Invertible
M. Pedicini

Invertible Quadratic Non-Linear Functions over \mathbb{F}_{p}^{n} via Multiple Local Maps

Young Researchers Algebra Conference 2023

Ginevra Giordani, Lorenzo Grassi, Silvia Onofri and Marco Pedicini

July 26th, 2023

Motivation

```
Invertible
Quadratic
Functions -
    Multiple
    Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation and Related Works
Low-Multiplicative Non-Linear Invertible Functions
Our Contribution and Our Result
About the Proof
Remarks
Open
Problems
and Future Work
References

\section*{Motivation}

Invertible
Quadratic Functions
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result
Work

References

Low-Multiplicative Non-Linear Invertible Functions
A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

\section*{Motivation}

Invertible
Quadratic Functions
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result

Low-Multiplicative Non-Linear Invertible Functions
A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).
These functions over prime fields \(\mathbb{F}_{p}\) for \(p \geq 3\) prime are very relevant for symmetric encryption schemes like

\section*{Motivation}

Invertible
Quadratic Functions
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri
bution and
Our Result
About the Proof

Remarks
Open
Problems
and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions
A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).
These functions over prime fields \(\mathbb{F}_{p}\) for \(p \geq 3\) prime are very relevant for symmetric encryption schemes like

■ Multi Party Computation (MPC);

\section*{Motivation}

Invertible
Quadratic Functions
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri-
bution and
Our Result
About the Proof

Remarks
Open
Problems
and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions
A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).
These functions over prime fields \(\mathbb{F}_{p}\) for \(p \geq 3\) prime are very relevant for symmetric encryption schemes like

■ Multi Party Computation (MPC);
■ Zero-Knowledge proofs (ZK);

\section*{Motivation}

Invertible
Quadratic Functions Multiple Maps

Low-Multiplicative Non-Linear Invertible Functions
A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).
These functions over prime fields \(\mathbb{F}_{p}\) for \(p \geq 3\) prime are very relevant for symmetric encryption schemes like

■ Multi Party Computation (MPC);
■ Zero-Knowledge proofs (ZK);
■ Fully Homomorphic Encryption (FHE).

\section*{Motivation}
Invertible
```QuadraticFunctions -Multiple

\title{
These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the
}
``` following
Work
References

\section*{Motivation}

Invertible Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi,
S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks
Open
Problems and Future Work

References

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:

\section*{Motivation}

Invertible
Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:

■ they are usually defined over prime fields \(\mathbb{F}_{p}^{t}\) for a huge prime \(p \approx 2^{128}\) or more;

\section*{Motivation}

Invertible
Quadratic Functions
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:
- they are usually defined over prime fields \(\mathbb{F}_{p}^{t}\) for a huge prime \(p \approx 2^{128}\) or more;
- they can be described via a simple algebraic expression over their natural field.

\section*{Motivation}

Invertible
Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:
- they are usually defined over prime fields \(\mathbb{F}_{p}^{t}\) for a huge prime \(p \approx 2^{128}\) or more;
- they can be described via a simple algebraic expression over their natural field.

Goal: find invertible quadratic low-multiplicative functions over \(\mathbb{F}_{p}^{n}\) for \(p \geq 3\).

\section*{Motivation and Related Works}
```

Invertible
Quadratic
Functions
Multiple
Maps
Low-Multiplicative Non-Linear Functions
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Some examples of this kind of functions over prime fields are known, but their
efficiency for the schemes mentioned before is not clear
Another approach is inspired from
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References

Motivation and Related Works

Invertible
Quadratic Functions
Multiple Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear.
\square

Motivation and Related Works

Invertible Quadratic Functions Multiple Maps
G. Giordani
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open

Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear.
Another approach is inspired from
\square
where are introduced shift-invariant functions, i.e.

Motivation and Related Works

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear.
Another approach is inspired fromDaemen, J
Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/. where are introduced shift-invariant functions, i.e.,

Motivation and Related Works

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear.
Another approach is inspired from
氤 Daemen, J
Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/. where are introduced shift-invariant functions, i.e.,

Definition [Shift-Invariant Map]

A map \mathcal{S} is called shift-invariant if

$$
\mathcal{S} \circ \Pi=\Pi \circ \mathcal{S}
$$

for every Π shifting of the arguments.

