Automorphisms and classification of particular $\mathbb{F}_2\text{-}\mathsf{braces}$

Valerio Fedele University of L'Aquila

joint work with R. Civino & N. Gavioli

Young Researchers Algebra Conference 2023 - L'Aquila

26th July 2023

The setting

- ► V finite dimensional vector space over 𝔽₂;
- T_+ the group of translations of V;
- ► $T_{\circ} = \{\tau_{v} : v \in V\}$ abelian regular subgroup of the affine group, such that $T_{+} < N_{Sym(V)}(T_{\circ})$;
- ▶ an operation on V defined by $u \circ v = u\tau_v$ for $u, v \in V$.

Problem

- ► How to determine the automorphism group Aut $(V, +, \circ) = GL(V) \cap Aut(V, \circ)$?
- How many such structures are there up to dimension 8? How many up to isomorphism?

Braces and radical algebras

Let us consider the operation on V defined by

$$u \cdot v = u + v + u \circ v, \qquad u, v \in V$$

Then

- $(V, +, \cdot)$ is a commutative \mathbb{F}_2 -algebra such that $V \cdot V \cdot V = 0$, [Caranti, 2020]
- (V, +, ∘) is a **bi-skew brace** (with underlying 𝔽₂-vector space V), [Childs, 2019]

isomorphism classes	conjugacy classes	
of $(V, +, \cdot)$	\longleftrightarrow	under $\operatorname{GL}(V)$ of $\mathcal{T}_\circ < \operatorname{AGL}(V)$
(respectively of $(V, +, \circ)$)		such that $ {\mathcal T}_+ < {\sf N}_{{\sf Sym}(V)}({\mathcal T}_\circ) $

Alternating bilinear maps

Let W and U be finite dimensional vector spaces over \mathbb{F}_2 . A bilinear map

 $\phi: W \times W \longrightarrow U$

is alternating if $\phi(w, w) = 0$ for every $w \in W$.

Definition

Two alternating bilinear maps $\phi, \psi : W \times W \longrightarrow U$ are **equivalent** if there exist $A \in GL(W)$, $D \in GL(U)$ such that for every $u, v \in V$

$$\phi(u,v)D = \psi(uA, vA)$$

$$\begin{array}{ccc} W \times W & \stackrel{\phi}{\longrightarrow} & U \\ & \downarrow_{A \times A} & & \downarrow_{D} \\ W \times W & \stackrel{\psi}{\longrightarrow} & U \end{array}$$

Alternating matrices

Fixing basis of W and U, the alternating bilinear map ϕ can be represented by a *d*-tuple $(B_1^{\phi}, \ldots, B_d^{\phi})$ of $m \times m$ alternating matrices (i.e., symmetric and 0-diagonal matrices), such that

$$\phi(u,v) = (u B_1^{\phi} v^T, \dots, u B_d^{\phi} v^T)$$

$$\phi(u, v) = (\phi_1(u, v), \dots, \phi_d(u, v))$$

 $\{w_1, \dots, w_m\}$ basis of W , $B_k^{\phi} = [\phi_k(w_i, w_j)], 1 \le k \le d$
 $\phi_k(u, v) = u B_k^{\phi} v^T$

Conversely, given a d-tuple of alternating matrices, one can define an alternating bilinear map as such.

Alternating matrices

Two alternating bilinear maps $\phi, \psi : W \times W \longrightarrow U$ are equivalent if and only if the associated alternating matrix spaces

$$\mathcal{B}^{\phi} = \langle B_1^{\phi}, \dots, B_d^{\phi} \rangle$$

and

$$\mathcal{B}^{\psi} = \langle B_1^{\psi}, \dots, B_d^{\psi} \rangle$$

are **congruent**, i.e., there exist $A \in GL(W)$ such that

$$AB^{\psi}A^{T} = B^{\varphi}$$

 $(AB_{i}^{\psi}A^{T} \in \mathcal{B}^{\phi} \text{ for every } j \in \{1, \ldots, d\}).$

Alternating matrices associated to a radical algebra

▶
$$(V, +, \cdot)$$
 commutative \mathbb{F}_2 -algebra such that $V \cdot V \cdot V = 0$;
▶ Ann $(V) = \{ u \in V \mid u \cdot v = 0 \quad \forall v \in V \}.$

$$V = W \oplus Ann(V), \quad m = dim(W), \quad d = dim(Ann(V))$$

Since $u \cdot v \in Ann(V)$, there exist an alternating bilinear map

$$\phi: W \times W \longrightarrow \operatorname{Ann}(V)$$

such that

$$\boldsymbol{u}\cdot\boldsymbol{v}=\big(\boldsymbol{0}_{w},\,\phi(\boldsymbol{u}_{w},\boldsymbol{v}_{w})\big)$$

A *d*-tuple (B_1, \ldots, B_d) of $m \times m$ alternating matrices **determines** ϕ if and only if Rank $[B_1 | B_2 | \ldots | B_d] = m$

Characterization of isomorphisms and automorphisms

Theorem

1) Two commutative \mathbb{F}_2 -algebras of nilpotency class 3, $(V, +, \cdot_{\phi})$ and $(V, +, \cdot_{\psi})$ are isomorphic if and only if their alternating matrix vector spaces \mathcal{B}^{ϕ} and \mathcal{B}^{ψ} are congruent.

