Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Invertible Quadratic Non-Linear Functions over \mathbb{F}_p^n via Multiple Local Maps Young Researchers Algebra Conference 2023

Ginevra Giordani, Lorenzo Grassi, Silvia Onofri and Marco Pedicini

July 26th, 2023

Invertible Quadratic Functions - Multiple Maps

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About th Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions

A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

These functions over prime fields \mathbb{F}_p for $p \ge 3$ prime are very relevant for symmetric encryption schemes like

- Multi Party Computation (MPC);
- Zero-Knowledge proofs (ZK);
- Fully Homomorphic Encryption (FHE).

Image: A math a math

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About th Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions

A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

These functions over prime fields $\mathbb{F}_{
ho}$ for $ho \geq 3$ prime are very relevant for symmetric encryption schemes like

- Multi Party Computation (MPC);
- Zero-Knowledge proofs (ZK);
- Fully Homomorphic Encryption (FHE).

(日)

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions

A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

These functions over prime fields \mathbb{F}_p for $p \ge 3$ prime are very relevant for symmetric encryption schemes like

- Multi Party Computation (MPC);
- Zero-Knowledge proofs (ZK)
- Fully Homomorphic Encryption (FHE).

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions

A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

These functions over prime fields \mathbb{F}_p for $p \ge 3$ prime are very relevant for symmetric encryption schemes like

- Multi Party Computation (MPC);
- Zero-Knowledge proofs (ZK)
- Fully Homomorphic Encryption (FHE).

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions

A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

These functions over prime fields \mathbb{F}_p for $p \ge 3$ prime are very relevant for symmetric encryption schemes like

- Multi Party Computation (MPC);
- Zero-Knowledge proofs (ZK);
- Fully Homomorphic Encryption (FHE).

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Invertible Functions

A low-multiplicative non-linear function is a function that requires a small number of non-linear operations (multiplications).

These functions over prime fields \mathbb{F}_p for $p \ge 3$ prime are very relevant for symmetric encryption schemes like

- Multi Party Computation (MPC);
- Zero-Knowledge proofs (ZK);
- Fully Homomorphic Encryption (FHE).

- Invertible Quadratic Functions -Multiple Maps
- G. Giordani
- L. Grassi,
- S. Onofri
- M. Pedici
- Motivation and Related Works
- Our Contribution and Our Result
- About the Proof
- Remarks
- Open Problems and Future Work
- References

- These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:
 - they are usually defined over prime fields F^t_p for a huge prime p ≈ 2¹²⁸ or more;
 - they can be described via a simple algebraic expression over their natural field.

Goal: find invertible quadratic low-multiplicative functions over \mathbb{F}_p^n for $p \ge 3$.

Image: A match a ma

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri.

M Pedicir

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:

- they are usually defined over prime fields \mathbb{F}_{ρ}^{t} for a huge prime $\rho \approx 2^{128}$ or more;
- they can be described via a simple algebraic expression over their natural field.

Goal: find invertible quadratic low-multiplicative functions over \mathbb{F}_p^n for $p \ge 3$.

Image: A match a ma

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri.

M. Pedicir

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:

- they are usually defined over prime fields \mathbb{F}_p^t for a huge prime $p\approx 2^{128}$ or more;
- they can be described via a simple algebraic expression over their natural field.

Goal: find invertible quadratic low-multiplicative functions over \mathbb{F}_p^n for $p \ge 3$.

Image: A match a ma

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri.

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:

- they are usually defined over prime fields \mathbb{F}_p^t for a huge prime $p \approx 2^{128}$ or more;
- they can be described via a simple algebraic expression over their natural field.

Goal: find invertible quadratic low-multiplicative functions over \mathbb{F}_p^n for $p \geq 3$.

Image: A math a math

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri.

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

These MPC-/FHE-/ZK-friendly symmetric primitives are characterized by the following:

- they are usually defined over prime fields \mathbb{F}_p^t for a huge prime $p \approx 2^{128}$ or more;
- they can be described via a simple algebraic expression over their natural field.

Goal: find invertible quadratic low-multiplicative functions over \mathbb{F}_p^n for $p \ge 3$.

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear. Another approach is inspired from

Daemen

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis

hD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/.

where are introduced shift-invariant functions, i.e.,

Definition [Shift-Invariant Map]

A map ${\mathcal S}$ is called **shift-invariant** if

 $S \circ \Pi = \Pi \circ S$

for every Π shifting of the arguments.

July 26th. 2023

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear.

Another approach is inspired from

Daemen,

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis PhD Thesis K III euven (1995), http://ida.noekeon.org/

where are in

Definition [Shift-Invariant Map]

A map ${\mathcal S}$ is called **shift-invariant** if

 $S \circ \Pi = \Pi \circ S$

for every Π shifting of the arguments.

Invertible Quadratic Functions Multiple Maps

G. Giordan L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear. Another approach is inspired from

Daemen,

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis

where are int

Definition [Shift-Invariant Map]

A map ${\mathcal S}$ is called **shift-invariant** if

 $S \circ \Pi = \Pi \circ S$

for every Π shifting of the arguments.

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear. Another approach is inspired from

🚺 Daemen, J

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis

PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/.

where are introduced shift-invariant functions, i.e.,

Definition [Shift-Invariant Map]

A map ${\mathcal S}$ is called **shift-invariant** if

 $S \circ \Pi = \Pi \circ S$

for every Π shifting of the arguments.

Invertible Quadratic Functions Multiple Maps

G. Giordan L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear. Another approach is inspired from

🥫 Daemen, J

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis

PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/.

where are introduced shift-invariant functions, i.e.,

Definition [Shift-Invariant Map]

A map ${\mathcal S}$ is called ${\mbox{shift-invariant}}$ if

$$\mathcal{S} \circ \Pi = \Pi \circ \mathcal{S}$$

for every Π shifting of the arguments.