Motivation and Related Works

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear.
Another approach is inspired from
氤 Daemen, J
Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/. where are introduced shift-invariant functions, i.e.,

Definition [Shift-Invariant Map]

A map \mathcal{S} is called shift-invariant if

$$
\mathcal{S} \circ \Pi=\Pi \circ \mathcal{S}
$$

for every Π shifting of the arguments.

Related Works

```
Invertible
Quadratic
Functions -
    Multiple
    Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References
```


Shift-Invariant Liftings


```
\(\square\)
Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \(\mathbb{F}_{p}^{n}\) - Application to Poseidon the authors studied the invertibility of shift-invariant lifting functions
```


Pefinition [SHifulnvariant luatingl

```
Let \(p \geq 3\) be a prime integer, and let \(1 \leq m \leq n\). Let \(F: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}\) be a local map. The shift-invariant lifting (SI-lifting) function \(\mathcal{S}_{F}\) over \(\mathbb{F}_{p}^{n}\) induced by the local map \(F\) is defined as
```


Work

```
References

\section*{Related Works}

\section*{In}
L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \(\mathbb{F}_{p}^{n}\) - Application to Poseidon IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022).
the authors studied the invertibility of shift-invariant lifting functions

\section*{Shift-Invariant Liftings}

Our Contri-

where \(S_{F}\) is induced over \(\mathbb{F}_{p}^{n}\) by a quadratic local map

\section*{Related Works}

\section*{Shift-Invariant Liftings}

In
L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \(\mathbb{F}_{p}^{n}\) - Application to Poseidon IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022).
the authors studied the invertibility of shift-invariant lifting functions

\section*{Definition [Shift-Invariant lifting]}

Let \(p \geq 3\) be a prime integer, and let \(1 \leq m \leq n\). Let \(F: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}\) be a local map. The shift-invariant lifting (SI-lifting) function \(\mathcal{S}_{F}\) over \(\mathbb{F}_{p}^{n}\) induced by the local map \(F\) is defined as
\[
\mathcal{S}_{F}\left(x_{0}, \ldots, x_{n-1}\right)=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1} \quad \text { such that } \quad y_{i}=F\left(x_{i}, \ldots, x_{i+m-1}\right)
\]
where indices \(i\) of \(x_{i}\) are taken modulo \(n\).
where \(\mathcal{S}_{F}\) is induced over \(\mathbb{F}_{p}^{n}\) by a quadratic local map.

\section*{Related Works}

\section*{Shift-Invariant Liftings}

In
L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \(\mathbb{F}_{p}^{n}\) - Application to Poseidon IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022).
the authors studied the invertibility of shift-invariant lifting functions

\section*{Definition [Shift-Invariant lifting]}

Let \(p \geq 3\) be a prime integer, and let \(1 \leq m \leq n\). Let \(F: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}\) be a local map. The shift-invariant lifting (SI-lifting) function \(\mathcal{S}_{F}\) over \(\mathbb{F}_{p}^{n}\) induced by the local map \(F\) is defined as
\[
\mathcal{S}_{F}\left(x_{0}, \ldots, x_{n-1}\right)=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1} \quad \text { such that } \quad y_{i}=F\left(x_{i}, \ldots, x_{i+m-1}\right)
\]
where indices \(i\) of \(x_{i}\) are taken modulo \(n\).
where \(\mathcal{S}_{F}\) is induced over \(\mathbb{F}_{p}^{n}\) by a quadratic local map.

\section*{Related Works}
```

Invertible
Quadratic
Functions -
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References
Their result is
Theorm|{Thes
Let p\geq3 be a prime integer, and let 1\leqm\leqn. Given F: \mathbb{F}
quadratic local map, then the SI-lifting function }\mp@subsup{\mathcal{S}}{F}{}\mathrm{ induced by }F\mathrm{ over }\mp@subsup{\mathbb{F}}{p}{n}\mathrm{ is
not invertible neither if m=2 and n\geq3 nor if m=3 and n\geq5

Related Works

```
Invertible
Quadratic
Functions -
    Multiple
    Maps
G. Giordani,
    L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References
Their result is
```


Related Works

Invertible
Quadratic Functions

Multiple
Maps
G. Giordani
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri-
bution and Our Result

About the Proof

Their result is

Theorem [Th 2-3]

Let $p \geq 3$ be a prime integer, and let $1 \leq m \leq n$. Given $F: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ a quadratic local map, then the SI-lifting function \mathcal{S}_{F} induced by F over \mathbb{F}_{p}^{n} is not invertible neither if $m=2$ and $n \geq 3$ nor if $m=3$ and $n \geq 5$.

