Labelling Hasse diagrams of modular geometric lattices

Carsten Dietzel

VRIJE
UNIVERSITEIT BRUSSEL

Alexander von Humboldt

Stiftung/Foundation

YRAC

L'Aquila - July 28th, 2023

Lattices

Definition: Join / Meet

Let L be a partially ordered set and $x, y, z \in L$.

- Write $z=x \vee y$, if

$$
\forall a \in L:((a \geq x) \&(a \geq y)) \Leftrightarrow(a \geq z)
$$

We say, z is the join of x, y.

- Write $z=x \wedge y$, if

$$
\forall a \in L:((a \leq x) \&(a \leq y)) \Leftrightarrow(a \leq z) .
$$

We say, z is the meet of x, y.

Definition: Lattice

A partially ordered set L is a lattice if all binary joins and meets exist.

- Partially ordered sets do not admit an algebraization.
- But lattices do!

Identities for meets and joins

Lattices form a variety of algebras of type (2,2):

$$
\begin{aligned}
& x \wedge x=x, \\
&(x \wedge y \vee x) \wedge z=x \wedge(y \wedge z), \\
&(x \vee y) \vee z=x \vee(y \vee z), \\
& x \wedge y=y \wedge x, \\
&(x \vee y=y \vee x, \\
&(x \wedge y) \vee x=x, \\
&(x \vee y) \wedge x=x .
\end{aligned}
$$

You get more specific varieties by adding further identities:

The modular variety

Modular lattices are defined by the property

$$
x \leq z \Rightarrow(x \vee y) \wedge z=x \vee(y \wedge z) .
$$

This can be rewritten as the identity

$$
(x \vee y) \wedge(x \vee z)=x \vee(x \wedge(x \vee z)) .
$$

Modular geometric lattices

Definition: Bounded lattice / Atom / Geometric lattice

Let L be a lattice.

- L is bounded if it has a maximal element 1_{L} and a minimal element 0_{L}.
- If L is bounded, an element $x \in L$ is an atom if $x \succ 0$. Here, $x \succ y$ means: $x>y$ and there is no z with $x>z>y$. Write Atom (L) for the set of atoms in L.
- If L is modular and bounded, we call L geometric if L is also atomistic, meaning that

$$
L=\{\bigvee A: A \subseteq \operatorname{Atom}(L), 0<|A|<\infty\}
$$

Some bounded modular geometric lattices

- The power set $\mathcal{P}(X)$ of a finite set X under inclusion.
- $L(K, n)=\left\{K\right.$-subspaces of $\left.K^{n}\right\}$ under inclusion.
- Subspace lattices of non-desarguesian planes.
- Degenerate geometries: The geometry of points on a line.
- Products of all of the above!

Rump's labelling procedure - the rules

If P is a partially ordered set, the Hasse diagram of P is the set

$$
\operatorname{Has}_{P}=\left\{(x, y) \in P^{2}: x \prec y\right\} .
$$

For a set X, write $X^{(2)}=\left\{(x, y) \in X^{2}: x \neq y\right\}$.

Rump's Labelling Procedure

Let L be a bounded modular geometric lattice. A non-degenerate block labelling of Has L^{L} is given by a set of colours Col and a map $\chi:$ Has $_{L} \rightarrow$ Col such that:

- χ restricts to a bijection $\left\{\left(0_{L}, x\right): x \succ 0_{L}\right\} \rightarrow$ Col.
- χ restricts to a bijection $\left\{\left(x, 1_{L}\right): x \prec 1_{L}\right\} \rightarrow$ Col.
- There is a bijection $D: \mathrm{Col}^{(2)} \rightarrow \mathrm{Col}^{(2)}$ such that for any two chains $a \prec b \prec d$, $a \prec c \prec d(b \neq c)$, there are w, x, y, z such that
- $(w, x) \in \operatorname{Col}^{(2)}$,
- $(y, z)=D(w, x)$,
- $\chi(a, b)=w, \chi(a, c)=x, \chi(b, d)=y, \chi(c, d)=z$.

A visualization of Rump's labelling rules

- Each colour is present exactly once in the upper and lower layer:

- Given the colours of the upper or lower two edges of a quadrangle, there is a unique way to colour the other ones:

What are these colourings good for?

Rump's method of constructing modular quasi-Garside groups

The group of a block labelling

Let L be a bounded modular geometric lattice and $\chi: \mathrm{Has}_{L} \rightarrow \mathrm{Col} \mathrm{a}$ non-degenerate block labelling thereof. Then χ defines the group

$$
G_{\chi}=\left\langle\begin{array}{c|c}
\text { Col } & \begin{array}{c}
\chi(a, b) \chi(b, d)=\chi(a, c) \chi(c, d) \\
\text { when } a \prec b \prec d ; a \prec c \prec d
\end{array}
\end{array}\right\rangle .
$$

Theorem (Rump, 2015)

Let χ be a non-degenerate block labelling of a bounded modular geometric lattice.

