Germs and Sylows for structure group of solutions to the Yang–Baxter equation YRAC23 Conference

Edouard Feingesicht (LMNO, Caen, France)

26th July 2023, L'Aquila

Yang–Baxter Equation

Set-theoretical solution of the YBE (Drinfeld '92)

(X, r) where X is a set and $r: X \times X \rightarrow X \times X$ a bijection, such that

 $r_1r_2r_1 = r_2r_1r_2$

where $r_i: X \times X \times X \rightarrow X \times X \times X$ acts on the coordinates *i* and *i* + 1.

For any X, r(x, y) = (y, x) defines a solution.

Definition (Etingof-Schedler-Soloviev '99)

Denote $r(x, y) = (\lambda(x, y), \rho(x, y))$. (X, r) is said to be:

- Involutive if $r^2 = id_{X \times X}$
- Left non-degenerate (resp. right) if $\lambda(x, -)$ (resp. $\rho(-, y)$) is a bijection for any x (resp. y).

 \Rightarrow X is determined by the permutations $\lambda(x, -)$, $x \in X$.

Structure groups

Definition (Etingof-Schedler-Soloviev '99)

Define the structure group G (resp. monoid M) by the presentation

$$\langle X \mid xy = x'y' \text{ if } r(x,y) = (x',y') \rangle$$

$$X = \{x_1, x_2\}$$
 with $\lambda(x_i, -) = (12)$ yields $M = \langle x_1, x_2 \mid x_1^2 = x_2^2 \rangle^+$.

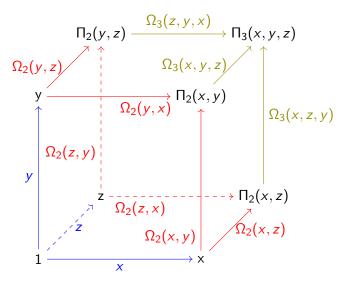
From now on we suppose X to be finite.

Theorem (Chouraqui '10)

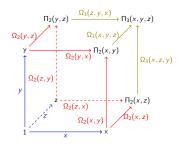
G is a Garside group.

 \bullet Garside \Rightarrow solutions to the word and conjugacy problems, torsion-free, normal forms...

Cube condition



Garsideness



- Distance from 0 gives a length $(I(ab) \ge I(a) + I(b))$
- *M* is cancellative $(f_1gf_2 = f_1hf_2 \Rightarrow g = h)$
- M admits right gcd and lcm (meet and join, min and max)
- *M* admits left gcd and lcm
- The left and right lcm of the generators coincide (Δ), so does its left and right divisors set

 $\Rightarrow M \hookrightarrow G = \operatorname{Frac}(M).$

Dehornoy's class and germ

$$1 \xrightarrow{\qquad } x \xrightarrow{\qquad } x^{[2] - - - \rightarrow } x^{[k-1]} \xrightarrow{\qquad } x^{[k]} \xrightarrow{\qquad } x^{[k]}$$

Proposition (Dehornoy's class)

There exists $d \in \mathbb{N}$ such that $\Omega_{d+1}(x, \ldots, x, y) = y$ for all $x, y \in X$.

Example: If $X = \{x_1, ..., x_n\}$ with $\lambda(x_i, -) = (12...n)$, d = n and $x_1^{[n]} = x_1 x_2 ... x_n$.

Theorem (Germ) (Dehornoy '15)

 (M,Δ^{d-1}) can be "recovered" from $\overline{G}=G/\langle x^{[d]}
angle$ which is finite.

• The Cayley graph of G is determined by the finite subgraph of the cube with side length d.

Sylow for the germs

Theorem (Lebed-Ramírez-Vendramin '22, F.)

 $G^{[k]} = \langle x^{[k]} \rangle$ induces the structure of a solution on $X^{[k]} = \{x^{[k]}\}_{s \in S}$. Moreover, its class is $\frac{d}{d \wedge k}$ (if $k \leq d$).

• The subgraph "generated" by the $x^{[d]}$ is the Cayley graph of a structure group.

• Decompose
$$d = p_1^{a_1} \dots p_r^{a_r}$$
, and let $\alpha_i = p_i^{a_i}, \beta_i = \frac{d}{\alpha_i}$.

Lemma

The $\overline{G}^{[\beta_i]}$ are p_i -Sylow of \overline{G} , they commute two by two and their product is \overline{G} .

 $(H, K < G \text{ commute means } HK = KH, \text{ i.e } \forall h, k, \exists h', k', hk = k'h'.)$ • We have an "easy" way to reverse this process : constructing new solutions from ones with same size (Cf. Matched Product).

Questions

- What can we say about the possible values and bounds on the class d?
- **②** When is the representation irreducible? What does it mean?
- So Can we find other Garside elements to change germs?
- Gan Hecke algebras be defined for our germs?
- O How does the Garside approach generalizes to Weyl groups? To the degenerate case?

Thank you for your attention!