Our Contribution

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_{p}^{n} via shift-invariant functions induced by multiple local maps.
G. Giordani
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri-

Our Contribution

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_{p}^{n} via shift-invariant functions induced by multiple local maps.
The general scheme is

Our Contribution

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_{p}^{n} via shift-invariant functions induced by multiple local maps.
The general scheme is

Definition[Cyclic (Alternating) Shift-Invariant Lifting]

Let $p \geq 3$ be a prime integer and let $1 \leq m, h \leq n$. For each $i \in\{0,1, \ldots, h-1\}$, let $F_{i}: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ be a local map. The cyclic (or alternating) shift-invariant lifting (CSI-lifting or ASI-lifting) function $\mathcal{S}_{F_{0}, F_{1}, \ldots, F_{h-1}}$ induced by the family of local maps $\left(F_{0}, \ldots, F_{h-1}\right)$ over \mathbb{F}_{p}^{n} is defined as

$$
\begin{aligned}
\mathcal{S}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) & =y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1} \quad \text { where } \\
y_{i} & :=F_{i \bmod h}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right)
\end{aligned}
$$

for each $i \in\{0,1, \ldots, n-1\}$, where the sub-indices are taken modulo n.

Our Contribution

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_{p}^{n} via shift-invariant functions induced by multiple local maps.
The general scheme is

Definition[Cyclic (Alternating) Shift-Invariant Lifting]

Let $p \geq 3$ be a prime integer and let $1 \leq m, h \leq n$. For each $i \in\{0,1, \ldots, h-1\}$, let $F_{i}: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}$ be a local map. The cyclic (or alternating) shift-invariant lifting (CSI-lifting or ASI-lifting) function $\mathcal{S}_{F_{0}, F_{1}, \ldots, F_{h-1}}$ induced by the family of local maps $\left(F_{0}, \ldots, F_{h-1}\right)$ over \mathbb{F}_{p}^{n} is defined as

$$
\begin{aligned}
\mathcal{S}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) & =y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1} \quad \text { where } \\
y_{i} & :=F_{i \bmod h}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right)
\end{aligned}
$$

for each $i \in\{0,1, \ldots, n-1\}$, where the sub-indices are taken modulo n.

