

On the Non-Transitivity Property of Group Actions in Cryptography

Giuseppe D'Alconzo* Department of Mathematical Sciences, Polytechnic of Turin

Young Researchers Algebra Conference 2023 July 25-29, 2023 - L'Aquila (Italy)

*joint work with A. Flamini and A. Gangemi

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a group action if \star is compatible with the group operation:

 $e \star x = x \text{ and } (gh) \star x = g \star (h \star x).$

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a group action if \star is compatible with the group operation:

 $e \star x = x \text{ and } (gh) \star x = g \star (h \star x).$

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a group action if \star is compatible with the group operation:

$$e \star x = x \text{ and } (gh) \star x = g \star (h \star x).$$

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a group action if \star is compatible with the group operation:

$$e \star x = x \text{ and } (gh) \star x = g \star (h \star x).$$

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a group action if \star is compatible with the group operation:

$$e \star x = x \text{ and } (gh) \star x = g \star (h \star x).$$

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a group action if \star is compatible with the group operation:

$$e \star x = x \text{ and } (gh) \star x = g \star (h \star x).$$

Many constructions from GAs! Key exchanges, digital signatures, oblivious transfers, PRFs, etc.

Alamati, De Feo, Montgomery, Patranabis. "Cryptographic group actions and applications." Asiacrypt 2020.

On the Transitive Property

On the Transitive Property

On the Transitive Property

Commit phase:

Brassard, Yung. "One-way group actions." *CRYPTO 1990.* Ji, Qiao, Song, Yun. "General linear group action on tensors: A candidate for post-quantum cryptography." *TCC* 2019.

Brassard, Yung. "One-way group actions." *CRYPTO 1990.* Ji, Qiao, Song, Yun. "General linear group action on tensors: A candidate for post-quantum cryptography." *TCC* 2019.

Brassard, Yung. "One-way group actions." *CRYPTO 1990.* Ji, Qiao, Song, Yun. "General linear group action on tensors: A candidate for post-quantum cryptography." *TCC* 2019.

Brassard, Yung. "One-way group actions." *CRYPTO 1990.* Ji, Qiao, Song, Yun. "General linear group action on tensors: A candidate for post-quantum cryptography." *TCC* 2019.

A first attempt

Public parameters (G, X, \star)

First try

Second try

Second try

Issue

Third try

Brassard, Yung. "One-way group actions." *CRYPTO 1990.* Ji, Qiao, Song, Yun. "General linear group action on tensors: A candidate for post-quantum cryptography." *TCC* 2019.

Given (G, X, \star) , we need a way to certify that two elements lie in different orbits.

Ingredients.

Given (G, X, \star) , we need a way to certify that two elements lie in different orbits. Ingredients.

• Invariant function $f: X \to T$ such that $f(g \star x) = f(x)$.

Given (G, X, \star) , we need a way to certify that two elements lie in different orbits. Ingredients.

- Invariant function $f: X \to T$ such that $f(g \star x) = f(x)$.
- Let $T' \subset f(X)$, then $\langle \cdot \rangle : T' \to X$ is a canonical map for f if $f(\langle t \rangle) = t$.

Given (G, X, \star) , we need a way to certify that two elements lie in different orbits. Ingredients.

- Invariant function $f: X \to T$ such that $f(g \star x) = f(x)$.
- Let $T' \subset f(X)$, then $\langle \, \cdot \, \rangle : T' \to X$ is a canonical map for f if $f(\langle t \rangle) = t$.
- Easy: recognize and compute $\langle t \rangle$ for any t in T';
- Hard: computing *f* in general.

Given (G, X, \star) , we need a way to certify that two elements lie in different orbits. Ingredients.

- Invariant function $f: X \to T$ such that $f(g \star x) = f(x)$.
- Let $T' \subset f(X)$, then $\langle \, \cdot \, \rangle : T' \to X$ is a canonical map for f if $f(\langle t \rangle) = t$.
- Easy: recognize and compute $\langle t \rangle$ for any t in T';
- Hard: computing *f* in general.

We call the tuple $(G, X, \star, f, \langle \cdot \rangle)$ Group Action with Canonical Elements (GACE).

Commit phase:

Computationally hiding under the Pseudorandom assumption. Perfectly binding.

