Component group of the centralizer of a nilpotent orbit Emanuele Di Bella

A Lie algebra \mathfrak{g} is a vector space together with an operation $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ mapping $(x, y) \rightarrow[x, y]$, such that:
(1) it is bilinear;
(1) $[x, x]=0$ for all $x \in \mathfrak{g}$;
(1) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z \in \mathfrak{g}$.

Definition
A subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ is an ideal if $[\mathfrak{h}, \mathfrak{g}] \subseteq \mathfrak{h}$.

Definition

A Lie algebra is simple if it is non-abelian and it has no non-trivial ideals.
ad: $\mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$

$$
x \rightarrow(y \rightarrow[x, y])
$$

Root space decomposition of (semi)simple \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

- \mathfrak{t} is a maximal toral subalgebra (i.e. it consists of elements $x \in \mathfrak{g}$ such that $\operatorname{ad}(x)$ is diagonalizable);
- $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g} \mid(\operatorname{ad} t) x=\alpha(t) x$ for all $t \in \mathfrak{t}\}$, for $\alpha \in \mathfrak{t}^{*}$;
- $\Phi=\left\{\alpha \in \mathfrak{t}^{*} \backslash 0 \mid \mathfrak{g}_{\alpha} \neq 0\right\}$.

Root space decomposition of (semi)simple \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

- A base π is a subset of Φ such that $\operatorname{span}(\pi)=\mathfrak{t}^{*}$ and each $\beta \in \Phi$ can be written as $\sum_{\alpha \in \pi} k_{\alpha} \alpha$ for integer coefficients k_{α} all non-positive or all non-negative.
- Given a base $\pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \pi^{\prime}=\pi \cup\left\{\alpha_{0}\right\}$, where $\alpha_{0}=-\sum_{i=1}^{n} k_{i} \alpha_{i} \in \Phi$ such that $\sum_{i=1}^{n} k_{i}$ is maximal.

Definition

For a subset $J \subset \pi\left(\right.$ resp. $\left.J \subset \pi^{\prime}\right)$ and $\Phi_{J} \subset \Phi$, a Levi (resp. pseudo-Levi) subalgebra is a subalgebra of \mathfrak{g} of the form:

$$
\mathfrak{g}_{J}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi_{J}} \mathfrak{g}_{\alpha}
$$

Let G be a simple connected complex algebraic group of adjoint type with (simple) Lie algebra \mathfrak{g}.

Let G be a simple connected complex algebraic group of adjoint type with (simple) Lie algebra \mathfrak{g}.

Complex algebraic group: G is an algebraic variety over \mathbb{C} endowed with a group structure such that the operations $\mu: G \times G \rightarrow G, \mu(x, y)=x y$, and $\iota: G \rightarrow G, \iota(x)=x^{-1}$ are regular maps.

Let G be a simple connected complex algebraic group of adjoint type with (simple) Lie algebra \mathfrak{g}.

Simple: G is non-abelian and has no nontrivial closed connected normal subgroups.

Let G be a simple connected complex algebraic group of adjoint type with (simple) Lie algebra \mathfrak{g}.

Adjoint type: $G \cong \operatorname{AdG}=\operatorname{Aut}(\mathfrak{g})^{0}$, i.e. the image of G by its adjoint representation Ad: $G \rightarrow \operatorname{Aut}(\mathfrak{g})$ mapping $g \rightarrow d\left(y \rightarrow x y x^{-1}\right)_{e}$.

Definition

An element $N \in \mathfrak{g}$ is said to be nilpotent if $a d N$ is a nilpotent endomorphism.

Definition

For a nilpotent element $N \in \mathfrak{g}$, we can define a nilpotent orbit as $O_{N}:=\left\{\phi(N) \mid \phi \in \operatorname{Aut}(\mathfrak{g})^{0}\right\}$.

