Algebraic structure of quadratic algebras and set-theoretic solutions of the Yang-Baxter equation

Eric Jespers
Vrije Universiteit Brussel, Belgium
Young Researchers Algebra Conference 2023

> July 25-29, 2023
> L'Aquila, Italy

1. INTRODUCTION

1.1 Structure algebra and monoid

Let X be a set and let $r: X \times X \rightarrow X \times X$ be a map.
Its structure algebra is

$$
\begin{aligned}
\mathcal{A}(X, r) & =K\langle x \in X\rangle /(x y=u v \text { if } r(x, y)=(u, v), x, y \in X) \\
& =K[M(X, r)] \text { (monoid algebra) } \\
& =K\langle X| x y=u v \text { if } r(x, y)=(u, v), x, y \in X\rangle
\end{aligned}
$$

The monoid

$$
M=M(X, r)=\langle X| x y=u v \text { if } r(x, y)=(u, v), x, y \in X\rangle
$$

is the structure monoid of (X, r).
This algebra (monoid) is the associative ring (monoid) theoretic tool to investigate the map r and has attracted a lot of attention in case r satisfies the braided relation, i.e. (X, r) is a set-theoretic solution of the Yang-Baxter equation.

General Aim: the link between r and the algebraic structure of $\mathcal{A}(X, r)$.

1.2 Set theoretic solutions of the Yang-Baxter equation (YBE)

(X, r) is a set-theoretic solution of the YBE if

$$
r_{12} r_{23} r_{12}=r_{23} r_{12} r_{23},
$$

where $r_{12}=r \times$ id and $r_{23}=\mathrm{id} \times r$ are maps $X^{3} \rightarrow X^{3}$.
Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

One says that (X, r) is:

- finite if $|X|<\infty$.
- bijective if r is a bijective map.
- involutive if $r^{2}=$ id.
- idempotent if $r^{2}=r$.
- left (respectively right) non-degenerate if all the maps λ_{x} (respectively ρ_{y}) are bijective.
- non-degenerate if (X, r) is left and right non-degenerate.

1.3 General outline of lectures

In this series of three lectures we explain some intriguing relationship between the algebraic structure of the structure algebras $\mathcal{A}_{K}(X, r)$ and the finite (mainly left non-degenerate) set-theoretic solutions (X, r) of the Yang-Baxter equation. We focus on the following ring theoretical properties of such algebras:

- left/right Noetherian
- prime
- semiprime
- representability
- Gelfand-Kirillov dimension
- the dimension of the degree 2-part of the algebra
- construction of such algebras
- What if r is not a set-theoretic solution?

Also attention will be given to the methods used: a combination of ring-, semigroup- and group techniques.

If (X, r) is a set-theoretic solution of the Yang-Baxter equation then $M(X, r)$ is called a Yang-Baxter monoid and $K[M(X, r)]$ is called a Yang-Baxter algebra.

1.4 Motivation

Monoid algebras and quadratic algebras arise in a variety of areas, including

- (non-)commutative ring theory
- (non-)commutative geometry
- algebras of low dimension
- quantum groups and Hopf algebras
- close relationship with group algebras
- via the solutions of the YBE widening into other fields, including mathematical physics

1.5 Some known general results/problems, what to expect?

Theorem (Zelmanov (1977))

K a field, S a cancellative semigroup. The following conditions are equivalent:
(1) K[S] satisfies a polynomial identity,
i.e. there exists $0 \neq f\left(X_{1}, \ldots, X_{n}\right) \in K\left\langle X_{1}, \ldots, X_{n}\right\rangle$ so that $f\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in K[S]$.
(3) S has a group of quotients G so that $K[G]$ satisfies a PI.
(3) (Passman) G is abelian-by-finite and char $(K)=0$, or G is (finite p-group)-by-(abelian-by-finite) group and char $(K)=p>0$.

If a semigroup ring $K[S]$ of a semigroup S over a ring K is (right) Artinian, then the same is true for K and S is finite. These conditions on K and S are also sufficient for $K[S]$ to be (right) Artinian for a semigroup S with identity (for group algebras I. Connell).

It is known that in this case the following conditions are equivalent:

- $K[S]$ is semiprime
- $K[G]$ is semiprime
- char $(K)=0$ or char $(K)=p>0$ and the torsion part of the finite conjugacy centre $\Delta(G)$ of G is a p^{\prime}-group.

Open Problem

When is a monoid algebra $K[S]$ Noetherian?
Even for group algebras $K[G]$ the answer is unknown.

Some known results for group algebras $K[G]$.

(1) $K[G]$ is left noetherian if and only if $K[G]$ is right noetherian (because of the involution $g \mapsto g^{-1}$).
(2) If G is polycyclic-by-finite then $K[G]$ is Noetherian (easy, comes down to $R\left[x, x^{-1}, \sigma\right]$, skew Laurent polynomial algebra, is Noetherian if R is Noetherian).
(3) If G is torsion-free and polycyclic-by-finite then $K[G]$ is a domain (not easy and proved via some homological properties, Farkas-Snider 1976, Cliff 1980).
(-) If G is polycyclic-by-finite then $K[G]$ is Noetherian prime maximal order if and only if $\Delta^{+}(G)=\{1\}$ and G is dihedral free (for example if G is torsion-free). (K. Brown 1985, 1988, E. Jespers-P. Smith 1985)
(0) If G is finitely generated torsion-free abelian-by-finite then $K[G]$ is a Noetherian PI maximal order and all its height one prime ideals P are generated by a normal element, i.e. $P=K[G] \alpha=\alpha K[G]$. So it behaves as a (non-commutative) UFD. (K. Brow 1985, 1988)

Known result for monoid algebras $K[S]$

Theorem (Jespers-Okniński)

Let S be a submonoid of a polycyclic-by-finite group. The following properties are equivalent:
(1) S satisfies the ascending chain on right ideals,
(2) $K[S]$ is right Noetherian,
(0) $S \subseteq G=S S^{-1}, H$ a subgroup of finite index in $G,[H, H] \subseteq S$ and $S \cap H$ is finitely generated,

- $K[S]$ is left Noetherian,
(0) Satisfies the ascending chain on left ideals.

So, for such monoids, the answer is left-right symmetric.
Interested reader: Jespers, Okniński, Noetherian Semigroup Algebras, Springer, Series: Algebra and Applications, 2007.

When is an algebra embedded into a matrix algebra?

Theorem (Ananin)

Any finitely generated right Noetherian PI algebra over a field is representable, i.e. embedded into a matrix algebra over a field.

2. Construction of quadratic algebras with "nice" properties via set-theoretic solutions of YBE 2.1 I-type monoids

An exciting link between quadratic algebras and set-theoretic solutions of the Yang-Baxter equation has been initiated by Gateva-Ivanova and Van den Bergh (1998) (and also Etingof, Schedler, and Soloviev (1999)).

