Labelling Hasse diagrams of modular geometric lattices

Carsten Dietzel

Stiftung/Foundation

YRAC L'Aquila - July 28th, 2023

CARSTEN

Lattices

Definition: Join / Meet

Let *L* be a partially ordered set and $x, y, z \in L$.

• Write $z = x \lor y$, if

 $\forall a \in L: ((a \ge x) \& (a \ge y)) \Leftrightarrow (a \ge z).$

We say, z is the join of x, y.

• Write $z = x \land y$, if

$$\forall a \in L: ((a \leq x) \& (a \leq y)) \Leftrightarrow (a \leq z).$$

We say, *z* is the meet of *x*, *y*.

Definition: Lattice

A partially ordered set *L* is a lattice if all binary joins and meets exist.

- Partially ordered sets do not admit an algebraization.
- But lattices do!

Identities for meets and joins

Lattices form a variety of algebras of type (2, 2):

$$\begin{array}{cccc} x \wedge x = x & , & x \vee x = x \\ (x \wedge y) \wedge z = x \wedge (y \wedge z) & , & (x \vee y) \vee z = x \vee (y \vee z) \\ & x \wedge y = y \wedge x & , & x \vee y = y \vee x \\ & (x \wedge y) \vee x = x & , & (x \vee y) \wedge x = x. \end{array}$$

You get more specific varieties by adding further identities:

The modular variety

Modular lattices are defined by the property

$$x \leq z \Rightarrow (x \lor y) \land z = x \lor (y \land z).$$

This can be rewritten as the identity

$$(x \lor y) \land (x \lor z) = x \lor (x \land (x \lor z)).$$

Definition: Bounded lattice / Atom / Geometric lattice

Let *L* be a lattice.

- *L* is bounded if it has a maximal element 1_L and a minimal element 0_L .
- If *L* is bounded, an element $x \in L$ is an atom if $x \succ 0$. Here, $x \succ y$ means: x > y and there is no *z* with x > z > y. Write Atom(*L*) for the set of atoms in *L*.
- If *L* is modular and bounded, we call *L* geometric if *L* is also atomistic, meaning that

$$L = \left\{ \bigvee A : A \subseteq \operatorname{Atom}(L), \ 0 < |A| < \infty \right\}.$$

Some bounded modular geometric lattices

- The power set $\mathcal{P}(X)$ of a finite set X under inclusion.
- *L*(*K*, *n*) = {*K*-subspaces of *K*^{*n*}} under inclusion.
- Subspace lattices of non-desarguesian planes.
- Degenerate geometries: The geometry of points on a line.
- Products of all of the above!

If *P* is a partially ordered set, the Hasse diagram of *P* is the set

$$\operatorname{Has}_{P} = \left\{ (x, y) \in P^{2} : x \prec y \right\}.$$

For a set *X*, write $X^{(2)} = \{(x, y) \in X^2 : x \neq y\}.$

Rump's Labelling Procedure

Let *L* be a bounded modular geometric lattice. A non-degenerate block labelling of Has_L is given by a set of colours Col and a map $\chi : \text{Has}_L \to \text{Col}$ such that:

- χ restricts to a bijection {($0_L, x$) : $x \succ 0_L$ } \rightarrow Col.
- χ restricts to a bijection { $(x, 1_L) : x \prec 1_L$ } \rightarrow Col.
- There is a bijection $D : \operatorname{Col}^{(2)} \to \operatorname{Col}^{(2)}$ such that for any two chains $a \prec b \prec d$, $a \prec c \prec d$ ($b \neq c$), there are w, x, y, z such that

•
$$(w, x) \in \operatorname{Col}^{(2)}$$
,

•
$$(y,z) = D(w,x)$$
,

• $\chi(a,b) = w, \chi(a,c) = x, \chi(b,d) = y, \chi(c,d) = z.$

A visualization of Rump's labelling rules

• Each colour is present exactly once in the upper and lower layer:

• Given the colours of the upper or lower two edges of a quadrangle, there is a unique way to colour the other ones:

What are these colourings good for?

The group of a block labelling

Let *L* be a bounded modular geometric lattice and $\chi : \text{Has}_L \to \text{Col a}$ non-degenerate block labelling thereof. Then χ defines the group

$$G_{\chi} = \left\langle \begin{array}{c} \text{Col} \\ \text{when } a \prec b \prec d; \\ a \prec c \prec d \end{array} \right\rangle$$

Theorem (Rump, 2015)

Let χ be a non-degenerate block labelling of a bounded modular geometric lattice.