Definition

A nilpotent element $N \in \mathfrak{g}$ is said to be distinguished if the only Levi subalgebra of \mathfrak{g} containing N is \mathfrak{g} itself.
If N is a distinguished nilpotent element, its orbit is also said to be distinguished.

Theorem (Bala-Carter, 1976)
There is a bijection between nilpotent orbits in \mathfrak{g} and pairs (\mathfrak{l}, N), where \mathfrak{l} is a Levi subalgebra of \mathfrak{g} and N is a distinguished nilpotent element in \mathfrak{l}.

Consequence: Classification of nilpotent orbits for simple Lie algebras.

```
Definition
We define the centralizer of \(N\) in \(G\) as \(Z_{G}(N):=\{g \in G \mid(A d g) N=N\}\) and the component group of \(N\) as \(A(N):=Z_{G}(N) / Z_{G}^{0}(N)\).
```


Theorem (Sommers, 1998)

There is a bijection between pairs (N, C) where N is a nilpotent element in \mathfrak{g} and C a conjugacy class in $A(N)$, and pairs (\mathfrak{l}, N), where \mathfrak{l} is a pseudo-Levi subalgebra of \mathfrak{g} and N is a distinguished nilpotent element in \mathfrak{l}, up to G-conjugation.

Consequence: Determination of $A(N)$. It turns out that, for nilpotent elements of simple Lie algebras, $A(N)$ is isomorphic to one of S_{n} for $1 \leq n \leq 5$.

Purpose of my current work: Explicit computation of $A(N)$ for all simple Lie algebras.

Fix $J \subset \pi^{\prime}$ and let $\mathfrak{g}_{J}=\operatorname{Lie}\left(G_{J}\right)$ be the corresponding pseudo-Levi subalgebra. Fix a distinguished nilpotent element $N \in \mathfrak{g}_{J}$.

Facts

- $Z\left(G_{J}\right) / Z\left(G_{J}\right)^{0}$ is a finite cyclic group, generated by a certain $x \in G_{J}$.
- $(A d x) N=N$, hence $x \in A(N)$.
- For any $N^{\prime} \in \mathfrak{g}$ distinguished nilpotent and $g \in G$ such that $(A d g) N=N^{\prime}, g x g^{-1} \in A\left(N^{\prime}\right)$.

Algorithm for the computation of the component group $A(N)$ (implemented on GAP):

- Fix $J, J^{\prime} \in \pi^{\prime}$;
- List nilpotent orbits of g_{J} and g_{j}^{\prime};
- List distinguished nilpotent orbits of g_{J} and g_{j}^{\prime};
- Fix a distinguished nilpotent element N for g_{J} and N^{\prime} for g_{j}^{\prime};
- Find x, x^{\prime} which generate $Z\left(G_{J}\right) / Z\left(G_{J}\right)^{0}$ and $Z\left(G_{J}^{\prime}\right) / Z\left(G_{J}^{\prime}\right)^{0}$, respectively, having $x \in A(N)$ and $x^{\prime} \in A\left(N^{\prime}\right)$.
- Find $g \in G$ such that $(\operatorname{Adg}) N^{\prime}=N$.
- Conclusion: $A(N)=<x, g \times g^{-1}>$.

Key fact: We can use Sommers' correspondence to make a proper choice of J, J^{\prime}.

References：

D．H．Collingwood，W．M．McGovern，Nilpotent Orbits In Semisimple Lie Algebra：An Introduction（1st ed．）， 1993.
固 W．A．De Graaf，Computation with Linear Algebraic Groups，CRC Press， 2017.

围 J．E．Humphreys，＂Linear algebraic groups＂，Springer， 1975.
E．Sommers，＂A generalization of the Bala－Carter theorem for nilpotent orbits，＂in International Mathematics Research Notices，vol． 1998，no．11，pp．539－562， 1998.
國 The GAP Group，GAP－Groups，Algorithms，and Programming，Version 4．2，http：／／www．gap－system．org， 2000.