A monoid S generated by a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is said to be of (left) I-type if there exists a bijection

$$
v: \mathrm{FaM}_{n} \rightarrow S
$$

such that, for all $a \in \operatorname{FaM}_{n}=\left\langle u_{1}, \ldots, u_{n}\right\rangle$, the free abelian monoid of rank n,

$$
v(1)=1 \quad \text { and } \quad\left\{v\left(u_{1} a\right), \ldots, v\left(u_{n} a\right)\right\}=\left\{x_{1} v(a), \ldots, x_{n} v(a)\right\}
$$

Theorem (Gateva-Ivanova, Van den Bergh 1998)

A monoid M generated by $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is of left I-type if and only if there exists a mapping $r: X^{2} \rightarrow X^{2}$ so that
(1) $r^{2}=i d$,
(2) r non-degenerate,
(3) (X, r) is a set-theoretic solution of the YBE.
(- (Jespers-Okniński) $M=\left\{\left(a, \lambda_{a}\right) \mid a \in \mathrm{FaM}_{n}\right\} \subseteq \mathrm{FaM}_{n} \rtimes \operatorname{Sym}_{n}$
Furthermore, M has a group of fractions

$$
\begin{aligned}
G=G(X, r) & =\operatorname{gr}\left(X \mid x y=\lambda_{x}(y) \rho_{y}(x), x, y \in X\right) \\
& \subseteq\left\{\left(a, \lambda_{a}\right) \mid a \in \operatorname{Fa}_{n}\right\} \subseteq \operatorname{Fa}_{n} \rtimes \operatorname{Sym}_{n}
\end{aligned}
$$

which is torsion-free abelian-by-finite, where Fa_{n} is the free abelian group of rank n.

As a consequence one can show that often M can be decomposed as products of monoids and groups of the same type but on less generators (many such groups are poly-infinite cyclic). Minimal prime ideals of M, and height one primes of $K[M]$ are principal and generated by a normal element; all semiprime ideals of M are described. The latter yields an ideal chain of S with factors that are semigroups of matrix type over cancellative semigroups.

Theorem (Gateva-Ivanova and Van den Bergh 1998)
$K[M(X, r)]=K\langle X\rangle /\left(x y-\lambda_{x}(y) \rho_{y}(x) \mid x, y \in X\right)$

- is a Noetherian PI domain,
- has GK-dimension $|X|$,
- is a maximal order
- all height one primes that intersect M non-trivially are generated by a normal element.

Hence, this algebra "shares" many properties with commutative polynomial algebras.

Some background on Gelfand-Kirillov dimension

Let R be a finitely generated K-algebra over a field K. The Gelfand-Kirillov dimension $\operatorname{GKdim}(R)$ measures the rate of growth of R (in terms of generating sets). For monoid algebras $K[M]$ it measures the rate of growth of M.

Let V be a finite dimensional subspace of R that generates R as an algebra. Put $R_{n}=\sum_{i=0}^{n} V^{i}$, a finite dimensional subspace.

$$
\operatorname{GKdim}(R)=\lim \sup _{n \rightarrow \infty}\left(\frac{\log \operatorname{dim}_{K} R_{n}}{\log n}\right) .
$$

It is independent of the choice of V.

- $G K \operatorname{dim}(R)=0: R$ is finite dimensional.
- $\operatorname{GKdim}(R)<\infty$: $\operatorname{dim}_{K}\left(R_{n}\right) \leq n^{m}$ for sufficiently large n
- $\operatorname{GKdim}(R) \in\{0,1,2, r \mid r \in \mathbb{R}\} \cup\{\infty\}$
- $\operatorname{GKdim}\left(R\left[x_{1}, \ldots, x_{n}\right]\right)=\operatorname{GKdim}(R)+n$
- if R satisfies a PI then $\operatorname{GKdim}(R)<\infty$
- if R satisfies a PI and R is right Noetherian then $G K \operatorname{dim}(R)=c I K \operatorname{dim}(R)$
- if S is a finitely generated cancellative semigroup then the following conditions are equivalent:
- $\operatorname{GKdim}(K[S])<\infty$
- S has a group of quotients G and $\operatorname{GKdim}(K[G])<\infty$
- S has a group of quotients that is nilpotent-by-finite. (Gromov 1981 and Grigorchuk 1988).
Moreover, in these cases $G K \operatorname{dim}(K[S])=G K \operatorname{dim}(K[G])$.

2.2 Drinfel'd problem

V. G. Drinfel'd. (On some unsolved problems in quantum group theory. In Quantum groups (Leningrad, 1990), volume 1510 of Lecture Notes in Math., pages 1-8. Springer, Berlin, 1992):
"Maybe it would be interesting to study set-theoretical solutions The only thing I know about set-theoretical solutions is the following couple of examples."

Example 1 (V.V.Lyubashenko). If $r(x, y)=(f(y), g(x))$ then r is a set-theoretic solution of the YBE if and only if $f g=g f$.

Example 2: If $r(x, y)=(x, x \circ y)$ for some operation \circ on X then being a solution of the YBE is equivalent to the following distributivity identity: $x \circ(y \circ z)=(x \circ y) \circ(x \circ z) . "$

Drinfel'd Problem

Determine and classify all (finite) set-theoretic solutions of the Yang-Baxter equation on a set X :

2.3 Examples of set-theoretic solutions of YBE

X a set.
(1) If $r(x, y)=(y, x)$ for $x, y \in X\left(\right.$ all $\left.\lambda_{x}=\rho_{x}=\mathrm{id}\right)$ then
$K[M(X, r)]=K[X]$ commutative polynomial algebra.
It is a unique factorisation domain and it only is Noetherian if X is finite.
(2) If $r(x, y)=(x, y)$ (all λ_{x} and ρ_{x} are constant maps onto $\left.\{x\}\right)$ then $K[M(x, r)]=K\langle X\rangle$ the free algebra on X.
Only left or right Noetherian if $|X|=1$. This is a degenerate example.
(3) If $X=\{1,2,3\}$ and $r(x, y)=\left(y, \rho_{y}(x)\right)$ for $x, y \in X$, where $\rho_{1}=(23), \rho_{2}=(13)$ and $\rho_{3}=(12)$ then (X, r) is a non-degenerate bijective solution (with $r^{3}=\mathrm{id}$) and

$$
K[M(X, r)] \cong K\langle x, y, z| x y=y z=z x \text { and } z y=y x=x z\rangle
$$

is Noetherian and PI, but not semiprime (let alone domain).
(4) If $|X|>1$ then $r(x, y)=(y, y)$ is an idempotent solution, $K[M(X, r)]$ is left Noetherian and it only is right Noetherian if $|X|=1$.
Note that $\left(x^{2 d}-y^{2 d}\right) M=x^{2 d}-y^{2 d}$ and thus $\sum_{d \geq 1}\left(x^{2 d}-y^{2 d}\right)$ is a nilpotent right ideal that is not finitely generated. So this algebra is not semiprime, not right Noetherian. But it is left Noetherian.
(5) $K[M(X, r)] /(x y \mid x, y \in X) \cong K+\oplus_{x \in X} K \bar{x}$ is a commutative algebra with large radical $J=\oplus_{x \in X} K \bar{x}$ and this is only finitely generated when X is finite.
To obtain "nice" properties on Yang-Baxter algebras (for example being left/right Noetherian) one needs to impose some restrictions on the solutions, restrictions on the λ 's and/or ρ 's.

2.4 Extending a solution to the Yang-Baxter monoid

Theorem (Gateva-Ivanova, Majid 2008)

- the maps λ_{x} and ρ_{y} can be extended to the monoid $M=M(X, r)$ so that $a \circ b=\lambda_{a}(b) \circ \rho_{b}(a)$ for $a l l a, b \in M$.
- $r_{M}: M^{2} \rightarrow M^{2}:(a, b) \mapsto\left(\lambda_{a}(b), \rho_{b}(a)\right)$ also is a solution of the YBE, called the associated solution. Obviously, r_{M} restricts to r.
- r_{M} is bijective non-degenerate if and only if r is bijective non-degenerate.

2.5 Bijective solutions

Theorem (Castelli, Catino and Stefanelli 2021 and Colazzo, Jespers, Van Antwerpen, Verwimp 2022)
Let (X, r) be a finite left non-degenerate solution of the YBE. Then, r is bijective if and only if r is right non-degenerate.

