Component group of the centralizer of a nilpotent orbit Emanuele Di Bella

A Lie algebra \mathfrak{g} is a vector space together with an operation $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ mapping $(x, y) \to [x, y]$, such that:

- it is bilinear;
- (a) [x, x] = 0 for all $x \in \mathfrak{g}$;
- **(a)** [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all $x, y, z \in \mathfrak{g}$.

Definition

A subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ is an ideal if $[\mathfrak{h}, \mathfrak{g}] \subseteq \mathfrak{h}$.

Definition

A Lie algebra is simple if it is non-abelian and it has no non-trivial ideals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$egin{all} \mathsf{ad}\colon \mathfrak{g} o \mathsf{End}(\mathfrak{g})\ x o (y o [x,y]) \end{split}$$

Root space decomposition of (semi)simple g:

$$\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{lpha \in \mathbf{\Phi}} \mathfrak{g}_{lpha}$$

t is a maximal toral subalgebra (i.e. it consists of elements x ∈ g such that ad(x) is diagonalizable);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid (adt)x = \alpha(t)x \text{ for all } t \in \mathfrak{t}\}, \text{ for } \alpha \in \mathfrak{t}^*;$

•
$$\Phi = \{ \alpha \in \mathfrak{t}^* \setminus \mathsf{0} \mid \mathfrak{g}_{\alpha} \neq \mathsf{0} \}.$$

Root space decomposition of (semi)simple g:

$$\mathfrak{g} = \mathfrak{t} \oplus \bigoplus_{lpha \in \mathbf{\Phi}} \mathfrak{g}_{lpha}$$

- A base π is a subset of Φ such that span(π) = t* and each β ∈ Φ can be written as ∑_{α∈π} k_αα for integer coefficients k_α all non-positive or all non-negative.
- Given a base $\pi = \{\alpha_1, \dots, \alpha_n\}$, $\pi' = \pi \cup \{\alpha_0\}$, where $\alpha_0 = -\sum_{i=1}^n k_i \alpha_i \in \Phi$ such that $\sum_{i=1}^n k_i$ is maximal.

Definition

For a subset $J \subset \pi$ (resp. $J \subset \pi'$) and $\Phi_J \subset \Phi$, a Levi (resp. pseudo-Levi) subalgebra is a subalgebra of \mathfrak{g} of the form:

$$\mathfrak{g}_J = \mathfrak{t} \oplus \bigoplus_{\alpha \in \Phi_J} \mathfrak{g}_{\alpha}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Complex algebraic group: G is an algebraic variety over \mathbb{C} endowed with a group structure such that the operations $\mu : G \times G \to G$, $\mu(x, y) = xy$, and $\iota : G \to G$, $\iota(x) = x^{-1}$ are regular maps.

Simple: G is non-abelian and has no nontrivial closed connected normal subgroups.

Adjoint type: $G \cong AdG = Aut(\mathfrak{g})^0$, i.e. the image of G by its adjoint representation $Ad: G \to Aut(\mathfrak{g})$ mapping $g \to d(y \to xyx^{-1})_e$.

Definition

An element $N \in \mathfrak{g}$ is said to be nilpotent if adN is a nilpotent endomorphism.

Definition

For a nilpotent element $N \in \mathfrak{g}$, we can define a nilpotent orbit as $O_N := \{\phi(N) \mid \phi \in \operatorname{Aut}(\mathfrak{g})^0\}.$

Definition

A nilpotent element $N \in \mathfrak{g}$ is said to be distinguished if the only Levi subalgebra of \mathfrak{g} containing N is \mathfrak{g} itself.

If N is a distinguished nilpotent element, its orbit is also said to be distinguished.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Bala-Carter, 1976)

There is a bijection between nilpotent orbits in g and pairs (l, N), where l is a Levi subalgebra of g and N is a distinguished nilpotent element in l.

Consequence: Classification of nilpotent orbits for simple Lie algebras.

(日) (四) (日) (日) (日)

Definition

We define the centralizer of N in G as $Z_G(N) := \{g \in G \mid (Adg)N = N\}$ and the component group of N as $A(N) := Z_G(N)/Z_G^0(N)$.

Theorem (Sommers, 1998)

There is a bijection between pairs (N, C) where N is a nilpotent element in g and C a conjugacy class in A(N), and pairs (l, N), where l is a pseudo-Levi subalgebra of g and N is a distinguished nilpotent element in l, up to G-conjugation.

Consequence: Determination of A(N). It turns out that, for nilpotent elements of simple Lie algebras, A(N) is isomorphic to one of S_n for $1 \le n \le 5$.

Purpose of my current work: Explicit computation of A(N) for all simple Lie algebras.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fix $J \subset \pi'$ and let $\mathfrak{g}_J = \text{Lie}(G_J)$ be the corresponding pseudo-Levi subalgebra. Fix a distinguished nilpotent element $N \in \mathfrak{g}_J$.

Facts

• $Z(G_J)/Z(G_J)^0$ is a finite cyclic group, generated by a certain $x \in G_J$.

- 日本 本語 本 本 田 本 王 本 田 本

•
$$(Adx)N = N$$
, hence $x \in A(N)$.

• For any $N' \in \mathfrak{g}$ distinguished nilpotent and $g \in G$ such that (Adg)N = N', $gxg^{-1} \in A(N')$.

Algorithm for the computation of the component group A(N) (implemented on GAP):

- Fix $J, J' \in \pi'$;
- List nilpotent orbits of g_J and g'_J ;
- List distinguished nilpotent orbits of g_J and g'_J ;
- Fix a distinguished nilpotent element N for g_J and N' for g'_J ;
- Find x, x' which generate $Z(G_J)/Z(G_J)^0$ and $Z(G'_J)/Z(G'_J)^0$, respectively, having $x \in A(N)$ and $x' \in A(N')$.

• Find
$$g \in G$$
 such that $(Adg)N' = N$.

• Conclusion: $A(N) = \langle x, gxg^{-1} \rangle$.

Key fact: We can use Sommers' correspondence to make a proper choice of J, J'.

References:

- D.H. Collingwood, W.M. McGovern, Nilpotent Orbits In Semisimple Lie Algebra: An Introduction (1st ed.), 1993.
- W.A. De Graaf, Computation with Linear Algebraic Groups, CRC Press, 2017.
- J.E. Humphreys, "Linear algebraic groups", Springer, 1975.
- E. Sommers, "A generalization of the Bala-Carter theorem for nilpotent orbits," in International Mathematics Research Notices, vol. 1998, no. 11, pp. 539-562, 1998.
- The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.2, http://www.gap-system.org, 2000.