- G_{χ} is a group of fractions for the submonoid $M_{\chi} \subseteq G_{\chi}$ generated by Col.
- G_{χ} is a quasi-Garside group with $\Delta=\chi\left(a_{0}, a_{1}\right) \chi\left(a_{1}, a_{2}\right) \ldots \chi\left(a_{k-1} a_{k}\right)$ for some chain $0_{L}=a_{0} \prec a_{1} \prec \ldots \prec a_{k-1} \prec a_{k}=1_{L}$.
- With respect to left divisibility, there is a lattice isomorphism

$$
\left\{a \in M_{\chi}: \exists x \in M_{\chi}: a x=\Delta\right\} \cong L .
$$

- G_{χ} is a modular lattice under left- (resp. right-) divisibility with respect to M_{χ}. Each modular quasi-Garside group is of the form G_{χ} for some labelling χ of a bounded modular geometric lattice.

An example

Generators:

$$
\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{6}, \chi_{7}
$$

Relations:

$$
\begin{aligned}
& \chi_{7} \chi_{1}=\chi_{3} \chi_{2}=\chi_{5} \chi_{6} \\
& \chi_{6} \chi_{2}=\chi_{3} \chi_{3}=\chi_{4} \chi_{7} \\
& \chi_{3} \chi_{1}=\chi_{1} \chi_{3}=\chi_{2} \chi_{4} \\
& \chi_{5} \chi_{2}=\chi_{6} \chi_{4}=\chi_{2} \chi_{5} \\
& \chi_{4} \chi_{3}=\chi_{5} \chi_{5}=\chi_{1} \chi_{6} \\
& \chi_{1} \chi_{4}=\chi_{7} \chi_{6}=\chi_{6} \chi_{7} \\
& \chi_{2} \chi_{1}=\chi_{4} \chi_{5}=\chi_{7} \chi_{7}
\end{aligned}
$$

Garside element:

$$
\Delta=\chi_{4} \chi_{7} \chi_{1}
$$

An infinitude of infinite examples - $L(\mathbb{R}, n)$

Constructing labellings by orthogonality

Let $L=L(\mathbb{R}, n)$.

- Take $\mathrm{Col}=\left\{\mathbb{R} v: v \in \mathbb{R}^{n} \backslash\{0\}\right\}$ as the set of colours.
- For $U \in L(\mathbb{R}, n)$, let $U^{\perp}=\left\{v \in \mathbb{R}^{n}: \forall u \in U:\langle u \mid v\rangle=0\right\}$.
- For subspaces $U \prec V \leq L(\mathbb{R}, n)$, choose

$$
\chi(U, V)=V \cap U^{\perp} \in \text { Col. }
$$

Theorem (Dietzel, 2019)

- χ is a non-denegerate block labelling.
- The resulting quasi-Garside group G_{χ} is the pure paraunitary group

$$
\operatorname{PPU}_{n}=\{M(t) \in \mathbb{R}\left[t, t^{-1}\right]^{n \times n}: \underbrace{M\left(t^{-1}\right) M(t)^{\top}=E_{n}}_{\text {paraunitarity }}, \underbrace{M(1)=E_{n}}_{\text {purity }}\} .
$$

- An isomorphism is given by the assignment $[v] \mapsto\left(E_{n}-\frac{|v\rangle\langle v|}{\langle v \mid v\rangle}\right) t+\frac{|v\rangle\langle v|}{\langle v \mid v\rangle}$.

An infinitude of finite examples - $L\left(\mathbb{F}_{q}, n\right)$

Constructing labellings using finite fields

Let $L=L\left(\mathbb{F}_{q} \mathbb{F}_{q^{n}}\right) \cong L\left(\mathbb{F}_{q}, n\right)$.

- Take $\mathrm{Col}=\left\{\mathbb{F}_{q} v: v \in \mathbb{F}_{q^{n}} \backslash\{0\}\right\}$ as the set of colours.
- For $U \in L\left(\mathbb{F}_{q} \mathbb{F}_{q^{n}}\right)$, let

$$
p_{U}(x)=\prod_{u \in U}(x-u)
$$

This is an \mathbb{F}_{q}-linear endomorphism of $\mathbb{F}_{q^{n}}$.

- For \mathbb{F}_{q}-subspaces $U \prec V \leq \mathbb{F}_{q^{n}}$, let

$$
\chi(U, V)=p_{U}(V) \in \mathrm{Col}
$$

Theorem (Dietzel, 2021)

- χ is a non-denegerate block labelling.
- Let $\mathbb{F}_{q^{n}}[x, \sigma]$ be the twisted polynomial ring with respect to $\sigma(k)=k^{q}$ and $\mathbb{F}_{q^{n}}(x, \sigma)$ its quotient field.
The assignment $\mathbb{F}_{q} v \mapsto x^{q}-v^{q-1} x$ embeds G_{χ} as a subgroup of $\mathbb{F}_{q^{n}}(x, \sigma)$.
- This construction can be generalized to cyclic field extensions!

Comments and problems

What about Boolean lattices?

Non-degenerate labellings of $\mathcal{P}(X)$ are equivalent to non-degenerate, involutive set-theoretic solutions of the Yang-Baxter equation on X.

Example:

$$
\begin{gathered}
X=\mathbb{Z} / 3 \mathbb{Z}=\{0,1,2\} \\
r(x, y)=(y+1, x-1)
\end{gathered}
$$

Problems

- Does every desarguesian lattice $L(K, n)$ admit a non-degenerate block-labelling?
- Can lattices of non-desarguesian planes admit non-degenerate block labellings?
- Describe G_{χ} if χ is a block labelling derived from one-sided orthogonality, i.e. with respect to a non-hermitean, anisotropic sesquilinear form.

Thanks for your attention!