< D > < B > < B >

Invertible Quadratic Functions Multiple Maps

G. Giordan L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Low-Multiplicative Non-Linear Functions

Some examples of this kind of functions over prime fields are known, but their efficiency for the schemes mentioned before is not clear. Another approach is inspired from

🥫 Daemen, J

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis

PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/.

where are introduced shift-invariant functions, i.e.,

Definition [Shift-Invariant Map]

A map ${\mathcal S}$ is called ${\mbox{shift-invariant}}$ if

$$\mathcal{S} \circ \Pi = \Pi \circ \mathcal{S}$$

for every Π shifting of the arguments.

< D > < B > < B >

Shift-Invariant Liftings

S. Onofri. M Pedicini

Invertible Quadratic Functions

> Multiple Maps

Motivation and Related Works

$$S_F(x_0, ..., x_{n-1}) = y_0 ||y_1|| ... ||y_{n-1} \text{ such that } y_i = F(x_i, ..., x_{i+m-1})$$

(日)

Shift-Invariant Liftings

In

L. Grassi, S. Onofri, M. Pedicini

Invertible Quadratic

Functions Multiple Maps

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \mathbb{F}_p^n - Application to Poseidon IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022).

the authors studied the invertibility of shift-invariant lifting functions

Definition [Shift-Invariant lifting]

Let $p \geq 3$ be a prime integer, and let $1 \leq m \leq n$. Let $F : \mathbb{F}_p^n \to \mathbb{F}_p$ be a local map. The *shift-invariant lifting* (SI–lifting) function \mathcal{S}_F over \mathbb{F}_p^n induced by the local map F is defined as

$$S_F(x_0, ..., x_{n-1}) = y_0 ||y_1|| ... ||y_{n-1} \text{ such that } y_i = F(x_i, ..., x_{i+m-1})$$

where indices i of x_i are taken modulo n.

where S_F is induced over \mathbb{F}_p^n by a *quadratic* local map.

< ロ > < 同 > < 回 > < 回 >

Shift-Invariant Liftings

In

L. Grassi, S. Onofri, M. Pedicini

Invertible Quadratic Functions

> Multiple Maps

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over ℝⁿ_p - Application to Poseidon IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022).

the authors studied the invertibility of shift-invariant lifting functions

Definition [Shift-Invariant lifting]

Let $p \ge 3$ be a prime integer, and let $1 \le m \le n$. Let $F : \mathbb{F}_p^m \to \mathbb{F}_p$ be a local map. The *shift-invariant lifting* (SI-lifting) function \mathcal{S}_F over \mathbb{F}_p^n induced by the local map F is defined as

$$S_F(x_0, ..., x_{n-1}) = y_0 ||y_1|| ... ||y_{n-1}$$
 such that $y_i = F(x_i, ..., x_{i+m-1})$

where indices i of x_i are taken modulo n.

where S_F is induced over \mathbb{F}_p^n by a *quadratic* local map.

Shift-Invariant Liftings

In

L. Grassi, S. Onofri, M. Pedicini

Invertible Quadratic Functions

> Multiple Maps

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

L. Grassi, S. Onofri, M. Pedicini, L. Sozzi Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over ℝⁿ_p - Application to Poseidon IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022).

the authors studied the invertibility of shift-invariant lifting functions

Definition [Shift-Invariant lifting]

Let $p \ge 3$ be a prime integer, and let $1 \le m \le n$. Let $F : \mathbb{F}_p^m \to \mathbb{F}_p$ be a local map. The *shift-invariant lifting* (SI-lifting) function \mathcal{S}_F over \mathbb{F}_p^n induced by the local map F is defined as

$$\mathcal{S}_F(x_0, \dots, x_{n-1}) = y_0 \|y_1\| \dots \|y_{n-1}$$
 such that $y_i = F(x_i, \dots, x_{i+m-1})$

where indices i of x_i are taken modulo n.

where S_F is induced over \mathbb{F}_p^n by a *quadratic* local map.

< ロ > < 同 > < 回 > < 回 >

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri

M. Pedicin

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Their result is

heorem [Th 2-3]

Let $p \ge 3$ be a prime integer, and let $1 \le m \le n$. Given $F : \mathbb{F}_p^m \to \mathbb{F}_p$ a quadratic local map, then the SI-lifting function \mathcal{S}_F induced by F over \mathbb{F}_p^n is not invertible neither if m = 2 and $n \ge 3$ nor if m = 3 and $n \ge 5$.

臣

<ロト < 回ト < 巨ト < 巨ト

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

M. Pedicin

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Their result is

heorem [Th 2-3]

Let $p \ge 3$ be a prime integer, and let $1 \le m \le n$. Given $F : \mathbb{F}_p^m \to \mathbb{F}_p$ a quadratic local map, then the SI-lifting function \mathcal{S}_F induced by F over \mathbb{F}_p^n is not invertible neither if m = 2 and $n \ge 3$ nor if m = 3 and $n \ge 5$.

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Their result is

Theorem [Th 2-3]

Let $p \ge 3$ be a prime integer, and let $1 \le m \le n$. Given $F : \mathbb{F}_p^m \to \mathbb{F}_p$ a quadratic local map, then the SI-lifting function \mathcal{S}_F induced by F over \mathbb{F}_p^n is not invertible neither if m = 2 and $n \ge 3$ nor if m = 3 and $n \ge 5$.

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_{p}^{n} via shift-invariant functions induced by multiple local maps.

he general scheme is

Definition[Cyclic (Alternating) Shift-Invariant Lifting]

Let $p \geq 3$ be a prime integer and let $1 \leq m, h \leq n$. For each $i \in \{0, 1, \ldots, h-1\}$, let $F_i : \mathbb{F}_p^m \to \mathbb{F}_p$ be a local map. The cyclic (or alternating) shift-invariant lifting (CSI-lifting or ASI-lifting) function $S_{F_0,F_1,\ldots,F_{h-1}}$ induced by the family of local maps (F_0,\ldots,F_{h-1}) over \mathbb{F}_p^n is defined as

$$S(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}$$
 where
$$y_i := F_{i \mod h}(x_i, x_{i+1}, \dots, x_{i+m-1})$$

for each $i \in \{0, 1, ..., n-1\}$, where the sub-indices are taken modulo n.