For a proof of the necessity Castelli, Catino and Stefanelli used q-cycle sets and and Cedo, Jespers, Van Antwerpen, Verwimp used semitrusses to prove the equivalence.

2.6 From now we only consider left non-degenerate solutions

Assumption:
$r: X^{2} \rightarrow X^{2}:(x, y) \mapsto\left(\lambda_{x}(y), \rho_{y}(x)\right)$ is a finite left non-degenerate solution of the YBE
i.e. X is finite and all λ_{x} bijective, and $M=(M(X, r), \circ)$ is its Yang-Baxter monoid.

Derived solution

$r: X^{2} \rightarrow X^{2}:(x, y) \mapsto\left(\lambda_{x}(y), \rho_{y}(x)\right)$ left non-degenerate solution YBE Its derived solution of the YBE

$$
\begin{array}{ll}
s: X^{2} \rightarrow X^{2}: & \left(x, \lambda_{x}(y)\right) \mapsto\left(\lambda_{x}(y), \lambda_{\lambda_{x}(y)}\left(\rho_{y}(x)\right)\right) \\
s: X^{2} \rightarrow X^{2}: & (x, y) \mapsto\left(y, \lambda_{y} \rho_{\lambda_{x}^{-1}(y)}(x)\right)=\left(x, \sigma_{y}(x)\right) .
\end{array}
$$

with associated Yang-Baxter monoid

$$
\left.\left.A=A(X, r)=M(X, s)=\left\langle a_{1}, \ldots, a_{n}\right| a_{i}+a_{j}=a_{j}+\sigma_{a_{j}}\left(a_{i}\right)\right)\right\rangle .
$$

Note s encodes "behaviour" of r^{2} :

$$
(x, y) \stackrel{r}{\mapsto}\left(\lambda_{x}(y), \rho_{y}(x)\right) \stackrel{r}{\mapsto}\left(\lambda_{\lambda_{x}(y)}\left(\rho_{y}(x), \rho_{\rho_{y}(x)}\left(\lambda_{x}(y)\right)\right) .\right.
$$

Focus only on first coordinates

$$
\left(x, \lambda_{x}(y)\right) \stackrel{s}{\mapsto}\left(\lambda_{x}(y), \lambda_{\lambda_{x}(y)}\left(\rho_{y}(x)\right)\right) .
$$

Lemma

For all $a \in A$:

$$
A+a \subseteq a+A .
$$

(1) Right ideals of A are two-sided ideals of A.
(2) If r is also right non-degenerate (so bijective) then $A+a=a+A$ for all $a \in A$.
So elements of A are normal elements.
(3) If r is involutive (i.e. $r^{2}=\mathrm{id}$) then A is a free abelian monoid with basis X.

3. The Noetherian problem for $K[(X, r)]$ 3.1 First main step to deal with Noetherian problem

Theorem (Cedo-Jespers-Verwimp 2021)

There exists a bijective map $\pi: M(X, r) \rightarrow A(X, r)$, with $\pi(x)=x$ for $x \in X$, so that (we identify A with M)
(1) $\lambda:(M, \circ) \rightarrow \operatorname{Aut}(A,+): a \mapsto \lambda_{a}$, monoid homomorphism,
(2) $\rho:(M, \circ) \rightarrow \operatorname{Map}(A, A): a \mapsto \rho_{a}$ monoid anti-homomorphism,
(3) $M(X, r) \rightarrow A(X, r) \rtimes \operatorname{Im}(\lambda): a \mapsto\left(a, \lambda_{a}\right)$ monoid embedding.

In particular, the size of M and A are the same and thus

$$
G K \operatorname{dim} K[M]=G K \operatorname{dim} K[A] \leq|X|<\infty
$$

Warning: one can not extend this theorem to groups $G(X, r)$ except if r is bijective (Lu, Yan, Zhu).

3.2 Second main step to deal with Noetherian problem: the derived solution and $K[A]$

X a finite set, r a solution with each $\lambda_{x}=\mathrm{id}$. Thus $r=s$ and

$$
A=A(X, r)=\left\langle x \in X \mid x+y=y+\sigma_{y}(x)\right\rangle
$$

For all $a, b \in A$,

$$
a+b=b+\sigma_{b}(a)
$$

with monoid antihomomorphism

$$
\sigma:(A,+) \rightarrow E n d(A,+) \text { and } \sigma_{a+b}=\sigma_{b} \circ \sigma_{a}
$$

and the finite monoid

$$
\mathcal{C}=\mathcal{C}(A)=\left\{\sigma_{a} \mid a \in A\right\}=\left\langle\sigma_{x} \mid x \in X\right\rangle
$$

and, for some large enough v

$$
\sigma_{a} \circ \mathcal{C} \subseteq \mathcal{C} \circ \sigma_{a} \text { and } \sigma_{x}^{v}=\sigma_{v x}=\sigma_{v x}^{2}
$$

So right ideals are two-sided ideals and σ_{x}^{ν} is idempotent.

- $B=B(v)=\left\{m_{1} v x_{1}+\cdots+m_{n} v x_{n} \mid m_{1}, \ldots, m_{n} \geq 0\right\}$ is a monoid.
- $A=B(v)+F(v)$ with
$F(v)=\left\{m_{1} x_{1}+\cdots+m_{n} x_{n} \mid v>m_{1}, \ldots, m_{n} \geq 0\right\}$, A is a finite left module over $B(v)$.
- Put $\sigma_{j}=\sigma_{y_{j}}, X(v)=\left\{y_{1}=v x_{1}, \ldots, y_{n}=v x_{n}\right\}$.
- $B(v)=A\left(X(v), s_{X_{v}}\right)$ with $s_{X_{v}}$ induced solution from s.
- $\sigma_{j l} \cdots \sigma_{j k} \sigma_{j l}=\sigma_{j l} \cdots \sigma_{j k}$
- $\mathcal{C}(B(v))=\left\{\sigma_{j_{1}} \cdots \sigma_{j_{k}} \mid 1 \leq j_{1}, \ldots, j_{k} \leq n\right\} \cup\{i d\}$ is a band, semigroup of idempotents.
- Put $t_{k}=y_{1}+\cdots+y_{k}, B_{k\left(t_{k}\right)}=\left\langle y_{k(i)} \mid 1 \leq i \leq k\right\rangle$ and $T=\left\{\kappa\left(t_{k}\right) \mid 1 \leq k \leq n, \kappa \in \operatorname{Sym}_{n}\right\}$.
- Each $w \in B$ can be written $w=w_{t}+t$ with $t \in T$ and $w_{t} \in B_{t}$. Also $\sigma_{w}=\sigma_{t}$.
- For $a, b \in B_{t}: a+b+t=b+a+t$. Hence each $B_{t}+t$ is an abelian semigroup.
- $B(v)=\{0\} \cup \bigcup_{t \in T}\left(B(v)_{t}+t\right)$, a finite union of abelian semigroups.
- $\kappa\left(t_{k}\right)+y_{\kappa(1)}=y_{\eta\left(I^{\prime}\right)}+\eta\left(t_{k}\right)$.
- $K\left[B_{t}+t\right]$ is left $K\left[B_{t}\right]$ module (with $\left.a \cdot(d+t)=a+d+t\right)$. It is a cyclic module over $K\left[B_{t}\right] /\left[K\left[B_{t}\right], K\left[B_{t}\right]\right]$ a commutative finitely generated ring and hence a Noetherian module.
- Definine $R_{k}=\sum_{\kappa \in \operatorname{Sym}_{n}} K\left[B_{\kappa\left(t_{k}\right)}+\kappa\left(t_{k}\right)\right]$

Theorem (Colazzo, Jespers, Van Antwerpen, Verwimp 2022)

- $B_{n} \subseteq B_{n} \cup B_{n-1} \subseteq \cdots \subseteq B_{n} \cup \cdots \cup B_{2} \cup B_{1} \subseteq B$, an ideal chain of $B(v)$.
- A satisfies the ascending chain condition on left ideals
- $\{0\} \subseteq K\left[B_{n}\right] \subseteq K\left[B_{n}\right]+K\left[B_{n-1}\right] \subseteq \cdots \subseteq$ $K\left[B_{n}\right]+\cdots+K\left[B_{2}\right]+K\left[B_{1}\right] \subseteq K[B]$, an ideal chain with each factor a Noetherian left $K[B]$ module that is a finite sum of commutative rings (in particular a PI-ring).

