, q^k idempotent and let $z = vx_1 + \cdots + vx_{|X|}$. Put $O = O_{\lambda}(eq(z_{\kappa})) = \{\lambda_a(eq(z_{\kappa})) : a \in A\}$. Then r_M restricts to an idempotent left non-degenerate solution on O. If M is cancellative then $\Omega_{\lambda} = \{(z, \lambda_z) \circ (eq(z_{id}), id)^{-1} : z \in O_{\lambda}(eq(z_{id}))\}$ is a finite subgroup of $(G(X, r), \circ)$, the group of fractions of M.

Problem 2: Do their exist prime algebras K[M] with Ω_{λ} not trivial?

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite non-degenerate bijective solution of the YBE and let K be a field. The following properties are equivalent.

- *K*[*A*] is a semiprime algebra.
- A is a disjoint union

$$A = \bigcup_{e \in \Gamma} A_e$$

of cancellative semigroups $A_{\rm e}$ indexed by a finite semilattice Γ such that

$$A_eA_f \subseteq A_{ef}$$

for all $e, f \in \Gamma$ (i.e., A is a finite semilattice Γ of cancellative semigroups) and each $K[A_e]$ is semiprime.

Moreover, in case the above equivalent conditions hold, Γ is the set of central idempotents of the classical ring of quotients of K[A]. Equivalently, A has a finite ideal chain with Rees factors cancellative semigroups that yield semiprime semigroup algebras. The latter condition holds in case K has zero characteristic.

Remark: If $Q = Q_{cl}(K[A])$ then $A_e = \{a \in A : Qa = Qe\}$ for $e \in \Gamma$.

Problem 3: When is K[M(X,r)] semiprime for (X, r) a finite left non-degenerate solution of YBE?

Determine Gelfand-Kirillov dimension of K[M(X, r)]

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let K be a field. Then

GKdimK[M(X, r)] = GKdimK[A(X, r)] = clKdimK[A(X, r)].

Moreover,

$$GKdimK[M(X, r)] = \max\{n_Y \mid Y \in \mathcal{Y}\}$$

where

$$\mathcal{Y} = \{ \emptyset \neq Y \subseteq X : \sigma_y(Y) \subseteq Y \text{ and } \sigma_y(X \setminus Y) \subseteq X \setminus Y \text{ for all } y \in Y \}$$

and

$$n_Y = is the number of orbits of the set Y with respect to the action of the monoid $\Sigma_Y = \langle \sigma_y : y \in Y \rangle$.$$

In particular, all the above dimensions are bounded by |X|. Furthermore, if K[M] is left or right Noetherian then also GKdimK[M] = cIKdimK[M].

The result is proven via a description of prime ideals of K[A].

Corollary (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let K be a field. Then

$$J(K[M(X,r)]) = B(K[M(X,r)]) = I(\eta_M) \cap \bigcap_{P \in \mathcal{P}} P$$

where

$$\mathcal{P} = \{P \in Spec(K[M]) : P \cap M(X, r) \neq \emptyset\} \\ = \{P \in Spec(K[M(x, r)]) : M_{XX} \subseteq P\}$$

and η_M is the cancellative congruence on M,

$$\eta_{M} = \{(x, y) \in M \times M : x \circ z = y \circ \text{ for some } z \in M\}$$

= $\{(a, \lambda_{a}), (b, \lambda_{b}) \in M \times M : \lambda_{a} = \lambda_{b} \text{ and}$
 $a + iz_{id} = b + iz_{id} \text{ some } i \ge 1\}$

where $z_{id} = vx_1 + \cdots + vx_n$.

Theorem (Jespers, Kubat, Van Antwerpen 2019)

If (X, r) also is bijective and K[M] is semiprime then there exist finitely many finitely generated abelian-by-finite groups $G_1 \cdots, G_k$, each being the group of quotients of a cancellative subsemigroup of M, such that K[M] embeds into the direct product of matrix algebras $M_{n_1}(K[G_1]) \times \cdots \times M_{n_k}(K[G_k]).$

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let If K be a field. The following conditions are equivalent:

• (X, r) is an involutive solution.

$$GKdimK[M] = |X|.$$

Moreover, if K[M] is left and right Noetherian then the above conditions are equivalent to:

- 3 rkM = |X|.
- clKdimK[M] = |X|.
- **o** id K[M] = |X|.
- K[M] has finite global dimension.
- K[M] is Auslander–Gorenstein with id K[M] = |X|.
- K[M] is Auslander-regular.