Our Contribution

```
Invertible
Quadratic
Functions -
    Multiple
    Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
    We limited ourselves to consider the case h=2 (ASI), i.e., functions
    S}\mp@subsup{\mathcal{F}}{0}{},\mp@subsup{F}{1}{}(\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n-1}{})=\mp@subsup{y}{0}{}|\mp@subsup{y}{1}{}|\ldots|\mp@subsup{y}{n-1}{}\mathrm{ where
    fF0}(\mp@subsup{x}{i}{},\mp@subsup{x}{i+1}{},\ldots,\mp@subsup{x}{i+m-1}{})\mathrm{ if }i\mathrm{ is even
    for each i}\in{0,1,\ldots,n-1},\mathrm{ where the sub-indices of }\mp@subsup{x}{i}{}\mathrm{ are taken modulo n.
    Alotation
    We denote with }\mp@subsup{\alpha}{0,\mp@subsup{i}{1}{},j}{}\mathrm{ the coefficient of the monomial of degree io in }\mp@subsup{x}{0}{}\mathrm{ and }\mp@subsup{i}{1}{
References

\section*{Our Contribution}

We limited ourselves to consider the case \(h=2\) (ASI), i.e., functions \(\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}\) where
\[
y_{i}= \begin{cases}F_{0}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) & \text { if } i \text { is even }  \tag{1}\\ F_{1}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) & \text { if } i \text { is odd }\end{cases}
\]
for each \(i \in\{0,1, \ldots, n-1\}\), where the sub-indices of \(x_{i}\) are taken modulo \(n\).

\section*{Our Contribution}

Invertible Quadratic Functions Multiple
Maps
G. Giordani,
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

We limited ourselves to consider the case \(h=2\) (ASI), i.e., functions \(\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}\) where
\[
y_{i}= \begin{cases}F_{0}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) & \text { if } i \text { is even }  \tag{1}\\ F_{1}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) & \text { if } i \text { is odd }\end{cases}
\]
for each \(i \in\{0,1, \ldots, n-1\}\), where the sub-indices of \(x_{i}\) are taken modulo \(n\).

\section*{Notation}

We denote with \(\alpha_{i_{0}, i_{1} ; j}\) the coefficient of the monomial of degree \(i_{0}\) in \(x_{0}\) and \(i_{1}\) in \(x_{1}\) of \(F_{j}\) with \(j \in\{0,1\}\).

\section*{Our Result}

Invertible
Quadratic
Functions -
Multiple
Maps
G. Giordani,
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks
Open
Problems and Future Work

References

\section*{Result of Our Study}

Our result is the following
Wheorem pt. 1
Let \(p \geq 3\) be a prime integer, and let \(n \geq 3\). Let \(F_{0}, F_{1}: \mathbb{F}_{p}^{2} \rightarrow \mathbb{F}_{p}\) be two
functions. Let \(\mathcal{S}_{F_{0}, F_{1}}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}\) be defined as


Then:
\(=\) if \(F_{0}\) and \(F_{1}\) are both of degree 2, then \(S_{F_{0}, F_{1}}\) is never invertible;
- if \(F_{0}\) is linear and \(F_{1}\) is quadratic (or vice-versa), then \(\mathcal{S}_{F_{0}, F_{1}}\) is invertible for \(n \geq 4\) if and only if it is a Feistel Type-ll function, e.g.,


\section*{Our Result}

\section*{Invertible}

Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks
Open
Problems and Future Work

References

\section*{Result of Our Study}

Our result is the following

\section*{Theorem pt. 1}

Let \(p \geq 3\) be a prime integer, and let \(n \geq 3\). Let \(F_{0}, F_{1}: \mathbb{F}_{p}^{2} \rightarrow \mathbb{F}_{p}\) be two functions. Let \(\mathcal{S}_{F_{0}, F_{1}}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}\) be defined as
\(\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right):=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}\) where
\[
y_{i}=F_{i \bmod 2}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) \quad \text { for each } i \in\{0,1, \ldots, n-1\}
\]

Then
- if \(F_{0}\) and \(F_{1}\) are both of degree 2 , then \(\mathcal{S}_{F_{0}, F_{1}}\) is never invertible
- if \(F_{0}\) is linear and \(F_{1}\) is auadratic (or vice-versa). then \(S_{F_{0}} F_{0}\) is invertible


\section*{Our Result}

\section*{Result of Our Study}

Our result is the following

\section*{Theorem pt. 1}

Let \(p \geq 3\) be a prime integer, and let \(n \geq 3\). Let \(F_{0}, F_{1}: \mathbb{F}_{p}^{2} \rightarrow \mathbb{F}_{p}\) be two functions. Let \(\mathcal{S}_{F_{0}, F_{1}}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}\) be defined as
\(\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right):=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}\) where
\[
y_{i}=F_{i \bmod 2}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) \quad \text { for each } i \in\{0,1, \ldots, n-1\}
\]

Then:
- if \(F_{0}\) and \(F_{1}\) are both of degree 2 , then \(\mathcal{S}_{F_{0}, F_{1}}\) is never invertible;
- if \(F_{0}\) is linear and \(F_{1}\) is quadratic (or vice-versa), then \(S_{F_{0} . F_{1}}\) is invertible

\section*{Our Result}

\section*{Result of Our Study}

Our result is the following

\section*{Theorem pt. 1}

Let \(p \geq 3\) be a prime integer, and let \(n \geq 3\). Let \(F_{0}, F_{1}: \mathbb{F}_{p}^{2} \rightarrow \mathbb{F}_{p}\) be two functions. Let \(\mathcal{S}_{F_{0}, F_{1}}: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}\) be defined as
\(\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right):=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}\) where
\[
y_{i}=F_{i \bmod 2}\left(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\right) \quad \text { for each } i \in\{0,1, \ldots, n-1\}
\]

Then:
- if \(F_{0}\) and \(F_{1}\) are both of degree 2 , then \(\mathcal{S}_{F_{0}, F_{1}}\) is never invertible;

■ if \(F_{0}\) is linear and \(F_{1}\) is quadratic (or vice-versa), then \(\mathcal{S}_{F_{0}, F_{1}}\) is invertible for \(n \geq 4\) if and only if it is a Feistel Type-II function, e.g.,
\[
y_{i}= \begin{cases}x_{i-1} & \text { if } i \text { odd } \\ x_{i-1}+x_{i-2}^{2} & \text { if } i \text { even }\end{cases}
\]

\section*{Our Result}
```