Let $X = \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$ and $G = \operatorname{GL}(n,q)^3$ $(A, B, C) \star \sum_{ijk} S_{ijk} e_i \otimes e_j \otimes e_k = \sum_{ijk} S_{ijk} A e_i \otimes B e_j \otimes C e_k$

Let
$$X = \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$$
 and $G = \operatorname{GL}(n,q)^3$
 $(A, B, C) \star \sum_{ijk} S_{ijk} e_i \otimes e_j \otimes e_k = \sum_{ijk} S_{ijk} A e_i \otimes B e_j \otimes C e_k$

The invariant function is the tensor rank (NP-hard to compute)

 $f = \operatorname{rank}$

Tensor rank Minimal r such that $S = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$

Let
$$X = \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$$
 and $G = \operatorname{GL}(n,q)^3$
 $(A, B, C) \star \sum_{ijk} S_{ijk} e_i \otimes e_j \otimes e_k = \sum_{ijk} S_{ijk} A e_i \otimes B e_j \otimes C e_k$

The invariant function is the tensor rank (NP-hard to compute)

 $f = \operatorname{rank}$

Minimal r such that $S = \sum_{i=1}^r a_i \otimes b_i \otimes c_i$

Tensor rank

It is hard to build tensors of any given rank, but for small r we have

$$\operatorname{rank}(\sum_{i=0}^{r} e_i \otimes e_i \otimes e_i) = r$$

Håstad. "Tensor rank is NP-complete. " 1989. Bläser. "Explicit tensors." 2014.

Let
$$X = \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$$
 and $G = \operatorname{GL}(n,q)^3$
 $(A, B, C) \star \sum_{ijk} S_{ijk} e_i \otimes e_j \otimes e_k = \sum_{ijk} S_{ijk} A e_i \otimes B e_j \otimes C e_k$

The invariant function is the tensor rank (NP-hard to compute)

 $f = \operatorname{rank}$

Tensor rank Minimal r such that $S = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$

It is hard to build tensors of any given rank, but for small r we have

$$\operatorname{rank}(\sum_{i=0}^{r} e_i \otimes e_i \otimes e_i) = r$$

Hence, $T' = \{0, \ldots, n\}$ and the canonical map is given by

$$\langle r \rangle = \sum_{i=0}^{r} e_i \otimes e_i \otimes e_i$$

Håstad. "Tensor rank is NP-complete. " 1989. Bläser. "Explicit tensors." 2014.

Let
$$X = \mathbb{F}_q^n \otimes \mathbb{F}_q^n \otimes \mathbb{F}_q^n$$
 and $G = \operatorname{GL}(n,q)^3$
 $(A, B, C) \star \sum_{ijk} S_{ijk} e_i \otimes e_j \otimes e_k = \sum_{ijk} S_{ijk} A e_i \otimes B e_j \otimes C e_k$

The invariant function is the tensor rank (NP-hard to compute)

 $f = \operatorname{rank}$

It is hard to build tensors of any given rank, but for small r we have

$$\operatorname{rank}(\sum_{i=0}^{r} e_i \otimes e_i \otimes e_i) = r$$

Hence, $T' = \{0, ..., n\}$ and the canonical map is given by $\langle r \rangle = \sum_{i=0}^{r} e_i \otimes e_i \otimes e_i$ $(G, X, \star, \operatorname{rank}, \langle \cdot \rangle)$ is a Group Action with Canonical Elements.

Håstad. "Tensor rank is NP-complete. " 1989. Bläser. "Explicit tensors." 2014.

Tensor rank
Minimal r such that
$$S = \sum_{i=1}^{r} a_i \otimes b_i \otimes c_i$$

- Non-transitivity is not a bug, but a feature!
- We presented the first non-interactive bit commitment from cryptographic group actions.

- Non-transitivity is not a bug, but a feature!
- We presented the first non-interactive bit commitment from cryptographic group actions.

What you can find in the paper:

- more on assumptions,
- linkable commitments.

- Non-transitivity is not a bug, but a feature!
- We presented the first non-interactive bit commitment from cryptographic group actions.

Let us discuss new Group Action with Canonical Elements and applications!

What you can find in the paper:

- more on assumptions,
- linkable commitments.

- Non-transitivity is not a bug, but a feature!
- We presented the first non-interactive bit commitment from cryptographic group actions.

What you can find in the paper:

- more on assumptions,
- linkable commitments.

Let us discuss new Group Action with Canonical Elements and applications!

https://ia.cr/2023/723

Thanks!