Corollary (Colazzo, Jespers, Van Antwerpen, Verwimp)

If $|X|=n$ then $K[A]$ is a left Noetherian Pl-ring with $G K \operatorname{dimK}[A] \leq n$.

Corollary (Colazzo, Jespers, Van Antwerpen, Verwimp)

Let (X, r) be a finite left non-degenerate solution. Then, $K[A \rtimes \operatorname{Im}(\lambda)]$ is a finitely generated left Noetherian PI-algebra and thus a representable algebra. In particular, $K[M(X, r)]$ is a representable algebra and $M(X, r)$ is a linear semigroup, i.e. a subsemigroup of the multiplicative semigroup $M_{n}(F)$ with F a field.

Corollary

Let (X, r) be a finite left non-degenerate solution. The mapping $R \mapsto R^{e}=\left\{\left(a, \lambda_{a}\right) \mid a \in R\right\}$ is a bijection between the right ideals of $A(X, r)$ and those of $M(X, r)$. Thus, $M(X, r)$ satisfies the ascending chain condition on right ideals.

3.3 Third main step to deal with Noetherian problem

Theorem (Okniński)

Assume S is a finitely generated monoid with an ideal chain

$$
\emptyset=S_{m+1} \subseteq S_{m} \subseteq S_{m-1} \subseteq \cdots \subseteq S_{1} \subseteq S_{0}=S
$$

such that each factor $S_{j} / S_{j+1}($ for $0 \leq j \leq m)$ is either power nilpotent or a uniform subsemigroup of a Brandt semigroup. If K is a field and S satisfies the ascending chain condition on right ideals and GKdimK[S] is finite then $K[S]$ is right Noetherian.

A semigroup T with zero θ is power nilpotent if $T^{m}=\{\theta\}$ for some $m>0$.
A completely 0 -simple semigroup $\mathcal{M}^{0}(G, n, m, P)$ over a group G is a semigroup of $n \times m$ - matrices with at most one nonzero entry in $g \in G$ at spot (i, j), denoted (g, i, j), and with multiplication

$$
(g, i, j)(h, k, l)=\left(g p_{j k} h, i, l\right)
$$

where P is an $m \times n$-matrix with entries in $G^{\theta}=G \cup\{\theta\}$.

If $n=m$ and P is the identity matrix I this is a Brandt semigroup. A subsemigroup T of $\mathcal{M}^{0}(G, k, k, l)$ is said to be uniform if each \mathcal{H}-class (i.e., all the matrices with non-zero entries in a fixed (i, j)-spot) of $\mathcal{M}^{0}(G, k, k, I)$ intersects non-trivially T and the maximal subgroups of $\mathcal{M}^{0}(G, k, k, I)$ are generated by their intersection with T.

Let K be a field. Let (S, \cdot) be a semigroup and I an ideal of S then $K[I]$ is an ideal of $K[S]$ and

$$
K[S] / K[I]=\operatorname{vect}_{K}(S \backslash I) .
$$

In this algebra all elements of I "become" 0.
Let $S / I=(S \backslash I) \cup\{\theta\}$ with multiplication \circ defined by

$$
\begin{gathered}
s \circ t=s \cdot t \quad \text { if } s, t \in(S \backslash I) \text { and } s \cdot t \in(S \backslash I), \\
\text { otherwise } \quad s \circ t=\theta .
\end{gathered}
$$

This is a semigroup, called the Rees factor of S by I, so that

$$
K[S] / K[I]=K[S / I] / K \theta:=K_{0}[S / I],
$$

called the contracted semigroup algebra of S / I.

Background on linear semigroups

Let $A=M_{n}(F)$ be a matrix algebra over a field F and (A, \cdot) its multiplicative semigroup. Put $A_{i}=\{a \in A \mid r k(a) \leq i\}$, a subsemigroup, for $0 \leq i \leq n$. Then

$$
0=A_{0} \subset A_{1} \subset \cdots \subset A_{n}=A
$$

are the only ideals of the monoid A and

$$
A_{i} / A_{i-1} \cong \mathcal{M}^{0}\left(G L_{i}(F), X_{i}, Y_{i} ; Q_{j}\right)
$$

where Y_{i} are all matrices if rank i which are in the reduced row elementary form and $X_{i}=Y_{i}^{t}$ and $Q_{i}=\left(q_{y x}\right)$ is defined for $x \in X_{i}$, $y \in Y_{i}$ by $q_{y x}=y x$ if $y x$ is of rank i and θ otherwise.
The groups $G L_{i}(F)$ are the maximal subgroups of (A, \cdot).

Theorem (Okniński)

Let $S \subseteq A=M_{n}(F)$ be a linear semigroup. Write $S_{i}=S \cap A_{i}$, the matrices of S of rank at most i. Let T_{i} be the matrices in S_{i} so that S^{1} a S^{1} does not intersect maximal subgroups of A contained in $A_{i} \backslash A_{i-1}$. Then we have an ideal chain of S :

$$
S_{0} \subseteq T_{1} \subseteq S_{1} \subseteq T_{1} \subseteq S_{1} \subseteq T_{2} \subseteq \cdots \subseteq S_{n-1}=T_{n} \subseteq S_{n}=A
$$

with the following properties:
(1) $N_{i}=T_{i} / S_{i-1}$ is a nilpotent ideal of S / S_{i-1}.
(2) $\left(S_{i} \backslash T_{i}\right) \cup\{\theta\} \subseteq M_{i} / M_{i-1}$ is a 0 -disjoint union of uniform subsemigroups $U_{\alpha}^{(i)}, \alpha \in \mathcal{A}_{i}$, of M_{i} / M_{i-1} that intersect different \mathcal{R} and different \mathcal{L}-classes of M_{i} / M_{i-1}; moreover N_{i} does not interesect \mathcal{H}-classes of M_{i} / M_{i-1} intersected by $S_{i} \backslash T_{i}$.
(0) $U_{\alpha}^{(i)} U_{\beta}^{(i)} \subseteq N_{i}$ for $\alpha \neq \beta$; moreover $U_{\alpha}^{(i)} N_{i}, N_{i} U_{\alpha}^{(i)} \subseteq N_{i}$ and $U_{\alpha}^{(i)} N_{i} U_{\alpha}^{(i)}=\{\theta\}$ in M_{i} / M_{i-1}.