< □ > < 同 > < 回 > < 回 > < 回

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About th Proof

Remarks

Open Problems and Future Work

References

Our Contribution

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_p^n via shift-invariant functions induced by multiple local maps. The general scheme is

Definition[Cyclic (Alternating) Shift-Invariant Lifting]

Let $p \geq 3$ be a prime integer and let $1 \leq m, h \leq n$. For each $i \in \{0, 1, \ldots, h-1\}$, let $F_i : \mathbb{F}_p^m \to \mathbb{F}_p$ be a local map. The cyclic (or alternating) shift-invariant lifting (CSI-lifting or ASI-lifting) function $S_{F_0,F_1,\ldots,F_{h-1}}$ induced by the family of local maps (F_0,\ldots,F_{h-1}) over \mathbb{F}_p^n is defined as

$$S(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}$$
 where
$$y_i := F_{i \mod h}(x_i, x_{i+1}, \dots, x_{i+m-1})$$

for each $i \in \{0, 1, \dots, n-1\}$, where the sub-indices are taken modulo n.

< □ > < 同 > < 回 > < 回 > < 回

Invertible Quadratic Functions Multiple Maps

Our Contribution

- G. Giordani L. Grassi, S. Onofri,
- M. Pedicin

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_p^n via shift-invariant functions induced by multiple local maps. The general scheme is

Definition[Cyclic (Alternating) Shift-Invariant Lifting]

Let $p \geq 3$ be a prime integer and let $1 \leq m, h \leq n$. For each $i \in \{0, 1, \ldots, h-1\}$, let $F_i : \mathbb{F}_p^m \to \mathbb{F}_p$ be a local map. The cyclic (or alternating) shift-invariant lifting (CSI-lifting or ASI-lifting) function $S_{F_0,F_1,\ldots,F_{h-1}}$ induced by the family of local maps (F_0,\ldots,F_{h-1}) over \mathbb{F}_p^n is defined as

$$S(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}$$
 where
$$y_i := F_{i \mod h}(x_i, x_{i+1}, \dots, x_{i+m-1})$$

for each $i \in \{0, 1, \dots, n-1\}$, where the sub-indices are taken modulo n.

< ロ > < 同 > < 回 > < 回 >

Invertible Quadratic Functions Multiple Maps

Our Contribution

- G. Giordani L. Grassi, S. Onofri,
- M. Pedicin

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Multiple Local Maps

We analyzed the possibility to set up invertible quadratic functions over \mathbb{F}_p^n via shift-invariant functions induced by multiple local maps. The general scheme is

Definition[Cyclic (Alternating) Shift-Invariant Lifting]

Let $p \geq 3$ be a prime integer and let $1 \leq m, h \leq n$. For each $i \in \{0, 1, \ldots, h-1\}$, let $F_i : \mathbb{F}_p^m \to \mathbb{F}_p$ be a local map. The cyclic (or alternating) shift-invariant lifting (CSI-lifting or ASI-lifting) function $S_{F_0,F_1,\ldots,F_{h-1}}$ induced by the family of local maps (F_0,\ldots,F_{h-1}) over \mathbb{F}_p^n is defined as

$$S(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}$$
 where
$$y_i := F_{i \mod h}(x_i, x_{i+1}, \dots, x_{i+m-1})$$

for each $i \in \{0, 1, \dots, n-1\}$, where the sub-indices are taken modulo n.

< ロ > < 同 > < 回 > < 回 >

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

We limited ourselves to consider the case h = 2 (ASI), i.e., functions $S_{F_0,F_1}(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}|$ where

$$y_{i} = \begin{cases} F_{0}(x_{i}, x_{i+1}, \dots, x_{i+m-1}) & \text{if } i \text{ is even} \\ F_{1}(x_{i}, x_{i+1}, \dots, x_{i+m-1}) & \text{if } i \text{ is odd} \end{cases}$$
(1)

for each $i \in \{0, 1, \dots, n-1\}$, where the sub-indices of x_i are taken modulo n.

lotatio<u>n</u>

We denote with $\alpha_{i_0,i_1;j}$ the coefficient of the monomial of degree i_0 in x_0 and i_1 in x_1 of F_j with $j \in \{0,1\}$.

Invertible Quadratic Functions Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

We limited ourselves to consider the case h = 2 (ASI), i.e., functions $S_{F_0,F_1}(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}|$ where

$$y_{i} = \begin{cases} F_{0}(x_{i}, x_{i+1}, \dots, x_{i+m-1}) & \text{if } i \text{ is even} \\ F_{1}(x_{i}, x_{i+1}, \dots, x_{i+m-1}) & \text{if } i \text{ is odd} \end{cases}$$
(1)

for each $i \in \{0, 1, \dots, n-1\}$, where the sub-indices of x_i are taken modulo n.

Jotation

We denote with $\alpha_{i_0,i_1;j}$ the coefficient of the monomial of degree i_0 in x_0 and i_1 in x_1 of F_j with $j \in \{0,1\}$.

8/17

Invertible Quadratic Functions Multiple Maps

G. Giordani L. Grassi, S. Onofri, M. Pedicin

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

We limited ourselves to consider the case h = 2 (ASI), i.e., functions $S_{F_0,F_1}(x_0, x_1, \dots, x_{n-1}) = y_0 ||y_1|| \dots ||y_{n-1}|$ where

$$y_{i} = \begin{cases} F_{0}(x_{i}, x_{i+1}, \dots, x_{i+m-1}) & \text{if } i \text{ is even} \\ F_{1}(x_{i}, x_{i+1}, \dots, x_{i+m-1}) & \text{if } i \text{ is odd} \end{cases}$$
(1)

for each $i \in \{0, 1, \dots, n-1\}$, where the sub-indices of x_i are taken modulo n.