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

If $r(x, y) = (\lambda_x(y), \rho(x))$ is a solution (no other restrictions) then K[M] is a right Noetherian PI-algebra of finite Gelfand–Kirillov dimension. If, furthermore, the solution (X, r) is left non-degenerate then K[M] also is left Noetherian.

Let (X, r) be an arbitrary solution of the Yang-Baxter equation.

Problem 4: Determine when K[(X, r)] is left/right Noetherian.

G(X, r) the structure group, defined as a group by the "same" relations as M(X, r).

X is embedded in M(X, r) but $\iota : X \to G(X, r) : x \mapsto x$ is not necessarily injective. If it is then it is called an injective solution.

Theorem (Jespers, Kubat, Van Antwerpen, Vendramin 2021)

Let(X, r) be a finite non-degenerate solution of the YBE. Then the group G(X, r) is torsion-free if and only if the injectivisation $(\iota(X), r_{\iota}))$ is an involutive solution.

Let G be a group and consider the map r on $G \times G$ defined as $r(x, y) = (y, y^{-1}xy)$ (Lebed and Vendramin) is an injective solution and if G is not abelian it is not involutive. So by the previous results M(X, r) is not cancellative (as not involutive) and thus not embedded in G(X, r).

6.2: Warning 1

For involutive non-degenerate solutions K[M] shares many properties with commutative polynomial algebras. However, elementwise this is not the case.

Kaplansky's unit conjecture:

let K be a field and G a torsion-free group. Then the only invertible elements of the group algebra K[G] are the obvious ones, i.e. elements of the form kg with $0 \neq k \in K$ and $g \in G$.

Obviously the conjecture holds if G is poly-infinite cyclic.

However, only in 2021 Gardam proved that for the group $P = \langle x, y \mid y^{-1}x^2y = x^{-2} x^{-1}y^2x = y^{-2} \rangle$ and K a field of char(K) = 2 the conjecture has a negative answer. Murray 2021 extended this counter example to any field K of non-zero characteristic.

There is a structure group G(X, r) of an involutive finite non-degenerate solution (X, r) that contains the group P. So, for such solutions of the YBE, K[G(X, r)] can have invertible elements that are not obvious (at least in characteristic non-zero).

In this context it is interesting to determine when such G(X, r) is poly-infinite cyclic.

Theorem (Bachiller, Cedó, Vendramin 2018)

Let (X, r) be a finite non-degenerate involutive set-theoretic solution of the Yang-Baxter equation. The following statements are equivalent:

- **(**X, r) is a multipermutation solution.
- 2 G(X, r) is left orderable.
- G(X, r) is poly-infinite cyclic.

Problem 5: Has Kaplansky's unit conjecture a positive answer for group rings R[G] of a torsion-free group G in case R is a field of zero characteristic or $R = \mathbb{Z}$?

6.3: Warning 2

Let (X, r) and (Y, s) be solutions of the Yang–Baxter equation. A map $f: X \to Y$ is a morphism of solutions if $(f \times f) \circ r = s \circ (f \times f)$. If f is bijective then (X, r) and (Y, s) are said to be isomorphic. Two involutive non-degenerate solutions (X, r) and (Y, s) are isomorphic if and only if their structure monoids M(X, r) and M(Y, s) are isomorphic.

In general this is not true.

Example

Let $X = \{x_1, x_2, x_3\}$. Define $\sigma_1 = (1, 2)$, $\sigma_2 = (1, 3)$, $\sigma_3 = (1, 2)$ and consider the maps $r, s \colon X \times X \to X \times X$ given by

 $r(x_i, x_j) = (x_j, x_{\sigma_j(i)})$ and $s(x_i, x_j) = (x_{\sigma_i(j)}, x_i).$

Both (X, r) and (X, s) are bijective $(r^3 = s^3 = id)$ non-degenerate solutions of the YBE and M(X, r) = A(X, r) = A(X, s) = M(X, s). However, (X, r) and (X, s) are not isomorphic as solutions. Indeed, if $f: (X, r) \to (X, s)$ were an isomorphism of solutions then, in particular, $f \circ \sigma_x = f$ for all $x \in X$, which would lead to $\sigma_x = id$, a contradiction.

7. Bijective non-degenerate finite solutions and the graded algebra K[M(X, r)]

(X, r) is a finite non-degenerate bijective solution of YBE.

$$M = \bigcup_m M_m$$

with

 M_m the set of elements of M of length m.