Invertible
Quadratic
Functions -
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References

```

\section*{Theorem pt. 2}
```

If $n=3, S_{r_{0}, r_{-}}$is invertible also in the case in which F_{0} is a linear function of the form $F_{0}\left(x_{0}, x_{1}\right)=\alpha_{1,0 ; 0} \cdot x_{0}+\alpha_{0,1 ; 0} \cdot x_{1}$ with $\alpha_{1,0 ; 0}, \alpha_{0,1 ; 0} \neq 0$, and F_{1} is a quadratic function of the form
\qquad

```
Remarks
and \(\alpha_{1,0 ; 1} \cdot \alpha_{1,0 ; 0}^{2} \neq-\alpha_{0,1 ; 1} \cdot \alpha_{0,1 ; 0}^{2}\)
References
```


\qquad

```
Open
Problems
and Future Work
```


Our Result

Invertible

 Quadratic Functions MultipleMaps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open

Problems and Future Work

References

Theorem pt. 2

If $n=3, \mathcal{S}_{F_{0}, F_{1}}$ is invertible also in the case in which F_{0} is a linear function of the form $F_{0}\left(x_{0}, x_{1}\right)=\alpha_{1,0 ; 0} \cdot x_{0}+\alpha_{0,1 ; 0} \cdot x_{1}$ with $\alpha_{1,0 ; 0}, \alpha_{0,1 ; 0} \neq 0$, and F_{1} is a quadratic function of the form
$F_{1}\left(x_{0}, x_{1}\right)=\gamma \cdot\left(\frac{\alpha_{0,1 ; 0}}{\alpha_{1,0 ; 0}} \cdot x_{0}-\frac{\alpha_{1,0 ; 0}}{\alpha_{0,1 ; 0}} \cdot x_{1}\right)^{2}+\alpha_{1,0 ; 1} \cdot x_{0}+\alpha_{0,1 ; 1} \cdot x_{1}$, where $\gamma \in \mathbb{F}_{p}$ and $\alpha_{1,0 ; 1} \cdot \alpha_{1,0 ; 0}^{2} \neq-\alpha_{0,1 ; 1} \cdot \alpha_{0,1 ; 0}^{2}$.