Notation

We denote with $\alpha_{i_0,i_1;j}$ the coefficient of the monomial of degree i_0 in x_0 and i_1 in x_1 of F_j with $j \in \{0,1\}$.

Invertible Quadratic Functions Multiple Maps

G. Giordan L. Grassi,

S. Onofri, M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Result of Our Study

Our result is the following

Theorem pt.1

Let $p \geq 3$ be a prime integer, and let $n \geq 3$. Let $F_0, F_1 : \mathbb{F}_p^2 \to \mathbb{F}_p$ be two functions. Let $S_{F_0, F_1} : \mathbb{F}_p^n \to \mathbb{F}_p$ be defined as $S_{F_0, F_1}(x_0, x_1, \dots, x_{n-1}) := y_0 ||y_1|| \dots ||y_{n-1}$ where

$$y_i = F_{i \mod 2}(x_i, x_{i+1}, \dots, x_{i+m-1})$$
 for each $i \in \{0, 1, \dots, n-1\}$.

hen:

- if F_0 and F_1 are both of degree 2, then S_{F_0,F_1} is never invertible;
- if F_0 is linear and F_1 is quadratic (or vice-versa), then S_{F_0,F_1} is invertible for $n \ge 4$ if and only if it is a Feistel Type-II function, e.g.,

$$x_i = \begin{cases} x_{i-1} & \text{if } i \text{ odd} \\ x_{i-1} + x_{i-2}^2 & \text{if } i \text{ even.} \end{cases}$$

イロト イロト イヨト イヨト

臣

Invertible Quadratic Functions Multiple Maps

G. Giordan

L. Grassi

S. Onorri,

WI. Fedicin

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Result of Our Study

Our result is the following

Theorem pt.1

Let $p \geq 3$ be a prime integer, and let $n \geq 3$. Let $F_0, F_1 : \mathbb{F}_p^2 \to \mathbb{F}_p$ be two functions. Let $\mathcal{S}_{F_0,F_1} : \mathbb{F}_p^n \to \mathbb{F}_p$ be defined as $\mathcal{S}_{F_0,F_1}(x_0, x_1, \ldots, x_{n-1}) := y_0 ||y_1|| \ldots ||y_{n-1}$ where

 $y_i = F_{i \mod 2}(x_i, x_{i+1}, \dots, x_{i+m-1})$ for each $i \in \{0, 1, \dots, n-1\}$.

Then:

• if F_0 and F_1 are both of degree 2, then S_{F_0,F_1} is never invertible;

■ if F_0 is linear and F_1 is quadratic (or vice-versa), then S_{F_0,F_1} is invertible for $n \ge 4$ if and only if it is a Feistel Type-II function, e.g.,

$$u_i = \begin{cases} x_{i-1} & \text{if } i \text{ odd} \\ x_{i-1} + x_{i-2}^2 & \text{if } i \text{ even.} \end{cases}$$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Э

Invertible Quadratic Functions Multiple Maps

G. Giordan

S. Onofri.

M. Pedicin

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Result of Our Study

Our result is the following

Theorem pt.1

Let $p \geq 3$ be a prime integer, and let $n \geq 3$. Let $F_0, F_1 : \mathbb{F}_p^2 \to \mathbb{F}_p$ be two functions. Let $\mathcal{S}_{F_0,F_1} : \mathbb{F}_p^n \to \mathbb{F}_p$ be defined as $\mathcal{S}_{F_0,F_1}(x_0, x_1, \ldots, x_{n-1}) := y_0 ||y_1|| \ldots ||y_{n-1}$ where

$$y_i = F_{i \mod 2}(x_i, x_{i+1}, \dots, x_{i+m-1})$$
 for each $i \in \{0, 1, \dots, n-1\}$

Then:

- if F_0 and F_1 are both of degree 2, then S_{F_0,F_1} is never invertible;
- if F_0 is linear and F_1 is quadratic (or vice-versa), then S_{F_0,F_1} is invertible for $n \ge 4$ if and only if it is a Feistel Type-II function, e.g.,

$$\gamma_i = egin{cases} x_{i-1} & ext{if } i ext{ odd} \\ x_{i-1} + x_{i-2}^2 & ext{if } i ext{ even.} \end{cases}$$

イロト イヨト イヨト

臣

Invertible Quadratic Functions Multiple Maps

G. Giordan

L. Grassi, S. Onofri.

M Pedicin

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Our result is the following

Theorem pt.1

Let $p \geq 3$ be a prime integer, and let $n \geq 3$. Let $F_0, F_1 : \mathbb{F}_p^2 \to \mathbb{F}_p$ be two functions. Let $\mathcal{S}_{F_0,F_1} : \mathbb{F}_p^n \to \mathbb{F}_p$ be defined as $\mathcal{S}_{F_0,F_1}(x_0, x_1, \ldots, x_{n-1}) := y_0 ||y_1|| \ldots ||y_{n-1}$ where

$$y_i = F_{i \mod 2}(x_i, x_{i+1}, \dots, x_{i+m-1}) \quad \text{for each } i \in \{0, 1, \dots, n-1\}$$

Result of Our Study

Then:

- if F_0 and F_1 are both of degree 2, then S_{F_0,F_1} is never invertible;
- if F_0 is linear and F_1 is quadratic (or vice-versa), then S_{F_0,F_1} is invertible for $n \ge 4$ if and only if it is a Feistel Type-II function, e.g.,

$$y_i = \begin{cases} x_{i-1} & \text{if } i \text{ odd} \\ x_{i-1} + x_{i-2}^2 & \text{if } i \text{ even.} \end{cases}$$