Clearly,

$$\mathcal{K}[A(X,r)] = \bigoplus_{m \ge 0} \mathcal{K}[A]_m = \bigoplus_{m \ge 0} \operatorname{vect}_{\mathcal{K}}(A_m)$$

$$K[M(X, r)] = \bigoplus_{m \ge 0} K[M]_m = \bigoplus_{m \ge 0} \operatorname{vect}_K(M_m)$$

are connected graded K-algebras with

$$\dim(K[A]_m) = \dim(K[M]_m) = |M_m| = |A_m|,$$

In particular, dim (A_2) is the number of *r*-orbits in X^2 .

In the monoid A = A(X, r): Aa = aA for all $a \in A$. Hence

$$|M_2| = |A_2| \le$$
 the number of words of length 2
in the free abelian monoid of rank $|X| = n$.

Thus

$$\dim A_2 \le n + \binom{n}{2}.$$

If this upper bound is reached then this is called the maximality condition for K[M(X, r)] and M(X, r).

To determine $|M_2|$ it is sufficient to deal with the derived solution *s*, i.e. determine the number of *s*-orbits in X^2 .

7.1 Maximality condition

Denote by $O_{(x,y)}$ the *s*-orbit of $(x, y) \in X^2$ We determine when this maximality condition holds.

Assume dim $A_2 = n + {n \choose 2}$. Then $n^2 = \sum_{i=1}^{n+{n \choose 2}} |O_{(x_i,y_i)}|$, for some $(x_i, y_i) \in X^2$. $s(x, y) = (y, \sigma_y(x)) \neq (x, y)$ if $x \neq y$ for x, y in X. Hence, for such elements $|O(x, y)| \ge 2$. Thus, if there are m orbits with one element, then $n \ge m$ and

Thus, if there are *m* orbits with one element, then $n \ge m$ and

$$n^2 \ge m + 2(n + {n \choose 2} - m) = n(n+1) - m = n^2 + n - m.$$

Hence, n = m and thus $|O_{(x,x)}| = 1$ for all $x \in X$, and all other orbits have precisely 2 elements. Therefore *s* is involutive and each $\sigma_x = id$, that is, A(X, r) is the free abelian monoid of rank *n*. So, the maximality condition holds precisely when *s*, and thus *r*, is involutive and A(X, r) is the free abelian monoid of rank |X|.

Theorem (Cedó, Jespers, Okninski 2021)

Let (X, r) be a finite non-degenerate bijective solution of the YBE and let K be a field. The following properties are equivalent:

- K[M(X,r)] satisfies the maximality condition, that is dim(K[M(X,r)])₂) = (^{|X|}₂) + |X|;
- (X, r) is involutive;

Recall that the latter is further described in earlier stated results.

7.2 Minimality condition

Gateva-Ivanova introduced a "minimality condition" for a finite non-degenerate braided set (X, r), with a focus on square-free sets. She proposed to consider the case where dim A_2 is smallest possible.

Theorem (Cedó, Jespers, Okniński 2021)

Let K be a field and let (X, s) be a finite non-degenerate bijective solution of the YBE with all $\lambda_x = id$ (so r = s). Then

$$\dim(K[A]_2) \geq \frac{|X|}{2}.$$

- if |X| is even then the lower bound $\frac{|X|}{2}$ is reached precisely when all σ_x , with $x \in X$, are equal to a cycle σ of length |X|.
- If |X| is odd then the lower bound $\frac{|X|+1}{2}$ is reached when all σ_x , with $x \in X$, are equal to a cycle σ of length |X|.

In particular, $s(a, b) = (b, \sigma(a))$ for all $a, b \in X$ and thus the solution (X, s) is an indecomposable multipermutation solution of level 1.

Example

Consider (X, r) with $X = \mathbb{Z}/(n)$, for an integer n > 1, and r(x, y) = (y + 2, x - 1) for all $x, y \in X$. Then (X, r) is a non-degenerate bijective solution of YBE, its derived solution is (X, s), with s(x, y) = (y, x + 1), for all $x, y \in X$. Then,

$$\dim(A(K,X,r)_m) = \dim(A(K,X,s)_m) = 1$$

for all m > 2, so that GKdimK[A(X, r)] = GKdim(K[M(X, r)]) = 1 for any field K. Furthermore

dim
$$K[M(X, r)]_2) = n/2$$
 if n is even,

and

$$\dim(K[M(X, r)]_2) = (n+1)/2$$
 if *n* is odd.

Theorem (Cedó, Jespers, Okniński 2021)

Let (X, r) be a finite bijective non-degenerate square free solution of YBE with r = s (so s(x, x) = (x, x)). Then the number of r-orbits in X^2 is at least 2|X| - 1, that is dim $A_2 \ge 2|X| - 1$ where A = A(K, X, r).

