Automorphisms and classification of particular \mathbb{F}_{2}-braces

Valerio Fedele University of L'Aquila

joint work with R. Civino \& N. Gavioli

Young Researchers Algebra Conference 2023 - L'Aquila

26th July 2023

The setting

- V finite dimensional vector space over \mathbb{F}_{2};
- T_{+}the group of translations of V;
- $T_{\circ}=\left\{\tau_{v}: v \in V\right\}$ abelian regular subgroup of the affine group, such that $T_{+}<\mathrm{N}_{\mathrm{Sym}(V)}\left(T_{0}\right)$;
- an operation on V defined by $u \circ v=u \tau_{v}$ for $u, v \in V$.

Problem

- How to determine the automorphism group

$$
\operatorname{Aut}(V,+, \circ)=\mathrm{GL}(V) \cap \operatorname{Aut}(V, \circ) ?
$$

- How many such structures are there up to dimension 8? How many up to isomorphism?

Braces and radical algebras

Let us consider the operation on V defined by

$$
u \cdot v=u+v+u \circ v, \quad u, v \in V
$$

Then

- $(V,+, \cdot)$ is a commutative \mathbb{F}_{2}-algebra such that $V \cdot V \cdot V=0$, [Caranti, 2020]
- $(V,+, \circ)$ is a bi-skew brace (with underlying \mathbb{F}_{2}-vector space V), [Childs, 2019]

```
isomorphism classes
of (V,+,.)
(respectively of (V,+,o))
```

conjugacy classes
under $\mathrm{GL}(V)$ of $T_{\circ}<\mathrm{AGL}(V)$ such that $T_{+}<\mathrm{N}_{\text {Sym }(V)}\left(T_{\circ}\right)$

Alternating bilinear maps

Let W and U be finite dimensional vector spaces over \mathbb{F}_{2}. A bilinear map

$$
\phi: W \times W \longrightarrow U
$$

is alternating if $\phi(w, w)=0$ for every $w \in W$.

Definition

Two alternating bilinear maps $\phi, \psi: W \times W \longrightarrow U$ are equivalent if there exist $A \in \mathrm{GL}(W), D \in \mathrm{GL}(U)$ such that for every $u, v \in V$

$$
\phi(u, v) D=\psi(u A, v A)
$$

$$
\begin{aligned}
& W \times W \xrightarrow{\phi} U \\
& \underset{\downarrow A \times A}{ } \\
& \\
& W \times W \xrightarrow{\psi} \\
& \downarrow_{D} \\
& W
\end{aligned}
$$

Alternating matrices

Fixing basis of W and U, the alternating bilinear map ϕ can be represented by a d-tuple ($B_{1}^{\phi}, \ldots, B_{d}^{\phi}$) of $m \times m$ alternating matrices (i.e., symmetric and 0 -diagonal matrices), such that

$$
\phi(u, v)=\left(u B_{1}^{\phi} v^{\top}, \ldots, u B_{d}^{\phi} v^{\top}\right)
$$

$$
\begin{gathered}
\phi(u, v)=\left(\phi_{1}(u, v), \ldots, \phi_{d}(u, v)\right) \\
\left\{w_{1}, \ldots, w_{m}\right\} \text { basis of } W, \quad B_{k}^{\phi}=\left[\phi_{k}\left(w_{i}, w_{j}\right)\right], 1 \leq k \leq d \\
\phi_{k}(u, v)=u B_{k}^{\phi} v^{T}
\end{gathered}
$$

Conversely, given a d-tuple of alternating matrices, one can define an alternating bilinear map as such.

Alternating matrices

Two alternating bilinear maps $\phi, \psi: W \times W \longrightarrow U$ are equivalent if and only if the associated alternating matrix spaces

$$
\mathcal{B}^{\phi}=\left\langle B_{1}^{\phi}, \ldots, B_{d}^{\phi}\right\rangle
$$

and

$$
\mathcal{B}^{\psi}=\left\langle B_{1}^{\psi}, \ldots, B_{d}^{\psi}\right\rangle
$$

are congruent, i.e., there exist $A \in G L(W)$ such that

$$
A \mathcal{B}^{\psi} A^{T}=\mathcal{B}^{\phi}
$$

$\left(A B_{j}^{\psi} A^{T} \in \mathcal{B}^{\phi}\right.$ for every $\left.j \in\{1, \ldots, d\}\right)$.

Alternating matrices associated to a radical algebra

- $(V,+, \cdot)$ commutative \mathbb{F}_{2}-algebra such that $V \cdot V \cdot V=0$;
- $\operatorname{Ann}(V)=\{u \in V \mid u \cdot v=0 \quad \forall v \in V\}$.

$$
V=W \oplus \operatorname{Ann}(V), \quad m=\operatorname{dim}(W), \quad d=\operatorname{dim}(\operatorname{Ann}(V))
$$

Since $u \cdot v \in \operatorname{Ann}(V)$, there exist an alternating bilinear map

$$
\phi: W \times W \longrightarrow \operatorname{Ann}(V)
$$

such that

$$
u \cdot v=\left(0_{w}, \phi\left(u_{w}, v_{w}\right)\right)
$$

A d-tuple $\left(B_{1}, \ldots, B_{d}\right)$ of $m \times m$ alternating matrices determines ϕ if and only if

$$
\operatorname{Rank}\left[B_{1}\left|B_{2}\right| \ldots \mid B_{d}\right]=m
$$