Invertible Quadratic Functions -Multiple Maps

G. Giordan

S. Onofri.

3. Onoiri,

M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

heorem pt.2

If n = 3, S_{F_0,F_1} is invertible *also* in the case in which F_0 is a linear function of the form $F_0(x_0, x_1) = \alpha_{1,0;0} \cdot x_0 + \alpha_{0,1;0} \cdot x_1$ with $\alpha_{1,0;0}, \alpha_{0,1;0} \neq 0$, and F_1 is a quadratic function of the form $F_1(x_0, x_1) = \alpha_1 \left(\frac{\alpha_{0,1;0}}{\alpha_{0,1;0}} + x_0 - \frac{\alpha_{1,0;0}}{\alpha_{0,1;0}} + x_1\right)^2 + \alpha_{1,0;1} \cdot x_0 + \alpha_{2,1} \cdot x_0$ where $\alpha \in \mathbb{R}$.

$$\begin{split} F_1(x_0, x_1) &= \gamma \cdot \left(\frac{\alpha_{0,1,0}}{\alpha_{1,0,0}} \cdot x_0 - \frac{\alpha_{1,0,0}}{\alpha_{0,1,0}} \cdot x_1 \right) + \alpha_{1,0;1} \cdot x_0 + \alpha_{0,1;1} \cdot x_1, \text{ where } \gamma \in \mathbb{F}_p \\ \text{and } \alpha_{1,0;1} \cdot \alpha_{1,0;0}^2 &\neq -\alpha_{0,1;1} \cdot \alpha_{0,1;0}^2. \end{split}$$

Invertible Quadratic Functions Multiple Maps

G. Giordani

L. Grassi

S. Onofri

M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Theorem pt.2

If n = 3, S_{F_0,F_1} is invertible *also* in the case in which F_0 is a linear function of the form $F_0(x_0, x_1) = \alpha_{1,0;0} \cdot x_0 + \alpha_{0,1;0} \cdot x_1$ with $\alpha_{1,0;0}, \alpha_{0,1;0} \neq 0$, and F_1 is a quadratic function of the form $F_1(x_0, x_1) = \gamma \cdot \left(\frac{\alpha_{0,1;0}}{\alpha_{1,0;0}} \cdot x_0 - \frac{\alpha_{1,0;0}}{\alpha_{0,1;0}} \cdot x_1\right)^2 + \alpha_{1,0;1} \cdot x_0 + \alpha_{0,1;1} \cdot x_1$, where $\gamma \in \mathbb{F}_{\rho}$

and $\alpha_{1,0;1} \cdot \alpha_{1,0;0}^2 \neq -\alpha_{0,1;1} \cdot \alpha_{0,1;0}^2$.

イロト 不得 トイヨト イヨト

10/17

Invertible Quadratic Functions -Multiple Maps

G. Giordani

L. Grassi,

M Pedicini

w. redicim

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

The main tools we used to prove the theorem are the following:

The shift invariance;

■ The concept of *collision*: the proof is by finding collisions

Definition [Collision]

Let \mathbb{F} be a generic field, and let \mathcal{F} be a function defined over \mathbb{F}^n for $n \ge 1$. A pair $x, y \in \mathbb{F}_n^n$ is a collision for \mathcal{F} if and only if $\mathcal{F}(x) = \mathcal{F}(y)$ and $x \neq y$.

The following lemma

emma

Let $p \ge 3$ be a prime integer, and let $n \ge 2$ be an integer. Let $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^2 \to \mathbb{F}_p$ be $1 \le h \le n$ quadratic functions. If there exists $l \le h$ such that the quadratic function F_l depends on a single variable, then the cyclic SI-lifting $\mathcal{S}_{F_0,F_1,\ldots,F_{h-1}}$ defined over \mathbb{F}_p^n for $n \ge 3$ is **not** invertible.

Invertible Quadratic Functions -Multiple Maps

G. Giordani

S. Onofri.

M Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

The main tools we used to prove the theorem are the following:

The shift invariance;

The concept of *collision*: the proof is by finding collisions

Definition [Collision]

Let \mathbb{F} be a generic field, and let \mathcal{F} be a function defined over \mathbb{F}^n for $n \ge 1$. A pair $x, y \in \mathbb{F}_p^n$ is a collision for \mathcal{F} if and only if $\mathcal{F}(x) = \mathcal{F}(y)$ and $x \ne y$.

The following lemma

emma

Let $p \ge 3$ be a prime integer, and let $n \ge 2$ be an integer. Let $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^2 \to \mathbb{F}_p$ be $1 \le h \le n$ quadratic functions. If there exists $l \le h$ such that the quadratic function F_l depends on a single variable, then the cyclic SI-lifting $S_{F_0,F_1,\ldots,F_{h-1}}$ defined over \mathbb{F}_p^n for $n \ge 3$ is **not** invertible.

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri.

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

The main tools we used to prove the theorem are the following:

The shift invariance;

The concept of *collision*: the proof is by finding collisions

Definition [Collision]

Let \mathbb{F} be a generic field, and let \mathcal{F} be a function defined over \mathbb{F}^n for $n \ge 1$. A pair $x, y \in \mathbb{F}_p^n$ is a collision for \mathcal{F} if and only if $\mathcal{F}(x) = \mathcal{F}(y)$ and $x \ne y$.

The following lemma

emma

Let $p \ge 3$ be a prime integer, and let $n \ge 2$ be an integer. Let $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^2 \to \mathbb{F}_p$ be $1 \le h \le n$ quadratic functions. If there exists $l \le h$ such that the quadratic function F_l depends on a single variable, then the cyclic SI-lifting $S_{F_0,F_1,\ldots,F_{h-1}}$ defined over \mathbb{F}_p^n for $n \ge 3$ is **not** invertible.

11/17

Invertible Quadratic Functions -Multiple Maps

G. Giordani

L. Grassi,

S. Onofri

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

The main tools we used to prove the theorem are the following:

- The shift invariance;
- The concept of *collision*: the proof is by finding collisions

Definition [Collision]

Let \mathbb{F} be a generic field, and let \mathcal{F} be a function defined over \mathbb{F}^n for $n \ge 1$. A pair $x, y \in \mathbb{F}_p^n$ is a collision for \mathcal{F} if and only if $\mathcal{F}(x) = \mathcal{F}(y)$ and $x \ne y$.