3.4 How to construct such a chain in $M(X, r)$?

Let $1 \leq i \leq n=|X|$. Let
$M_{i}=\bigcup_{Y \subseteq X,|Y|=i}\{a \in M \mid a=y b(y)$, for each $y \in Y$ and some $b(y) \in M\}$
$=$ all elements of M left divisible by at least i elements of X
This yields an ideal chain in $M=M(X, r)$:

$$
\emptyset=M_{n+1} \subseteq M_{n} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M
$$

Refine the chain

$$
M_{i+1} \subseteq B_{i} \subseteq U_{i} \subseteq M_{i}
$$

such that

- B_{i} / M_{i+1} and M_{i} / U_{i} are power nilpotent (if M_{i} / M_{i+1} is power nilpotent then $B_{i}=U_{i}=M_{i}$).
- if M_{i} / M_{i+1} is not power nilpotent then U_{i} / B_{i} is a disjoint union of semigroups S_{1}, \ldots, S_{m} such that $S_{k} S_{l} \subseteq M_{i+1}$ for $k \neq 1$.
- each $\left(S_{i} \cup M_{i+1}\right) / M_{i+1}$ is a uniform subsemigroup of a Brandt semigroup.

The intermediate ideals B_{i} and U_{i} are build with the use of the sets $Y, Z \subseteq X$, with $|Y|=|X|=i$,

$$
\begin{aligned}
M_{Y Z}= & \left\{\left(a, \lambda_{a}\right) \mid a \text { left divisible precisely by elements of } Y\right. \\
& \text { and } \left.\lambda_{a}(Z)=Y\right\}
\end{aligned}
$$

If $Y \subseteq X$ and $M_{Y Y}$ is a non-empty semigroup then there exists

$$
m_{Y}=\left(a_{Y}, \mathrm{id}\right) \in M_{Y Y} .
$$

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let K be a field.
(1) If for each $Y \subseteq X$ for which $M_{Y Y}$ is a (non-empty) semigroup there exists a $d \geq 1$ such that $m_{Y}^{d} M_{Y Y}$ is a cancellative semigroup then $K[M]$ is right Noetherian.
(2) the cancellative assumption holds for the semigroup $m_{Y}^{d} M_{Y Y}$ if and only if $a^{k} b^{k}=b^{k} a^{k}$ for all $a, b \in m_{Y}^{d} M_{Y Y}$ (for example if A is abelian).
(3) $K[M]$ is right Noetherian if and only if $K[S]$ is right Noetherian, with $S=\left\{m \in M: \lambda_{m}=\mathrm{id}\right\}$ a submonoid of both $A(X, r)$ and $M(X, r)$.

- if M also satisfies the ascending chain condition on left ideals (for example if r also is bijective) then $K[M]$ also is left Noetherian.
(0) explicit formula for the Gelfand-Kirillov dimension of $K[M(X, r)]$ in terms of the number of orbits in X under actions of certain finite monoids derived from (X, r).

Corollary (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

(1) If $K[A]$ is right Noetherian then so is $K[M]$.
(2) If A is abelian then $K[M]$ is left and right Noetherian.

Moreover, $M(X, r)$ is an epimorphic image of the Yang-Baxter monoid of a finite involutive solution.
(3) If $K[M]$ is right Noetherian or semiprime, then $M_{X X}^{d}$ is cancellative for some positive integer d. In particular, $M_{X X}^{d}$ has a group of fractions that is abelian-by-finite.
(1) If (X, r) is a finite left non-degenerate idempotent solution of YBE then
(1) $K[M]$ is left Noetherian and $G K \operatorname{dim} K[M]=1$.
(2) $K[M]$ is right Noetherian if and only if the set $\Lambda=\left\{q(x)=\lambda_{x}^{-1}(x): x \in X\right\}$ is a singleton.
(3) $K[M]$ is right Noetherian if and only if there exists a positive integer k such that $a^{k} b^{k}=b^{k} a^{k}$ for all $a, b \in M$.

Problem 1

Let (X, r) be a finite left non-degenerate solution of the YBE. We know that $K[A(X, r)]$ is left Noetherian, but not necessarily right Noetherian.

Problem 1: Is $K[M(X, r)]$ always left Noetherian?

4. When is a Yang-Baxter algebra (semi)prime?

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

The following conditions are equivalent for a finite left non-degenerate solution of YBE.
(1) (X, r) is an involutive solution.
(2) M is a cancellative monoid and Ω_{λ} is a trivial group.
(0) $K[M]$ is a prime algebra and Ω_{λ} is a trivial group.

- $K[M]$ is a domain.
(0) $\operatorname{GKdim}(K[M(X, r)])=|X|$ if and only if (X, r) is involutive.

Moreover, if the diagonal map $q: X \rightarrow X: x \mapsto \lambda_{x}^{-1}(x)$, is bijective then Ω_{λ} is a trivial group (for example if r is bijective).

Let $v=e k e_{\sigma}$ with $e=\exp (\operatorname{Im}(\lambda)), \sigma_{x}^{e_{\sigma}}$ idempotent for each $x \in X, q^{k}$ idempotent and let $z=v x_{1}+\cdots+v x_{|X|}$. Put $O=O_{\lambda}\left(e q\left(z_{k}\right)\right)=\left\{\lambda_{a}\left(e q\left(z_{k}\right)\right): a \in A\right\}$. Then r_{M} restricts to an idempotent left non-degenerate solution on O. If M is cancellative then $\Omega_{\lambda}=\left\{\left(z, \lambda_{z}\right) \circ\left(e q\left(z_{\mathrm{id}}\right), \text { id }\right)^{-1}: z \in O_{\lambda}\left(e q\left(z_{\text {id }}\right)\right)\right\}$ is a finite subgroup of ($G(X, r), \circ)$, the group of fractions of M.

Problem 2

Problem 2: Do their exist prime algebras $K[M]$ with Ω_{λ} not trivial?

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite non-degenerate bijective solution of the YBE and let K be a field. The following properties are equivalent.
(1) $K[A]$ is a semiprime algebra.
(2) A is a disjoint union

$$
A=\bigcup_{e \in \Gamma} A_{e}
$$

of cancellative semigroups A_{e} indexed by a finite semilattice Γ such that

$$
A_{e} A_{f} \subseteq A_{e f}
$$

for all $e, f \in \Gamma$ (i.e., A is a finite semilattice Γ of cancellative semigroups) and each $K\left[A_{e}\right]$ is semiprime.
Moreover, in case the above equivalent conditions hold, Γ is the set of central idempotents of the classical ring of quotients of $K[A]$.
Equivalently, A has a finite ideal chain with Rees factors cancellative semigroups that yield semiprime semigroup algebras. The latter condition holds in case K has zero characteristic.

Remark: If $Q=Q_{c l}(K[A])$ then $A_{e}=\{a \in A: Q a=Q e\}$ for $e \in \Gamma$.

Problem 3

Problem 3: When is $\mathrm{K}[\mathrm{M}(\mathrm{X}, \mathrm{r})]$ semiprime for (X, r) a finite left non-degenerate solution of YBE?

Determine Gelfand-Kirillov dimension of $K[M(X, r)]$

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let K be a field. Then

$$
G K \operatorname{dim} K[M(X, r)]=G K \operatorname{dim} K[A(X, r)]=c I K \operatorname{dim} K[A(X, r)]
$$

Moreover,

$$
G K \operatorname{dim} K[M(X, r)]=\max \left\{n_{Y} \mid Y \in \mathcal{Y}\right\}
$$

where

$$
\mathcal{Y}=\left\{\emptyset \neq Y \subseteq X: \sigma_{y}(Y) \subseteq Y \text { and } \sigma_{y}(X \backslash Y) \subseteq X \backslash Y \text { for all } y \in Y\right\}
$$

and
$n_{Y}=$ is the number of orbits of the set Y with respect to the action of the monoid $\Sigma_{Y}=\left\langle\sigma_{y}: y \in Y\right\rangle$.