Tools for the Proof

```
Invertible
Quadratic
Functions -
    Multiple
    Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References

\section*{Tools for the Proof}

Invertible Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi, S. Onofri, M. Pedicini

\section*{Motivation} and Related Works

Our Contribution and Our Result

About the Proof

Remarks
Open
Problems and Future Work

References

The main tools we used to prove the theorem are the following:


\section*{Tools for the Proof}

Invertible Quadratic Functions Multiple Maps
G. Giordani
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

\section*{Remark}

\section*{Oper}

Problems and Future Work

References

The main tools we used to prove the theorem are the following:
■ The shift invariance;
- The concept of collision: the proof is by finding collisions
\(\square\) Definition [Collision] - The following lemma

\section*{Tools for the Proof}

The main tools we used to prove the theorem are the following:
■ The shift invariance;
- The concept of collision: the proof is by finding collisions

\section*{Definition [Collision]}

Let \(\mathbb{F}\) be a generic field, and let \(\mathcal{F}\) be a function defined over \(\mathbb{F}^{n}\) for \(n \geq 1\). A pair \(x, y \in \mathbb{F}_{p}^{n}\) is a collision for \(\mathcal{F}\) if and only if \(\mathcal{F}(x)=\mathcal{F}(y)\) and \(x \neq y\).

\section*{Tools for the Proof}

The main tools we used to prove the theorem are the following:
- The shift invariance;

■ The concept of collision: the proof is by finding collisions

\section*{Definition [Collision]}

Let \(\mathbb{F}\) be a generic field, and let \(\mathcal{F}\) be a function defined over \(\mathbb{F}^{n}\) for \(n \geq 1\). A pair \(x, y \in \mathbb{F}_{p}^{n}\) is a collision for \(\mathcal{F}\) if and only if \(\mathcal{F}(x)=\mathcal{F}(y)\) and \(x \neq y\).
- The following lemma

\section*{Lemma}

Let \(p \geq 3\) be a prime integer, and let \(n \geq 2\) be an integer. Let \(F_{0}, F_{1}, \ldots, F_{h-1}: \mathbb{F}_{p}^{2} \rightarrow \mathbb{F}_{p}\) be \(1 \leq h \leq n\) quadratic functions. If there exists \(l \leq h\) such that the quadratic function \(F_{l}\) depends on a single variable, then the cyclic SI-lifting \(\mathcal{S}_{F_{0}, F_{1}, \ldots, F_{h-1}}\) defined over \(\mathbb{F}_{p}^{n}\) for \(n \geq 3\) is not invertible.

\section*{Proof by finding collisions}
Invertible
```QuadraticFunctionsMultiple M. Pedicini

\section*{Proof by finding collisions}

Invertible
Quadratic Functions Multiple

Motivation and Related Works

Our Contri bution and Our Result About the Proof

Remarks

\section*{Oper}

Problems and Future Work

References

\section*{Lemma}

Consider the case with \(F_{0}, F_{1}\) two quadratic functions such that \(\alpha_{1,1: 0} \neq 0\), \(\alpha_{1,1 ; 1} \neq 0\) and \(n \geq 4\) even number. Then \(\mathcal{S}_{F_{0}, F_{1}}\) over \(\mathbb{F}_{p}^{n}\) is not invertible.

\section*{Proof by finding collisions}

\section*{Invertible} Quadratic Functions Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri, M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result About the Proof
Work
References

\section*{Lemma}

Consider the case with \(F_{0}, F_{1}\) two quadratic functions such that \(\alpha_{1,1 ; 0} \neq 0\), \(\alpha_{1,1 ; 1} \neq 0\) and \(n \geq 4\) even number. Then \(\mathcal{S}_{F_{0}, F_{1}}\) over \(\mathbb{F}_{p}^{n}\) is not invertible.

Proof: Inputs (\(x_{0}, x_{1}, x_{2}, x_{3}, \ldots x_{n-1}\)) and \(\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}\right)=\left(x_{0}, x_{1}, y_{2}, x_{3}, \ldots, x_{n-1}\right), y_{2} \neq x_{2}\).

\section*{Proof by finding collisions}

\section*{Invertible} Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

\section*{Lemma}

Consider the case with \(F_{0}, F_{1}\) two quadratic functions such that \(\alpha_{1,1 ; 0} \neq 0\), \(\alpha_{1,1 ; 1} \neq 0\) and \(n \geq 4\) even number. Then \(\mathcal{S}_{F_{0}, F_{1}}\) over \(\mathbb{F}_{p}^{n}\) is not invertible.

Proof: Inputs \(\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots x_{n-1}\right)\) and \(\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}\right)=\left(x_{0}, x_{1}, y_{2}, x_{3}, \ldots, x_{n-1}\right), y_{2} \neq x_{2}\).
\(\Longrightarrow \mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}\right)=\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, y_{2}, x_{3}, \ldots, x_{n-1}\right)\) reduces to the two equations \(F_{1}\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}, y_{2}\right)\) and \(F_{0}\left(x_{2}, x_{3}\right)=F_{0}\left(y_{2}, x_{3}\right)\).

\section*{Proof by finding collisions}

\section*{Lemma}

Consider the case with \(F_{0}, F_{1}\) two quadratic functions such that \(\alpha_{1,1 ; 0} \neq 0\), \(\alpha_{1,1 ; 1} \neq 0\) and \(n \geq 4\) even number. Then \(\mathcal{S}_{F_{0}, F_{1}}\) over \(\mathbb{F}_{p}^{n}\) is not invertible.