The following lemma

emma

Let $p \ge 3$ be a prime integer, and let $n \ge 2$ be an integer. Let $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^2 \to \mathbb{F}_p$ be $1 \le h \le n$ quadratic functions. If there exists $l \le h$ such that the quadratic function F_l depends on a single variable, then the cyclic SI-lifting $S_{F_0,F_1,\ldots,F_{h-1}}$ defined over \mathbb{F}_p^n for $n \ge 3$ is **not** invertible.

Invertible Quadratic Functions -Multiple Maps

G. Giordani

- L. Grassi,
- S. Onofri,
- M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

The main tools we used to prove the theorem are the following:

- The shift invariance;
- The concept of *collision*: the proof is by finding collisions

Definition [Collision]

Let \mathbb{F} be a generic field, and let \mathcal{F} be a function defined over \mathbb{F}^n for $n \ge 1$. A pair $x, y \in \mathbb{F}_p^n$ is a collision for \mathcal{F} if and only if $\mathcal{F}(x) = \mathcal{F}(y)$ and $x \ne y$.

The following lemma

Lemma

Let $p \ge 3$ be a prime integer, and let $n \ge 2$ be an integer. Let $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^2 \to \mathbb{F}_p$ be $1 \le h \le n$ quadratic functions. If there exists $l \le h$ such that the quadratic function F_l depends on a single variable, then the cyclic SI-lifting $\mathcal{S}_{F_0,F_1,\ldots,F_{h-1}}$ defined over \mathbb{F}_p^n for $n \ge 3$ is **not** invertible.

イロト イヨト イヨト

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

.emma

Consider the case with F_0 , F_1 two quadratic functions such that $\alpha_{1,1,0} \neq 0$, $\alpha_{1,1;1} \neq 0$ and $n \geq 4$ even number. Then S_{F_0,F_1} over \mathbb{F}_p^n is not invertible.

Proof: Inputs $(x_0, x_1, x_2, x_3, \dots, x_{n-1})$ and $(y_0, y_1, y_2, y_3, \dots, y_{n-1}) = (x_0, x_1, y_2, x_3, \dots, x_{n-1}), y_2 \neq x_2.$

 $\implies S_{F_0,F_1}(x_0, x_1, x_2, x_3, \dots, x_{n-1}) = S_{F_0,F_1}(x_0, x_1, y_2, x_3, \dots, x_{n-1}) \text{ reduces to}$ the two equations $F_1(x_1, x_2) = F_1(x_1, y_2)$ and $F_0(x_2, x_3) = F_0(y_2, x_3)$.

These two equations are:

$$\alpha_{0,2;1} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;1}}{2} \cdot d_2 \cdot s_1 + \alpha_{0,1;1} \cdot d_2 = 0,$$

where $d_i = x_i - y_i$ and $s_i = x_i + y_i$.

(日)

2/17

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Lemma

Consider the case with F_0 , F_1 two quadratic functions such that $\alpha_{1,1;0} \neq 0$, $\alpha_{1,1;1} \neq 0$ and $n \geq 4$ even number. Then S_{F_0,F_1} over \mathbb{F}_p^n is not invertible.

Proof: Inputs $(x_0, x_1, x_2, x_3, \dots, x_{n-1})$ and $(y_0, y_1, y_2, y_3, \dots, y_{n-1}) = (x_0, x_1, y_2, x_3, \dots, x_{n-1}), y_2 \neq x_2.$

 $\implies S_{F_0,F_1}(x_0, x_1, x_2, x_3, \dots, x_{n-1}) = S_{F_0,F_1}(x_0, x_1, y_2, x_3, \dots, x_{n-1}) \text{ reduces to}$ the two equations $F_1(x_1, x_2) = F_1(x_1, y_2)$ and $F_0(x_2, x_3) = F_0(y_2, x_3)$.

These two equations are:

$$\alpha_{0,2;1} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;1}}{2} \cdot d_2 \cdot s_1 + \alpha_{0,1;1} \cdot d_2 = 0,$$

$$\alpha_{2,0;0} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;0}}{2} \cdot d_2 \cdot s_3 + \alpha_{1,0;0} \cdot d_2 = 0,$$

where $d_i = x_i - y_i$ and $s_i = x_i + y_i$.

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

wi. r culcii

and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Lemma

Consider the case with F_0 , F_1 two quadratic functions such that $\alpha_{1,1;0} \neq 0$, $\alpha_{1,1;1} \neq 0$ and $n \geq 4$ even number. Then S_{F_0,F_1} over \mathbb{F}_p^n is not invertible.

Proof: Inputs $(x_0, x_1, x_2, x_3, \dots, x_{n-1})$ and $(y_0, y_1, y_2, y_3, \dots, y_{n-1}) = (x_0, x_1, y_2, x_3, \dots, x_{n-1}), y_2 \neq x_2.$

 $\implies \mathcal{S}_{F_0,F_1}(x_0, x_1, x_2, x_3, \dots, x_{n-1}) = \mathcal{S}_{F_0,F_1}(x_0, x_1, y_2, x_3, \dots, x_{n-1}) \text{ reduces to}$ the two equations $F_1(x_1, x_2) = F_1(x_1, y_2)$ and $F_0(x_2, x_3) = F_0(y_2, x_3)$.

These two equations are:

$$\alpha_{0,2;1} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;1}}{2} \cdot d_2 \cdot s_1 + \alpha_{0,1;1} \cdot d_2 = 0,$$

$$\alpha_{2,0;0} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;0}}{2} \cdot d_2 \cdot s_3 + \alpha_{1,0;0} \cdot d_2 = 0,$$

where $d_i = x_i - y_i$ and $s_i = x_i + y_i$.