In particular, all the above dimensions are bounded by $|X|$. Furthermore, if $K[M]$ is left or right Noetherian then also $G K \operatorname{dimK}[M]=\operatorname{clK} \operatorname{dimK}[M]$.

The result is proven via a description of prime ideals of $K[A]$.

Corollary (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let K be a field. Then

$$
J(K[M(X, r)])=B(K[M(X, r)])=I\left(\eta_{M}\right) \cap \bigcap_{P \in \mathcal{P}} P,
$$

where

$$
\begin{aligned}
\mathcal{P} & =\{P \in \operatorname{Spec}(K[M]): P \cap M(X, r) \neq \emptyset\} \\
& =\{P \in \operatorname{Spec}(K[M(x, r)]): M x \subseteq P\}
\end{aligned}
$$

and η_{M} is the cancellative congruence on M,

$$
\begin{aligned}
\eta_{M}= & \{(x, y) \in M \times M: x \circ z=y \circ \text { for some } z \in M\} \\
= & \left\{\left(a, \lambda_{a}\right),\left(b, \lambda_{b}\right) \in M \times M: \lambda_{a}=\lambda_{b}\right. \text { and } \\
& \left.a+i z_{i d}=b+i z_{\text {id }} \text { some } i \geq 1\right\}
\end{aligned}
$$

where $z_{\text {id }}=v x_{1}+\cdots+v x_{n}$.

Theorem (Jespers, Kubat, Van Antwerpen 2019)
 If (X, r) also is bijective and $K[M]$ is semiprime then there exist finitely many finitely generated abelian-by-finite groups $G_{1} \cdots, G_{k}$, each being the group of quotients of a cancellative subsemigroup of M, such that $K[M]$ embeds into the direct product of matrix algebras $M_{n_{1}}\left(K\left[G_{1}\right]\right) \times \cdots \times M_{n_{k}}\left(K\left[G_{k}\right]\right)$.

5. Characterisation of involutive solutions

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

Let (X, r) be a finite left non-degenerate solution of the YBE and let If K be a field. The following conditions are equivalent:
(1) (X, r) is an involutive solution.
(2) $G K \operatorname{dim} K[M]=|X|$.

Moreover, if $K[M]$ is left and right Noetherian then the above conditions are equivalent to:
(0) rkM $=|X|$.
(- $\quad \mathrm{I} \operatorname{Kdim} K[M]=|X|$.
(6) id $K[M]=|X|$.
(0) $K[M]$ has finite global dimension.
(0) $K[M]$ is Auslander-Gorenstein with id $K[M]=|X|$.
($K[M]$ is Auslander-regular.

5. Solutions that are degenerate

Theorem (Colazzo, Jespers, Kubat, Van Antwerpen 2023)

If $r(x, y)=\left(\lambda_{x}(y), \rho(x)\right)$ is a solution (no other restrictions) then $K[M]$ is a right Noetherian Pl-algebra of finite Gelfand-Kirillov dimension. If, furthermore, the solution (X, r) is left non-degenerate then $K[M]$ also is left Noetherian.

Problem

Let (X, r) be an arbitrary solution of the Yang-Baxter equation.

Problem 4: Determine when $K[(X, r)]$ is left/right Noetherian.

6. Some comments

6.1 Those who prefer groups: be careful

$G(X, r)$ the structure group, defined as a group by the "same" relations as $M(X, r)$.
X is embedded in $M(X, r)$ but $\iota: X \rightarrow G(X, r): x \mapsto x$ is not necessarily injective. If it is then it is called an injective solution.

Theorem (Jespers, Kubat, Van Antwerpen, Vendramin 2021)

Let (X, r) be a finite non-degenerate solution of the YBE. Then the group $G(X, r)$ is torsion-free if and only if the injectivisation $\left.\left(\iota(X), r_{\iota}\right)\right)$ is an involutive solution.

Let G be a group and consider the map r on $G \times G$ defined as $r(x, y)=\left(y, y^{-1} x y\right)$ (Lebed and Vendramin) is an injective solution and if G is not abelian it is not involutive. So by the previous results $M(X, r)$ is not cancellative (as not involutive) and thus not embedded in $G(X, r)$.

6.2: Warning 1

For involutive non-degenerate solutions $K[M]$ shares many properties with commutative polynomial algebras. However, elementwise this is not the case.

Kaplansky's unit conjecture:
let K be a field and G a torsion-free group. Then the only invertible elements of the group algebra $K[G]$ are the obvious ones, i.e. elements of the form $k g$ with $0 \neq k \in K$ and $g \in G$.

Obviously the conjecture holds if G is poly-infinite cyclic.
However, only in 2021 Gardam proved that for the group $P=\left\langle x, y \mid y^{-1} x^{2} y=x^{-2} x^{-1} y^{2} x=y^{-2}\right\rangle$ and K a field of $\operatorname{char}(K)=2$ the conjecture has a negative answer. Murray 2021 extended this counter example to any field K of non-zero characteristic.

There is a structure group $G(X, r)$ of an involutive finite non-degenerate solution (X, r) that contains the group P. So, for such solutions of the YBE, $K[G(X, r)]$ can have invertible elements that are not obvious (at least in characteristic non-zero).

In this context it is interesting to determine when such $G(X, r)$ is poly-infinite cyclic.

Theorem (Bachiller, Cedó, Vendramin 2018)

Let (X, r) be a finite non-degenerate involutive set-theoretic solution of the Yang-Baxter equation. The following statements are equivalent:
(1) (X, r) is a multipermutation solution.
(2) $G(X, r)$ is left orderable.
(3) $G(X, r)$ is poly-infinite cyclic.

Problem

Problem 5:
Has Kaplansky's unit conjecture a positive answer for group rings $R[G]$ of a torsion-free group G in case R is a field of zero characteristic or $R=\mathbb{Z}$?

6.3: Warning 2

Let (X, r) and (Y, s) be solutions of the Yang-Baxter equation. A map $f: X \rightarrow Y$ is a morphism of solutions if $(f \times f) \circ r=s \circ(f \times f)$. If f is bijective then (X, r) and (Y, s) are said to be isomorphic.
Two involutive non-degenerate solutions (X, r) and (Y, s) are isomorphic if and only if their structure monoids $M(X, r)$ and $M(Y, s)$ are isomorphic.
In general this is not true.

Example

Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. Define $\sigma_{1}=(1,2), \sigma_{2}=(1,3), \sigma_{3}=(1,2)$ and consider the maps $r, s: X \times X \rightarrow X \times X$ given by

$$
r\left(x_{i}, x_{j}\right)=\left(x_{j}, x_{\sigma_{j}(i)}\right) \quad \text { and } \quad s\left(x_{i}, x_{j}\right)=\left(x_{\sigma_{i}(j)}, x_{i}\right)
$$

Both (X, r) and (X, s) are bijective $\left(r^{3}=s^{3}=i d\right)$ non-degenerate solutions of the YBE and $M(X, r)=A(X, r)=A(X, s)=M(X, s)$. However, (X, r) and (X, s) are not isomorphic as solutions. Indeed, if $f:(X, r) \rightarrow(X, s)$ were an isomorphism of solutions then, in particular, $f \circ \sigma_{x}=f$ for all $x \in X$, which would lead to $\sigma_{x}=$ id, a contradiction.
7. Bijective non-degenerate finite solutions and the graded algebra $K[M(X, r)]$
(X, r) is a finite non-degenerate bijective solution of YBE.

$$
M=\bigcup_{m} M_{m}
$$

with

$$
M_{m} \text { the set of elements of } M \text { of length } m \text {. }
$$

Clearly,

$$
\begin{aligned}
K[A(X, r)] & =\oplus_{m \geq 0} K[A]_{m}=\oplus_{m \geq 0} \operatorname{vect}_{K}\left(A_{m}\right) \\
K[M(X, r)] & =\oplus_{m \geq 0} K[M]_{m}=\oplus_{m \geq 0} \operatorname{vect}_{K}\left(M_{m}\right)
\end{aligned}
$$

are connected graded K-algebras with

$$
\operatorname{dim}\left(K[A]_{m}\right)=\operatorname{dim}\left(K[M]_{m}\right)=\left|M_{m}\right|=\left|A_{m}\right|,
$$

In particular, $\operatorname{dim}\left(A_{2}\right)$ is the number of r-orbits in X^{2}.

