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Review of Galois Theory

L,K fields over Q s.t. K < L. If L is the splitting field of some

p(x) ∈ K [x ], we say L/K is Galois. Otherwise it is non-normal.

If L/K is Galois, we can associate the group

Gal(L/K ) := {σ ∈ Aut(L) | σ(x) = x ∀x ∈ K}

and |Gal(L/K )| = [L : K ].

Theorem (Fundamental Theorem of Galois Theory)
If L/K is Galois, then there is a bijective correspondence between

Fields K < F < L, and

Subgroups H < Gal(L/K )

given by F = LH .
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Replacing with a Hopf algebra

L/K Galois, G := Gal(L/K ). Define an action of K [G ] on L by∑
g∈G

agg

 · x =
∑
g∈G

agg(x).

• L is a K [G ]-module algebra

• The linear map

x ⊗ h 7→ θx⊗h(y) = x(h · y),

x , y ∈ L, h ∈ K [G ], is bijective

• K [G ] has the structure of a K -Hopf algebra.

This gives an example of a Hopf-Galois Structure.
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Some facts

Fact 1: K [G ] may not be the only Hopf algebra to act on L in a

similar way (unlike there being a unique Galois group)

Fact 2: This also makes sense for non-normal extensions (it can

actually be defined for certain rings as well)

Fact 3: There is an analogous ”Hopf-Galois Correspondence”. It

is always injective, but not always surjective.

My work focuses on studying, describing and counting Hopf-Galois

structures for different field extensions.
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Group theory

N group.

Hol(N) = N oAut(N)

where

(η, α)(µ, β) = (ηα(µ), αβ).

Note: Hol(N) has a natural action on N given by:

(η, α) · µ = ηα(µ)

L/K (not necessarily Galois) extension, E Galois closure, and

G := Gal(E/K ). In 1996, Byott [Byo96] (building on [GP87])

showed that HGS on L/K correspond with transitive subgroups of

Hol(N) (where N, the type of HGS, cycles through the groups of

order [L : K ]) isomorphic to G .

H = E [N]G

Note link with skew braces in Galois case. 5



Worked example

L/K separable of degree 6. There are two groups of order 6:

N1 := C6
∼= 〈x , y | x3 = y2 = 1, xy = yx〉,

N2 := C3 o C2
∼= S3 ∼= D3

∼= 〈r , s | r3 = s2 = 1, sr = r−1s〉.

Then

Hol(N1) ∼= C6 o C2
∼= 〈x , y , α〉; α(x) = x2,

Hol(N2) ∼= D3 o D3
∼= 〈r , s, α, β〉; α(r) = r2, β(s) = rs.

Trick: rβ commutes with s, so we can form a semidirect product

of two abelian groups:

Hol(N2) ∼= 〈r , rβ〉o 〈s, α〉 ∼= F2
3 o 〈s, α〉
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Worked example

Transitive subgroups of Hol(N1):

〈x , y〉 ∼= N1, 〈x , y , α〉 ∼= Hol(N1),

〈x , (y , α)〉 ∼= N2.

Transitive subgroups of Hol(N2):

〈r , s, α, β〉 ∼= Hol(N2), 〈r , s, β〉 ∼= 〈r , (s, α), β〉,
〈r , s, α〉 ∼= Hol(N1) ∼= 〈r , s, βα〉 ∼= 〈r , s, β2α〉 ∼=
〈(r , β), s, α〉 ∼= 〈(r , β), rs, (r , α)〉 ∼= 〈(r , β), r2s, (r2, α)〉,
〈r , (s, α)〉 ∼= 〈r , (s, βα)〉 ∼= 〈r , (s, β2α)〉 ∼=
〈(r , β), s〉 ∼= 〈(r , β), rs〉 ∼= 〈(r , β), r2s〉 ∼= N1,

〈r , s〉 ∼= 〈(r , β), (s, α)〉 ∼= N2.
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Examples in literature

• K [G ] is a HGS on L/K of type G .

• N is a transitive subgroup of Hol(N).

• Hol(N) is a transitive subgroup of Hol(N)

• If G < Hol(N) is transitive then G < Hol(Nop) is transitive.

• L/K degree p2, 2p [CS20], mp with (m, p) = 1 [Koh07] &

[Koh16], squarefree Galois [AB20],...

• [Dar23] (preprint) L/K separable, degree pq.
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Questions

• How far can we go using the methods of [AB20] and [Dar23]?

• Exploit connection with skew braces when Galois

• Give results for skew bracoids?

• HGS on related field extensions L/K , L′/K .
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Thank You!
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