Proof: Inputs (\(x_{0}, x_{1}, x_{2}, x_{3}, \ldots x_{n-1}\)) and
\(\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}\right)=\left(x_{0}, x_{1}, y_{2}, x_{3}, \ldots, x_{n-1}\right), y_{2} \neq x_{2}\).
\(\Longrightarrow \mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}\right)=\mathcal{S}_{F_{0}, F_{1}}\left(x_{0}, x_{1}, y_{2}, x_{3}, \ldots, x_{n-1}\right)\) reduces to the two equations \(F_{1}\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}, y_{2}\right)\) and \(F_{0}\left(x_{2}, x_{3}\right)=F_{0}\left(y_{2}, x_{3}\right)\).

These two equations are:
\[
\begin{aligned}
& \alpha_{0,2 ; 1} \cdot d_{2} \cdot s_{2}+\frac{\alpha_{1,1 ; 1}}{2} \cdot d_{2} \cdot s_{1}+\alpha_{0,1 ; 1} \cdot d_{2}=0 \\
& \alpha_{2,0 ; 0} \cdot d_{2} \cdot s_{2}+\frac{\alpha_{1,1 ; 0}}{2} \cdot d_{2} \cdot s_{3}+\alpha_{1,0 ; 0} \cdot d_{2}=0
\end{aligned}
\]
where \(d_{i}=x_{i}-y_{i}\) and \(s_{i}=x_{i}+y_{i}\).

\section*{Proof by finding collisions}
```

Invertible
Quadratic
Functions -
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References

## Proof by finding collisions

Invertible Quadratic Functions Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Relatec Works

Our Contribution and Our Result About the Proof

## Remarks

Open
Problems and Future Work

References

Since $d_{2} \neq 0$, the system can be written as

$$
\left(\begin{array}{cc}
\frac{\alpha_{1,1 ; 1}}{2} & 0 \\
0 & \frac{\alpha_{1,1 ; 0}}{2}
\end{array}\right) \times\binom{ s_{1}}{s_{3}}=-\binom{\alpha_{0,2 ; 1} \cdot s_{2}+\alpha_{0,1 ; 1}}{\alpha_{2,0 ; 0} \cdot s_{2}+\alpha_{1,0 ; 0}}
$$

We can see that the determinant is never zero in this case, so the system is comnatihle Rut this means that there is a collision

## Proof by finding collisions

Invertible Quadratic Functions Multiple Maps
G. Giordani
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

Since $d_{2} \neq 0$, the system can be written as

$$
\left(\begin{array}{cc}
\frac{\alpha_{1,1 ; 1}}{2} & 0 \\
0 & \frac{\alpha_{1,1 ; 0}}{2}
\end{array}\right) \times\binom{ s_{1}}{s_{3}}=-\binom{\alpha_{0,2 ; 1} \cdot s_{2}+\alpha_{0,1 ; 1}}{\alpha_{2,0 ; 0} \cdot s_{2}+\alpha_{1,0 ; 0}}
$$

We can see that the determinant is never zero in this case, so the system is compatible. But this means that there is a collision.

## Considerations

```
Invertible
Quadratic
Functions -
 Multiple
 Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini
Motivation
and Related
Works
```


## Considerations

```
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
References

\section*{Considerations}

Invertible
Quadratic Functions
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

\section*{Considerations}

Invertible
Quadratic Functions Multiple

Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri-

\section*{bution and}

Our Result
About the Proof

Remarks

\section*{Open}

Problems and Future Work

References

\section*{Considerations}

■ Due to the definition of the ASI-lifting, we needed to prove separately the case with \(n\) even and \(n\) odd, because if \(n\) is odd, the numbers of the repetitions of \(F_{0}\) and \(F_{1}\) are different;
- CAREFUL: When \(n\) is odd, we considered both the cases with \(F_{0}\) linear and \(F_{1}\) quadratic and vice versa, because these cases are NOT equivalent