Theorem (Cedó, Jespers, Okniński 2021)

Let (X, r) be a finite non-degenerate bijective square-free solution of YBE with r = s. Suppose that |X| > 1 and that the number of r-orbits in X^2 is 2|X| - 1. Then, up to isomorphism, one of the following holds

- |X| is an odd prime and (X, r) is the braided set associated to the dihedral quandle,
- |X| = 2 and (X, r) is the trivial braided set,
- $X = \{1, 2, 3\}$ and $\sigma_1 = \sigma_2 = id$, $\sigma_3 = (1, 2)$.

An important step is to compute orbits.

Proposition (Cedó, Jespers, Okniński 2021)

Let (X, r) be a square-free non-degenerate bijective solution of the YBE with $r(x, y) = (y, \sigma_y(x))$ for all $x, y \in X$. Then,

$$r^{2k+1}(x,y) = ((\sigma_y \sigma_x)^k (y), \ (\sigma_y \sigma_x)^k \sigma_y (x))$$

and

$$r^{2k}(x,y) = ((\sigma_y \sigma_x)^{k-1} \sigma_y(x)), (\sigma_y \sigma_x)^k(y))$$

for all non-negative integers k.

8. How essential is the assumption of being a solution of YBE for structure on K[M(X, r)]?

Problem 6: How relevant is the YBE solution assumption in the obtained structural results for Yang-Baxter algebras?

Quadratic Monoids

Let X be a finite set of cardinality n and

$$r: X^2 \to X^2: (x, y) \mapsto (\lambda_x(y), \rho_y(x))$$

a map (no other restrictions).

Definition

If r is involutive and r has precisely n fixed points (so $\binom{n}{2}$ non-fixed points),

i.e. M(X, r) has a set of $\binom{n}{2}$ defining relations of the type xy = uv with $(x, y) \neq (u, v)$,

then M(X, r) is said to be a monoid of quadratic type.

In other words there are precisely n words of the type xy that are not rewritable.

If it is square free, i.e. r(x, x) = (x, x) then M(X, r) is said to be of skew type.

If r is left non-degenerate then for each $x \in X$ there exists a unique $y \in X$ such that xy is not rewritable.

Again via left divisibility one proves the following result, where M_i denotes the elements of M left divisible by at most i elements of X.

Theorem (Jespers, Okniński, Van Campenhout 2015)

If M(X, r) is a left non-degenerate quadratic monoid. Then,

 $M(X,r) \setminus \{1\} = \{w_1 \cdots w_q \mid 1 \le q \le n, w_i \in A_k \text{ for some } 1 \le k \le n\}$

where the set of all non-rewritable elements of is

 $M_1 \setminus M_2 = A_1 \cup \cdots \cup A_n$

and each A_i consists of subwords of an infinite periodic word of period not exceeding n, i.e. words of the type

$$x_{i_1}\cdots x_{i_{k-1}}(x_{i_k}\cdots x_{i_r})^t x_{i_k}\cdots x_{i_p}$$

In particular the Gelfand-Kirillov dimension does not exceed n. Also, there exists a positive integer I so that M_n^I is a cancellative semigroup. If, furthermore (X, r) is non-degenerate, then K[M(X, r)] is left and right Noetherian and satisfies a polynomial identity. This was proven earlier by Cedó and Okninski for non-degenerate monoids of skew type.

To prove this we also make use of the following result

Theorem (Gateva–Ivanova, E. Jespers and J. Okniński 2003)

Let S be a monoid such that the algebra K[S] is right Noetherian and $GKdim(K[S]) < \infty$. If S is finitely generated and if S has a monoid presentation of the form

$$S = \langle x_1, \ldots, x_n \mid R \rangle$$

where R is a set of homogeneous relations (i.e. every relation of the form u = v with u, v words of the same length in the free monoid on X), then K[S] satisfies a polynomial identity.

But we can do better.

Theorem (Jespers, Van Campenhout 2017)

Let M(X, r) be a finitely generated non-degenerate quadratic monoid. Then there exists a positive integer N so that

$$A = \langle s^N \mid s \in M
angle$$
 is abelian

and

$$M = \bigcup_{f \in F} fA = \bigcup_{f \in F} Af$$

for some finite subset F of M.