In the monoid $A=A(X, r): A a=a A$ for all $a \in A$. Hence

$$
\begin{aligned}
\left|M_{2}\right|=\left|A_{2}\right| \leq & \text { the number of words of length } 2 \\
& \text { in the free abelian monoid of rank }|X|=n .
\end{aligned}
$$

Thus

$$
\operatorname{dim} A_{2} \leq n+\binom{n}{2}
$$

If this upper bound is reached then this is called the maximality condition for $K[M(X, r)]$ and $M(X, r)$.

To determine $\left|M_{2}\right|$ it is sufficient to deal with the derived solution s, i.e. determine the number of s-orbits in X^{2}.

7.1 Maximality condition

Denote by $O_{(x, y)}$ the s-orbit of $(x, y) \in X^{2}$ We determine when this maximality condition holds.
Assume $\operatorname{dim} A_{2}=n+\binom{n}{2}$. Then $n^{2}=\sum_{i=1}^{n+\binom{n}{2}}\left|O_{\left(x_{i}, y_{i}\right)}\right|$, for some $\left(x_{i}, y_{i}\right) \in X^{2}$.
$s(x, y)=\left(y, \sigma_{y}(x)\right) \neq(x, y)$ if $x \neq y$ for x, y in X. Hence, for such elements $|O(x, y)| \geq 2$.
Thus, if there are m orbits with one element, then $n \geq m$ and

$$
n^{2} \geq m+2\left(n+\binom{n}{2}-m\right)=n(n+1)-m=n^{2}+n-m
$$

Hence, $n=m$ and thus $\left|O_{(x, x)}\right|=1$ for all $x \in X$, and all other orbits have precisely 2 elements. Therefore s is involutive and each $\sigma_{x}=\mathrm{id}$, that is, $A(X, r)$ is the free abelian monoid of rank n. So, the maximality condition holds precisely when s, and thus r, is involutive and $A(X, r)$ is the free abelian monoid of rank $|X|$.

Theorem (Cedó, Jespers, Okninski 2021)

Let (X, r) be a finite non-degenerate bijective solution of the YBE and let K be a field. The following properties are equivalent:
(1) $K[M(X, r)]$ satisfies the maximality condition, that is $\left.\operatorname{dim}(K[M(X, r)])_{2}\right)=\binom{|X|}{2}+|X| ;$
(2) (X, r) is involutive;

Recall that the latter is further described in earlier stated results.

7.2 Minimality condition

Gateva-Ivanova introduced a "minimality condition" for a finite non-degenerate braided set (X, r), with a focus on square-free sets. She proposed to consider the case where $\operatorname{dim} A_{2}$ is smallest possible.

Theorem (Cedó, Jespers, Okniński 2021)

Let K be a field and let (X, s) be a finite non-degenerate bijective solution of the YBE with all $\lambda_{x}=$ id (so $r=s$). Then

$$
\operatorname{dim}\left(K[A]_{2}\right) \geq \frac{|X|}{2} .
$$

- if $|X|$ is even then the lower bound $\frac{|X|}{2}$ is reached precisely when all σ_{x}, with $x \in X$, are equal to a cycle σ of length $|X|$.
- If $|X|$ is odd then the lower bound $\frac{|X|+1}{2}$ is reached when all σ_{x}, with $x \in X$, are equal to a cycle σ of length $|X|$.
In particular, $s(a, b)=(b, \sigma(a))$ for all $a, b \in X$ and thus the solution (X, s) is an indecomposable multipermutation solution of level 1.

Example

Consider (X, r) with $X=\mathbb{Z} /(n)$, for an integer $n>1$, and $r(x, y)=(y+2, x-1)$ for all $x, y \in X$. Then (X, r) is a non-degenerate bijective solution of YBE, its derived solution is (X, s), with $s(x, y)=(y, x+1)$, for all $x, y \in X$. Then,

$$
\operatorname{dim}\left(A(K, X, r)_{m}\right)=\operatorname{dim}\left(A(K, X, s)_{m}\right)=1
$$

for all $m>2$, so that $G K \operatorname{dim} K[A(X, r)]=G K \operatorname{dim}(K[M(X, r)])=1$ for any field K. Furthermore

$$
\left.\operatorname{dim} K[M(X, r)]_{2}\right)=n / 2 \text { if } n \text { is even, }
$$

and

$$
\operatorname{dim}\left(K[M(X, r)]_{2}\right)=(n+1) / 2 \text { if } n \text { is odd. }
$$

7.3 Minimality condition for square free solutions

Theorem (Cedó, Jespers, Okniński 2021)
Let (X, r) be a finite bijective non-degenerate square free solution of YBE with $r=s(s o s(x, x)=(x, x))$. Then the number of r-orbits in X^{2} is at least $2|X|-1$, that is $\operatorname{dim} A_{2} \geq 2|X|-1$ where $A=A(K, X, r)$.

Theorem (Cedó, Jespers, Okniński 2021)

Let (X, r) be a finite non-degenerate bijective square-free solution of YBE with $r=s$. Suppose that $|X|>1$ and that the number of r-orbits in X^{2} is $2|X|-1$. Then, up to isomorphism, one of the following holds
(1) $|X|$ is an odd prime and (X, r) is the braided set associated to the dihedral quandle,
(2) $|X|=2$ and (X, r) is the trivial braided set,
(3) $X=\{1,2,3\}$ and $\sigma_{1}=\sigma_{2}=\mathrm{id}, \sigma_{3}=(1,2)$.

An important step is to compute orbits.

Proposition (Cedó, Jespers, Okniński 2021)

Let (X, r) be a square-free non-degenerate bijective solution of the YBE with $r(x, y)=\left(y, \sigma_{y}(x)\right)$ for allx, $y \in X$. Then,

$$
r^{2 k+1}(x, y)=\left(\left(\sigma_{y} \sigma_{x}\right)^{k}(y),\left(\sigma_{y} \sigma_{x}\right)^{k} \sigma_{y}(x)\right)
$$

and

$$
\left.r^{2 k}(x, y)=\left(\left(\sigma_{y} \sigma_{x}\right)^{k-1} \sigma_{y}(x)\right),\left(\sigma_{y} \sigma_{x}\right)^{k}(y)\right)
$$

for all non-negative integers k.

8. How essential is the assumption of being a solution of YBE for structure on $K[M(X, r)]$?

Problem 6: How relevant is the YBE solution assumption in the obtained structural results for Yang-Baxter algebras?

Quadratic Monoids

Let X be a finite set of cardinality n and

$$
r: X^{2} \rightarrow X^{2}:(x, y) \mapsto\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

a map (no other restrictions).