\section*{Considerations}

Invertible
Quadratic Functions Multiple

Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri-

\section*{bution and}

Our Result
About the Proof

Remarks

\section*{Open}

Problems and Future Work

References

\section*{Considerations}

■ Due to the definition of the ASI-lifting, we needed to prove separately the case with \(n\) even and \(n\) odd, because if \(n\) is odd, the numbers of the repetitions of \(F_{0}\) and \(F_{1}\) are different;
- CAREFUL: When \(n\) is odd, we considered both the cases with \(F_{0}\) linear and \(F_{1}\) quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions:

\section*{Considerations}

Invertible
Quadratic Functions Multiple

Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

\section*{Open}

Problems and Future Work

References

\section*{Considerations}

■ Due to the definition of the ASI-lifting, we needed to prove separately the case with \(n\) even and \(n\) odd, because if \(n\) is odd, the numbers of the repetitions of \(F_{0}\) and \(F_{1}\) are different;

■ CAREFUL: When \(n\) is odd, we considered both the cases with \(F_{0}\) linear and \(F_{1}\) quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions: if we relax the conditions over the two functions to a linear one and a quadratic one, we get

1 for \(n \geq 4\) the already known Type-II Feistel schemes;
2 for \(n=3\) and if \(F_{0}\) is the linear function, one more type of invertible ASI-lifting.

\section*{Open Problems and Future Work}
```

Invertible
Quadratic
Functions -
Multiple
Maps
G. Giordani,
L. Grassi,
S. Onofri,
M. Pedicini

```

\section*{Possible Generalizations}
Works
Our Contri-
bution and
Our Result
About the
Proof
Remarks
Open
Problems
and Future
Work
```


## References

```
There are two main ways in which this work can be generalized -a considering local maps \(F_{0}, F_{1}, \ldots, F_{h-1}: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}\) defined over a
larger input domain by taking \(m>3:\)

\section*{Open Problems and Future Work}

Invertible Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks Open Problems and Future Work

\section*{Possible Generalizations}

There are two main ways in which this work can be generalized:
```

larger input domain by taking $m \geq 3$; - In the current definition, the function $F$ takes in input consecutive elements $x_{i}, x_{i+1}, \ldots, x_{i+m-1}$. A possible way to generalize such definition consists of allowing for non-consecutive inputs

```

\section*{Open Problems and Future Work}

Invertible Quadratic Functions Multiple Maps
G. Giordani
L. Grassi,
S. Onofri,
M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result

About the Proof

Remarks
Open Problems and Future Work

\section*{Possible Generalizations}

There are two main ways in which this work can be generalized:
- by considering local maps \(F_{0}, F_{1}, \ldots, F_{h-1}: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}\) defined over a larger input domain by taking \(m \geq 3\);

\section*{Open Problems and Future Work}

\section*{Possible Generalizations}

There are two main ways in which this work can be generalized:
\(■\) by considering local maps \(F_{0}, F_{1}, \ldots, F_{h-1}: \mathbb{F}_{p}^{m} \rightarrow \mathbb{F}_{p}\) defined over a larger input domain by taking \(m \geq 3\);
- In the current definition, the function \(F\) takes in input consecutive elements \(x_{i}, x_{i+1}, \ldots, x_{i+m-1}\). A possible way to generalize such definition consists of allowing for non-consecutive inputs.

\section*{References}

Invertible Quadratic Functions Multiple Maps
G. Giordani,
L. Grassi,
S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open
Problems and Future Work

References
J. Daemen

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis
PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/
R L. Grassi, S. Onofri, M. Pedicini, L. Sozzi
Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \(\mathbb{F}_{p}^{n}\) - Application to Poseidon
IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022)
(K. Nyberg
Generalized Feistel networks
Advances in Cryptology - ASIACRYPT '96. Springer (1996)
S. Wolfram

Cryptography with Cellular Automata
Advances in Cryptology - CRYPTO '85 Proceedings. Springer (1996)
Y. Zheng, T. Matsumoto, H. Imai

On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses
Advances in Cryptology - CRYPTO '89. LNCS, vol. . 435 pp, 461-480, (1989

\section*{Thanks}

Invertible Quadratic Functions Multiple
Maps
G．Giordani，
L．Grassi，
S．Onofri，
M．Pedicini

Motivation and Related Works

Our Contri－ bution and Our Result

About the Proof

Remarks
Open
Problems
and Future Work

References

Thank you for your attention！！！

4 ロ 4 4 司＞4 三＞4 三＞```