Theorem (Jespers, Van Campenhout 2017)

Let M(X, r) be a finitely generated non-degenerate monoid of quadratic type. Then the following properties are equivalent:

- (X, r) is a set-theoretic solution of the YBE,
- M(X,r) is cancellative and satisfies the cyclic condition, that is, if x₁, y, y₁, z₁ ∈ X and r(x₁, y) = (y₁, z₁) then r(x₂, y₁) = (y₂, z₂) for some x₂, y₂, z₂ ∈ X with x₂x₁ and z₂z₁ non-rewritable.

For skew type, i.e. square free solutions we have $x_2 = x_1$ and $z_2 = z_1$. Hence cyclic means:

if
$$r(x_1, y) = (y_1, z_1)$$
 then $r(x_1, y_1) = (y_2, z_1)$ for some y_2

Some references

- D. Bachiller, F. Cedó, and L. Vendramin, A characterization of finite multipermutation solutions of the Yang–Baxter equation, Publ. Mat. 62(2) (2018), 641–649. DOI: 10.5565/PUBLMAT6221809.
- M. Castelli, F. Catino, P. Stefanelli, Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and dynamical extensions of q-cycle sets, J. Algebra Appl. (2021), https://doi.org/10. 1142/S0219498822501547.
- F. Cedó, E. Jespers, J. Okniński, Set-theoretic solutions of the Yang-Baxter equation, associated quadratic algebras and the minimality condition, Rev. Mat. Complut. 34 (2021), no. 1, 99–129.
- F. Cedó, E. Jespers, and C. Verwimp, Structure monoids of set-theoretic solutions of the Yang–Baxter equation, Publ. Mat. 65 (2021), 499–528.
- F. Cedó, E. Jespers, L. Kubat, A. Van Antwerpen, and C. Verwimp, On various types of nilpotency of the structure monoid and group of a set-theoretic solution of the Yang–Baxter equation, J. Pure Appl. Algebra 227 (2023), no. 2, 107194.

- F. Cedó J. Okniński, Göbner bases for quadratic algebras of skew type, Proc. Edinb. Math. Soc. (2) 55 (2) (2012) 387–401.
- I. Colazzo, E. Jespers, A. Van Antwerpen, and C. Verwimp, Left non-degenerate set-theoretic solutions of the Yang–Baxter equation and semitrusses, J. Algebra 610 (2022), 409–462.
- I. Colazzo, E. Jespers, L. Kubat, A. Van Antwerpen, Structure algebras of finite set-theoretic solutions of the Yang-Baxter equation, arXiv:2305.06023v1.
- I. Colazzo, E. Jespers, L. Kubat, A. Van Antwerpen, and C. Verwimp, Finite idempotent set-theoretic solutions of the Yang-Baxter equation, I.M.R.N., to appear; arXiv:2212.07361, 2022.
- P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (2) (1999) 16–209.
- G. Gardam, A counterexample to the unit conjecture for group rings, Ann. of Math. (2) 194(3) (2021), 967–979, 10.4007/annals.2021.194.3.9
- T. Gateva-Ivanova, S. Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra 319 (4) (2008) 1462–1529.
- T. Gateva-Ivanova, A combinatorial approach to non-involutive set-theoretic solutions of the Yang-Baxter equation, preprint arXiv:1808.03938v3 [math.QA].
- T. Gateva-Ivanova, E. Jespers and J. Okniński, Quadratic algebras of skew type and the underlying monoids, J. Algebra 270 (2003), 635–659.
- T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998) 97–112.
- E. Jespers, L. Kubat, and A. Van Antwerpen, The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter equation, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7191–7223.
- E. Jespers, L. Kubat, A. Van Antwerpen, L. Vendramin, Radical and weight of skew braces and their applications to structure groups of solutions of the Yang–Baxter equation, Advances in Mathematics 385 (2021) 107767.

- E. Jespers, J. Okniński, Monoids and groups of I-type, Algebr. Represent. Theory 8 (5) (2005) 709–729.
- E. Jespers, J. Okniński, Noetherian Semigroup Algebras, Algebra and Applications, vol. 7, Springer, Dordrecht, 2007.
- E, Jespers, J. Okniński, M. Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids , J. Algebra 440 (2015), 72–99.
- E. Jespers, M. Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids II, J. Algebra 492 (2017) 524–546.
- J.-H. Lu, M. Yan, and Y.-C. Zhu, On the set-theoretical Yang–Baxter equation, Duke Math. J. 104(1) (2000), 1?18. DOI:10.1215/S0012-7094-00-10411-5.
- A. G. Murray, More Counterexamples to the Unit Conjecture for Group Rings (2021), 4 pages, arXiv:2106.02147.
- J. Okniński, Semigroups of Matrices, World Sci. Singapore, 1998.