Definition

If r is involutive and r has precisely n fixed points (so $\binom{n}{2}$ non-fixed points),
i.e. $M(X, r)$ has a set of $\binom{n}{2}$ defining relations of the type $x y=u v$ with $(x, y) \neq(u, v)$,
then $M(X, r)$ is said to be a monoid of quadratic type.
In other words there are precisely n words of the type $x y$ that are not rewritable.
If it is square free, i.e. $r(x, x)=(x, x)$ then $M(X, r)$ is said to be of skew type.

If r is left non-degenerate then for each $x \in X$ there exists a unique $y \in X$ such that $x y$ is not rewritable.
Again via left divisibility one proves the following result, where M_{i} denotes the elements of M left divisible by at most i elements of X.

Theorem (Jespers, Okniński, Van Campenhout 2015)

If $M(X, r)$ is a left non-degenerate quadratic monoid. Then,

$$
M(X, r) \backslash\{1\}=\left\{w_{1} \cdots w_{q} \mid 1 \leq q \leq n, w_{i} \in A_{k} \text { for some } 1 \leq k \leq n\right\}
$$

where the set of all non-rewritable elements of is

$$
M_{1} \backslash M_{2}=A_{1} \cup \cdots \cup A_{n}
$$

and each A_{i} consists of subwords of an infinite periodic word of period not exceeding n, i.e. words of the type

$$
x_{i_{1}} \cdots x_{i_{k-1}}\left(x_{i_{k}} \cdots x_{i_{r}}\right)^{t} x_{i_{k}} \cdots x_{i_{p}}
$$

In particular the Gelfand-Kirillov dimension does not exceed n. Also, there exists a positive integer I so that M_{n}^{l} is a cancellative semigroup. If, furthermore (X, r) is non-degenerate, then $K[M(X, r)]$ is left and right Noetherian and satisfies a polynomial identity.

This was proven earlier by Cedó and Okninski for non-degenerate monoids of skew type.

To prove this we also make use of the following result

Theorem (Gateva-Ivanova, E. Jespers and J. Okniński 2003)

Let S be a monoid such that the algebra $K[S]$ is right Noetherian and $\operatorname{GKdim}(K[S])<\infty$. If S is finitely generated and if S has a monoid presentation of the form

$$
S=\left\langle x_{1}, \ldots, x_{n} \mid R\right\rangle
$$

where R is a set of homogeneous relations (i.e. every relation of the form $u=v$ with u, v words of the same length in the free monoid on X), then $K[S]$ satisfies a polynomial identity.

But we can do better.

Theorem (Jespers, Van Campenhout 2017)

Let $M(X, r)$ be a finitely generated non-degenerate quadratic monoid. Then there exists a positive integer N so that

$$
A=\left\langle s^{N} \mid s \in M\right\rangle \text { is abelian }
$$

and

$$
M=\bigcup_{f \in F} f A=\bigcup_{f \in F} A f
$$

for some finite subset F of M.

Theorem (Jespers, Van Campenhout 2017)

Let $M(X, r)$ be a finitely generated non-degenerate monoid of quadratic type. Then the following properties are equivalent:
(1) (X, r) is a set-theoretic solution of the YBE,
(2) $M(X, r)$ is cancellative and satisfies the cyclic condition, that is, if $x_{1}, y, y_{1}, z_{1} \in X$ and $r\left(x_{1}, y\right)=\left(y_{1}, z_{1}\right)$ then $r\left(x_{2}, y_{1}\right)=\left(y_{2}, z_{2}\right)$ for some $x_{2}, y_{2}, z_{2} \in X$ with $x_{2} x_{1}$ and $z_{2} z_{1}$ non-rewritable.

For skew type, i.e. square free solutions we have $x_{2}=x_{1}$ and $z_{2}=z_{1}$. Hence cyclic means:

$$
\text { if } r\left(x_{1}, y\right)=\left(y_{1}, z_{1}\right) \text { then } r\left(x_{1}, y_{1}\right)=\left(y_{2}, z_{1}\right) \text { for some } y_{2}
$$

- D. Bachiller, F. Cedó, and L. Vendramin, A characterization of finite multipermutation solutions of the Yang-Baxter equation, Publ. Mat. 62(2) (2018), 641-649. DOI: 10.5565/PUBLMAT6221809.
- M. Castelli, F. Catino, P. Stefanelli, Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and dynamical extensions of q-cycle sets, J. Algebra Appl. (2021), https://doi.org/10. 1142/S0219498822501547.
- F. Cedó, E. Jespers, J. Okniński, Set-theoretic solutions of the Yang-Baxter equation, associated quadratic algebras and the minimality condition, Rev. Mat. Complut. 34 (2021), no. 1, 99-129.
- F. Cedó, E. Jespers, and C. Verwimp, Structure monoids of set-theoretic solutions of the Yang-Baxter equation, Publ. Mat. 65 (2021), 499-528.
- F. Cedó, E. Jespers, L. Kubat, A. Van Antwerpen, and C. Verwimp, On various types of nilpotency of the structure monoid and group of a set-theoretic solution of the Yang-Baxter equation, J. Pure Appl. Algebra 227 (2023), no. 2, 107194.
- F. Cedó J. Okniński, Göbner bases for quadratic algebras of skew type, Proc. Edinb. Math. Soc. (2) 55 (2) (2012) 387-401.
- I. Colazzo, E. Jespers, A. Van Antwerpen, and C. Verwimp, Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and semitrusses, J. Algebra 610 (2022), 409-462.
- I. Colazzo, E. Jespers, L. Kubat, A. Van Antwerpen, Structure algebras of finite set-theoretic solutions of the Yang-Baxter equation, arXiv:2305.06023v1.
- I. Colazzo, E. Jespers, L. Kubat, A. Van Antwerpen, and C. Verwimp, Finite idempotent set-theoretic solutions of the Yang-Baxter equation, I.M.R.N., to appear; arXiv:2212.07361, 2022.
- P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (2) (1999) 16-209.
- G. Gardam, A counterexample to the unit conjecture for group rings, Ann. of Math. (2) 194(3) (2021), 967-979,
10.4007/annals.2021.194.3.9
- T. Gateva-Ivanova, S. Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra 319 (4) (2008) 1462-1529.
- T. Gateva-Ivanova, A combinatorial approach to non-involutive set-theoretic solutions of the Yang-Baxter equation, preprint arXiv:1808.03938v3 [math.QA].
- T. Gateva-Ivanova, E. Jespers and J. Okniński, Quadratic algebras of skew type and the underlying monoids, J. Algebra 270 (2003), 635-659.
- T. Gateva-Ivanova, M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998) 97-112.
- E. Jespers, L. Kubat, and A. Van Antwerpen, The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang-Baxter equation, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7191-7223.
- E. Jespers, L. Kubat, A. Van Antwerpen, L. Vendramin, Radical and weight of skew braces and their applications to structure groups of solutions of the Yang-Baxter equation, Advances in Mathematics 385 (2021) 107767.
- E. Jespers, J. Okniński, Monoids and groups of I-type, Algebr. Represent. Theory 8 (5) (2005) 709-729.
- E. Jespers, J. Okniński, Noetherian Semigroup Algebras, Algebra and Applications, vol. 7, Springer, Dordrecht, 2007.
- E, Jespers, J. Okniński, M. Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids, J. Algebra 440 (2015), 72-99.
- E. Jespers, M. Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids II, J. Algebra 492 (2017) 524-546.
- J.-H. Lu, M. Yan, and Y.-C. Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J. 104(1) (2000), 1?18. DOI:10.1215/S0012-7094-00-10411-5.
- A. G. Murray, More Counterexamples to the Unit Conjecture for Group Rings (2021), 4 pages, arXiv:2106.02147.
- J. Okniński, Semigroups of Matrices, World Sci. Singapore, 1998.