- G_{χ} is a group of fractions for the submonoid $M_{\chi} \subseteq G_{\chi}$ generated by Col.
- G_{χ} is a quasi-Garside group with $\Delta = \chi(a_0, a_1)\chi(a_1, a_2) \dots \chi(a_{k-1}a_k)$ for some chain $0_L = a_0 \prec a_1 \prec \dots \prec a_{k-1} \prec a_k = 1_L$.
- With respect to left divisibility, there is a lattice isomorphism

$$\{ a \in M_{\chi} : \exists x \in M_{\chi} : ax = \Delta \} \cong L.$$

• G_{χ} is a modular lattice under left- (resp. right-) divisibility with respect to M_{χ} . Each modular quasi-Garside group is of the form G_{χ} for some labelling χ of a bounded modular geometric lattice.

An example

Generators: χ_1 , χ_2 , χ_3 , χ_4 , χ_5 , χ_6 , χ_7 **Relations:** $\chi_7\chi_1 = \chi_3\chi_2 = \chi_5\chi_6$ $\chi_6\chi_2 = \chi_3\chi_3 = \chi_4\chi_7$ $\chi_3\chi_1 = \chi_1\chi_3 = \chi_2\chi_4$ $\chi_5\chi_2 = \chi_6\chi_4 = \chi_2\chi_5$ $\chi_4\chi_3 = \chi_5\chi_5 = \chi_1\chi_6$ $\chi_1\chi_4 = \chi_7\chi_6 = \chi_6\chi_7$ $\chi_2\chi_1 = \chi_4\chi_5 = \chi_7\chi_7$ Garside element: $\Delta = \chi_4 \chi_7 \chi_1$

< □ > < □ > < □ > < □ >

Constructing labellings by orthogonality

Let $L = L(\mathbb{R}, n)$.

- Take $Col = \{ \mathbb{R}v : v \in \mathbb{R}^n \setminus \{0\} \}$ as the set of colours.
- For $U \in L(\mathbb{R}, n)$, let $U^{\perp} = \{ v \in \mathbb{R}^n : \forall u \in U : \langle u | v \rangle = 0 \}.$
- For subspaces $U \prec V \leq L(\mathbb{R}, n)$, choose

$$\chi(\boldsymbol{U},\boldsymbol{V})=\boldsymbol{V}\cap\boldsymbol{U}^{\perp}\in\mathrm{Col}.$$

Theorem (Dietzel, 2019)

- χ is a non-denegerate block labelling.
- The resulting quasi-Garside group G_{χ} is the pure paraunitary group

$$PPU_n = \{ M(t) \in \mathbb{R}[t, t^{-1}]^{n \times n} : \underbrace{M(t^{-1})M(t)^{\top} = E_n}_{M(t)}, \underbrace{M(1) = E_n}_{M(t)} \}.$$

paraunitarity

• An isomorphism is given by the assignment $[v] \mapsto \left(E_n - \frac{|v\rangle\langle v|}{\langle v|v\rangle}\right) t + \frac{|v\rangle\langle v|}{\langle v|v\rangle}$.

purity

Constructing labellings using finite fields

Let $L = L(\mathbb{F}_q \mathbb{F}_{q^n}) \cong L(\mathbb{F}_q, n).$

- Take $\operatorname{Col} = \{ \mathbb{F}_q v : v \in \mathbb{F}_{q^n} \setminus \{0\} \}$ as the set of colours.
- For $U \in L({}_{\mathbb{F}q}\mathbb{F}_{q^n})$, let

$$p_U(x) = \prod_{u \in U} (x - u).$$

This is an \mathbb{F}_q -linear endomorphism of \mathbb{F}_{q^n} .

• For \mathbb{F}_q -subspaces $U \prec V \leq \mathbb{F}_{q^n}$, let

$$\chi(U, V) = p_U(V) \in \text{Col.}$$

Theorem (Dietzel, 2021)

- χ is a non-denegerate block labelling.
- Let $\mathbb{F}_{q^n}[x, \sigma]$ be the twisted polynomial ring with respect to $\sigma(k) = k^q$ and $\mathbb{F}_{q^n}(x, \sigma)$ its quotient field. The assignment $\mathbb{F}_q v \mapsto x^q - v^{q-1}x$ embeds G_{χ} as a subgroup of $\mathbb{F}_{q^n}(x, \sigma)$.
- This construction can be generalized to cyclic field extensions!

What about Boolean lattices?

Non-degenerate labellings of $\mathcal{P}(X)$ are equivalent to non-degenerate, involutive set-theoretic solutions of the Yang-Baxter equation on *X*.

Problems

- Does every desarguesian lattice *L*(*K*, *n*) admit a non-degenerate block-labelling?
- Can lattices of non-desarguesian planes admit non-degenerate block labellings?
- Describe G_{χ} if χ is a block labelling derived from *one-sided* orthogonality, i.e. with respect to a non-hermitean, anisotropic sesquilinear form.

(日) (四) (王) (王) (王)

- E