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

M. Pedicir

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Lemma

Consider the case with F_0 , F_1 two quadratic functions such that $\alpha_{1,1;0} \neq 0$, $\alpha_{1,1;1} \neq 0$ and $n \geq 4$ even number. Then S_{F_0,F_1} over \mathbb{F}_p^n is not invertible.

Proof: Inputs $(x_0, x_1, x_2, x_3, \dots, x_{n-1})$ and $(y_0, y_1, y_2, y_3, \dots, y_{n-1}) = (x_0, x_1, y_2, x_3, \dots, x_{n-1}), y_2 \neq x_2.$

 $\implies \mathcal{S}_{F_0,F_1}(x_0, x_1, x_2, x_3, \dots, x_{n-1}) = \mathcal{S}_{F_0,F_1}(x_0, x_1, y_2, x_3, \dots, x_{n-1}) \text{ reduces to}$ the two equations $F_1(x_1, x_2) = F_1(x_1, y_2)$ and $F_0(x_2, x_3) = F_0(y_2, x_3)$.

These two equations are:

$$\alpha_{0,2;1} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;1}}{2} \cdot d_2 \cdot s_1 + \alpha_{0,1;1} \cdot d_2 = 0,$$

$$\alpha_{2,0;0} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;0}}{2} \cdot d_2 \cdot s_3 + \alpha_{1,0;0} \cdot d_2 = 0,$$

where $d_i = x_i - y_i$ and $s_i = x_i + y_i$.

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Lemma

Consider the case with F_0 , F_1 two quadratic functions such that $\alpha_{1,1;0} \neq 0$, $\alpha_{1,1;1} \neq 0$ and $n \geq 4$ even number. Then \mathcal{S}_{F_0,F_1} over \mathbb{F}_p^n is not invertible.

Proof: Inputs $(x_0, x_1, x_2, x_3, \dots, x_{n-1})$ and $(y_0, y_1, y_2, y_3, \dots, y_{n-1}) = (x_0, x_1, y_2, x_3, \dots, x_{n-1}), y_2 \neq x_2.$

 $\implies \mathcal{S}_{F_0,F_1}(x_0, x_1, x_2, x_3, \dots, x_{n-1}) = \mathcal{S}_{F_0,F_1}(x_0, x_1, y_2, x_3, \dots, x_{n-1}) \text{ reduces to}$ the two equations $F_1(x_1, x_2) = F_1(x_1, y_2)$ and $F_0(x_2, x_3) = F_0(y_2, x_3)$.

These two equations are:

$$\alpha_{0,2;1} \cdot \boldsymbol{d}_2 \cdot \boldsymbol{s}_2 + \frac{\alpha_{1,1;1}}{2} \cdot \boldsymbol{d}_2 \cdot \boldsymbol{s}_1 + \alpha_{0,1;1} \cdot \boldsymbol{d}_2 = \boldsymbol{0},$$

$$\alpha_{2,0;0} \cdot d_2 \cdot s_2 + \frac{\alpha_{1,1;0}}{2} \cdot d_2 \cdot s_3 + \alpha_{1,0;0} \cdot d_2 = 0,$$

where $d_i = x_i - y_i$ and $s_i = x_i + y_i$.

< ロ > < 同 > < 回 > < 回 >

Invertible Quadratic Functions -Multiple Maps

About the Proof

$$\begin{pmatrix} \frac{\alpha_{1,1;1}}{2} & 0\\ 0 & \frac{\alpha_{1,1;0}}{2} \end{pmatrix} \times \begin{pmatrix} s_1\\ s_3 \end{pmatrix} = -\begin{pmatrix} \alpha_{0,2;1} \cdot s_2 + \alpha_{0,1;1}\\ \alpha_{2,0;0} \cdot s_2 + \alpha_{1,0;0} \end{pmatrix}$$

臣

Image: A math a math

Invertible Quadratic Functions -Multiple Maps

About the Proof

Since $d_2 \neq 0$, the system can be written as

$$\begin{pmatrix} \frac{\alpha_{1,1;1}}{2} & \mathbf{0} \\ \mathbf{0} & \frac{\alpha_{1,1;0}}{2} \end{pmatrix} \times \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_3 \end{pmatrix} = - \begin{pmatrix} \alpha_{0,2;1} \cdot \mathbf{s}_2 + \alpha_{0,1;1} \\ \alpha_{2,0;0} \cdot \mathbf{s}_2 + \alpha_{1,0;0} \end{pmatrix}$$

臣

3

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

M. Pedicir

Motivation and Related Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Since $d_2 \neq 0$, the system can be written as

$$\begin{pmatrix} \frac{\alpha_{1,1;1}}{2} & \mathbf{0} \\ \mathbf{0} & \frac{\alpha_{1,1;0}}{2} \end{pmatrix} \times \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_3 \end{pmatrix} = - \begin{pmatrix} \alpha_{0,2;1} \cdot \mathbf{s}_2 + \alpha_{0,1;1} \\ \alpha_{2,0;0} \cdot \mathbf{s}_2 + \alpha_{1,0;0} \end{pmatrix}$$

We can see that the determinant is never zero in this case, so the system is compatible. But this means that there is a collision.

3/17

Invertible Quadratic Functions -Multiple Maps

- G. Giordani L. Grassi, S. Onofri.
- M. Pedicini

Motivation and Relate Works

Our Contri bution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Considerations

- Due to the definition of the ASI-lifting, we needed to prove separately the case with *n* even and *n* odd, because if *n* is odd, the numbers of the repetitions of F₀ and F₁ are different;
- CAREFUL: When *n* is odd, we considered both the cases with F_0 linear and F_1 quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions: if we relax the conditions over the two functions to a linear one and a quadratic one, we get
 - If for $n \ge 4$ the already known Type-II Feistel schemes;
 - for n = 3 and if F_0 is the linear function, one more type of invertible ASI-lifting.