2)
$$M \in \operatorname{Aut}(V, +, \cdot_{\phi}), V = W \oplus \operatorname{Ann}(V)$$
 if and only if $M = \begin{bmatrix} A & C \\ 0 & D \end{bmatrix}$
where $A \in GL(W), D = \begin{bmatrix} D_{i,j} \end{bmatrix} \in GL(\operatorname{Ann}(V)), C \in \mathbb{F}_2^{m \times d}$ such that

$$AB_j^{\phi}A^{\mathsf{T}} = \sum_{i=1}^d D_{i,j}B_i^{\phi} \qquad \forall j \in \{1,\ldots,d\}$$

(i.e., $\phi(u_wA, v_wA) = \phi(u_w, v_w)D$ for every $u, v \in W$).

Primitive algebras

Definition

We say that $(V, +, \cdot)$ is **primitive** if the subspace

$$V \cdot V := \langle u \cdot v : u, v \in V \rangle_+ \subseteq \operatorname{Ann}(V)$$

coincides with Ann(V).

If $(V, +, \cdot)$ is not primitive, then

- Ann $(V) = (V \cdot V) \oplus Z$, dim $(Z) \ge 1$ and $V = W \oplus (V \cdot V) \oplus Z$.
- ▶ V/Z is a primitive algebra and dim $(V/Z) = \dim(W) + \dim(V \cdot V)$.

For the classification of these structures, it is convenient to use $m = \dim(W)$ and $d = \dim(V \cdot V)$ as parameters.

Some particular cases

Proposition

Let $(V, +, \cdot_{\phi})$ be a primitive algebra and m the co-dimension of $V \cdot V$. The following statements hold:

dim(V · V) = dim(B^φ), in particular, denoting by Λ(m, F₂) the full alternating matrix vector space,

$$(m ext{ mod } 2) + 1 \leq \dim(V \cdot V) \leq \dim(\Lambda(m, \mathbb{F}_2)) = \binom{m}{2}$$

- There is a unique isomorphism class of primitive algebra with uni-dimensional V · V (and in this case m is even).
- There is a unique isomorphism class of primitive algebras such that $\dim(V \cdot V) = \dim \Lambda(m, \mathbb{F}_2) = \binom{m}{2}$;
- For m = 3 there are two isomorphism classes determined by dim(V · V) ∈ {2,3}. In particular, B^φ = Λ(3, F₂) = ⟨B₁, B₂, B₃⟩ or B^φ = {0, B₁, B₂, B₁ + B₂}.

Classification results up to n = 8

n	т	d	# classes	# primitive	$\# \text{ operations } \circ$
*	2	$\geqslant 1$	1	1	
*	3	≥ 3	2	2	
5	3	2	1	1	42
5	4	1	1	1	28
6	4	2	4	3	3360
7	4	3	9	5	254968
7	5	2	2	2	937440
7	6	1	1	1	13888
8	4	4	13	4	16716840

In particular, for m = 4 we have 13 = 1 + 3 + 5 + 4 isomorphism classes of primitive algebras for $d = \dim(V \cdot V) \in \{1, 2, 3, 4\}$ which is the same number as the case m = 4 and $d = \dim(\operatorname{Ann}(V)) = 4$.

¿Questions?

Bibliography

A. Caranti.

Bi-skew braces and regular subgroups of the holomorph. *Journal of Algebra*, 562:647–665, 2020.

M. Calderini, R. Civino, and M. Sala.

On properties of translation groups in the affine general linear group with applications to cryptography.

J. Algebra, 569:658-680, 2021.

A. Caranti, F. Dalla Volta, and M. Sala. Abelian regular subgroups of the affine group and radical rings. *Publ. Math. Debrecen*, 69(3):297–308, 2006.

R. Civino, V. Fedele, and N. Gavioli. Classification of binary bi-braces. Work in progress, 2023.

L. N Childs.

Bi-skew braces and Hopf Galois structures. *New York J. Math*, 25:574–588, 2019.