Characterization of isomorphisms and automorphisms

Theorem

1) Two commutative \mathbb{F}_{2}-algebras of nilpotency class $3,\left(V,+,{ }_{\phi}\right)$ and ($V,+,{ }_{\psi}$) are isomorphic if and only if their alternating matrix vector spaces \mathcal{B}^{ϕ} and \mathcal{B}^{ψ} are congruent.
2) $M \in \operatorname{Aut}\left(V,+, \cdot{ }_{\phi}\right), V=W \oplus \operatorname{Ann}(V)$ if and only if $M=\left[\begin{array}{cc}A & C \\ 0 & D\end{array}\right]$ where $A \in G L(W), D=\left[D_{i, j}\right] \in G L(\operatorname{Ann}(V)), C \in \mathbb{F}_{2}^{m \times d}$ such that

$$
A B_{j}^{\phi} A^{T}=\sum_{i=1}^{d} D_{i, j} B_{i}^{\phi} \quad \forall j \in\{1, \ldots, d\}
$$

(i.e., $\phi\left(u_{w} A, v_{w} A\right)=\phi\left(u_{w}, v_{w}\right) D$ for every $u, v \in W$).

Primitive algebras

Definition

We say that $(V,+, \cdot)$ is primitive if the subspace

$$
V \cdot V:=\langle u \cdot v: u, v \in V\rangle_{+} \subseteq \operatorname{Ann}(V)
$$

coincides with $\operatorname{Ann}(V)$.

If $(V,+, \cdot)$ is not primitive, then

- $\operatorname{Ann}(V)=(V \cdot V) \oplus Z, \operatorname{dim}(Z) \geq 1$ and $V=W \oplus(V \cdot V) \oplus Z$.
- V / Z is a primitive algebra and $\operatorname{dim}(V / Z)=\operatorname{dim}(W)+\operatorname{dim}(V \cdot V)$.

For the classification of these structures, it is convenient to use $m=\operatorname{dim}(W)$ and $d=\operatorname{dim}(V \cdot V)$ as parameters.

Some particular cases

Proposition

Let $\left(V,+,{ }_{\phi}\right)$ be a primitive algebra and m the co-dimension of $V \cdot V$. The following statements hold:
$-\operatorname{dim}(V \cdot V)=\operatorname{dim}\left(\mathcal{B}^{\phi}\right)$, in particular, denoting by $\Lambda\left(m, \mathbb{F}_{2}\right)$ the full alternating matrix vector space,

$$
(m \bmod 2)+1 \leq \operatorname{dim}(V \cdot V) \leq \operatorname{dim}\left(\Lambda\left(m, \mathbb{F}_{2}\right)\right)=\binom{m}{2}
$$

- There is a unique isomorphism class of primitive algebra with uni-dimensional $V \cdot V$ (and in this case m is even).
- There is a unique isomorphism class of primitive algebras such that $\operatorname{dim}(V \cdot V)=\operatorname{dim} \Lambda\left(m, \mathbb{F}_{2}\right)=\binom{m}{2}$;
- For $m=3$ there are two isomorphism classes determined by $\operatorname{dim}(V \cdot V) \in\{2,3\}$. In particular, $\mathcal{B}^{\phi}=\Lambda\left(3, \mathbb{F}_{2}\right)=\left\langle B_{1}, B_{2}, B_{3}\right\rangle$ or $\mathcal{B}^{\phi}=\left\{0, B_{1}, B_{2}, B_{1}+B_{2}\right\}$.

Classification results up to $n=8$

n	m	d	\# classes	\# primitive	\# operations \circ
${ }^{*}$	2	$\geqslant 1$	1	1	
$*$	3	$\geqslant 3$	2	2	
5	3	2	1	1	42
5	4	1	1	1	28
6	4	2	4	3	3360
7	4	3	9	5	254968
7	5	2	2	2	937440
7	6	1	1	1	13888
8	4	4	13	4	16716840

In particular, for $m=4$ we have $13=1+3+5+4$ isomorphism classes of primitive algebras for $d=\operatorname{dim}(V \cdot V) \in\{1,2,3,4\}$ which is the same number as the case $m=4$ and $d=\operatorname{dim}(\operatorname{Ann}(V))=4$.

¿Questions?

Bibliography

圊 A．Caranti．
Bi－skew braces and regular subgroups of the holomorph．
Journal of Algebra，562：647－665， 2020.
围 M．Calderini，R．Civino，and M．Sala．
On properties of translation groups in the affine general linear group with applications to cryptography．
J．Algebra，569：658－680， 2021.
屢 A．Caranti，F．Dalla Volta，and M．Sala．
Abelian regular subgroups of the affine group and radical rings．
Publ．Math．Debrecen，69（3）：297－308， 2006.
（R．R．Civino，V．Fedele，and N．Gavioli．
Classification of binary bi－braces．
Work in progress， 2023.
嗇 L．N Childs．
Bi－skew braces and Hopf Galois structures．
New York J．Math，25：574－588， 2019.