14 / 17

(日)

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Considerations

- Due to the definition of the ASI-lifting, we needed to prove separately the case with *n* even and *n* odd, because if *n* is odd, the numbers of the repetitions of *F*₀ and *F*₁ are different;
- CAREFUL: When n is odd, we considered both the cases with F_0 linear and F_1 quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions: if we relax the conditions over the two functions to a linear one and a quadratic one, we get
 - If for $n \ge 4$ the already known Type-II Feistel schemes;
 - for n = 3 and if F_0 is the linear function, one more type of invertible ASI-lifting.

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation

and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Considerations

- Due to the definition of the ASI-lifting, we needed to prove separately the case with n even and n odd, because if n is odd, the numbers of the repetitions of F_0 and F_1 are different;
- CAREFUL: When n is odd, we considered both the cases with F₀ linear and F₁ quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions: if we relax the conditions over the two functions to a linear one and a quadratic one, we get
 - If for $n \ge 4$ the already known Type-II Feistel schemes;
 - If or n = 3 and if F_0 is the linear function, one more type of invertible ASI-lifting.

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri, M. Pedicini

Motivation and Related

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Considerations

- Due to the definition of the ASI-lifting, we needed to prove separately the case with *n* even and *n* odd, because if *n* is odd, the numbers of the repetitions of *F*₀ and *F*₁ are different;
- CAREFUL: When n is odd, we considered both the cases with F₀ linear and F₁ quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions: if we relax the conditions over the two functions to a linear one and a quadratic one, we get
 - **1** for $n \ge 4$ the already known Type-II Feistel schemes;
 - If or n = 3 and if F_0 is the linear function, one more type of invertible ASI-lifting.

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

M. Pedicini

Motivation and Related Works

Our Contri bution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Considerations

- Due to the definition of the ASI-lifting, we needed to prove separately the case with n even and n odd, because if n is odd, the numbers of the repetitions of F_0 and F_1 are different;
- CAREFUL: When n is odd, we considered both the cases with F₀ linear and F₁ quadratic and vice versa, because these cases are NOT equivalent
- We have basically an impossibility result, with few exceptions: if we relax the conditions over the two functions to a linear one and a quadratic one, we get
 - **1** for $n \ge 4$ the already known Type-II Feistel schemes;
 - **2** for n = 3 and if F_0 is the linear function, one more type of invertible ASI-lifting.

< ロ > < 同 > < 回 > < 回 >

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About th Proof

Remarks

Open Problems and Future Work

References

Possible Generalizations

There are two main ways in which this work can be generalized:

- by considering local maps $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^m \to \mathbb{F}_p$ defined over a larger input domain by taking $m \ge 3$;
- In the current definition, the function F takes in input consecutive elements $x_i, x_{i+1}, \ldots, x_{i+m-1}$. A possible way to generalize such definition consists of allowing for non-consecutive inputs.

イロト イヨト イヨト イ

Invertible Quadratic Functions -Multiple Maps

- G. Giordani, L. Grassi, S. Onofri,
- M. Pedicini
- Motivation and Related Works
- Our Contribution and Our Result
- About th Proof
- Remarks

Open Problems and Future Work

References

Possible Generalizations

There are two main ways in which this work can be generalized:

- by considering local maps $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^m \to \mathbb{F}_p$ defined over a larger input domain by taking $m \ge 3$;
- In the current definition, the function F takes in input consecutive elements $x_i, x_{i+1}, \ldots, x_{i+m-1}$. A possible way to generalize such definition consists of allowing for non-consecutive inputs.

15 / 17

イロト イヨト イヨト イ

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

M. Pedicin

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Possible Generalizations

There are two main ways in which this work can be generalized:

- by considering local maps $F_0, F_1, \ldots, F_{h-1} : \mathbb{F}_p^m \to \mathbb{F}_p$ defined over a larger input domain by taking $m \ge 3$;
- In the current definition, the function F takes in input consecutive elements x_i, x_{i+1},..., x_{i+m-1}. A possible way to generalize such definition consists of allowing for non-consecutive inputs.

15 / 17

Invertible Quadratic Functions -Multiple Maps

G. Giordani, L. Grassi, S. Onofri,

M. Pedicini

Motivation and Relate Works

Our Contribution and Our Result

About th Proof

Remarks

Open Problems and Future Work

References

Possible Generalizations

There are two main ways in which this work can be generalized:

- by considering local maps F₀, F₁,..., F_{h-1} : 𝔽^m_p → 𝔽_p defined over a larger input domain by taking m ≥ 3;
- In the current definition, the function *F* takes in input consecutive elements *x_i*, *x_{i+1}*,..., *x_{i+m-1}*. A possible way to generalize such definition consists of allowing for non-consecutive inputs.

15 / 17

< ロ > < 同 > < 回 > < 回 >

References

Invertible Quadratic Functions -Multiple Maps

S. Onofri. M. Pedicini

J. Daemen

Cipher and Hash Function Design, Strategies Based on Linear and Differential Cryptanalysis

PhD Thesis. K.U.Leuven (1995), http//jda.noekeon.org/

References

L. Grassi, S. Onofri, M. Pedicini, L. Sozzi

Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over \mathbb{F}_p^n - Application to Poseidon

IACR Trans. Symmetric Cryptol. 2022(3), 20-72 (2022)

K. Nyberg

Generalized Feistel networks Advances in Cryptology - ASIACRYPT '96. Springer (1996)

S. Wolfram

Cryptography with Cellular Automata Advances in Cryptology - CRYPTO '85 Proceedings, Springer (1996)

Y. Zheng, T. Matsumoto, H. Imai

On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses

Advances in Cryptology - CRYPTO '89. LNCS, vol. 435, pp., 461-480 (1989)

16 / 17

Thanks

Invertible Quadratic Functions -Multiple Maps

G. Giordani L. Grassi, S. Onofri,

M. Pedicin

Motivation and Relate Works

Our Contribution and Our Result

About the Proof

Remarks

Open Problems and Future Work

References

Thank you for your attention!!!

臣

<ロト < 回ト < 巨ト < 巨ト