Groups of prime-power order

Bettina Eick

TU Braunschweig - Germany
L'Aquila, July 2023, Talk 1

History

Very selected ...

Groups and Symmetries

Groups and Symmetries

- Groups are a mathematical model for studing symmetries.

Groups and Symmetries

Groups and Symmetries

- Groups are a mathematical model for studing symmetries.
- Example: Permutation groups (Rubik's cube)

Groups and Symmetries

Groups and Symmetries

- Groups are a mathematical model for studing symmetries.
- Example: Permutation groups (Rubik's cube)
- Example: Crystallographic groups (Wall papers and crystals)

Groups and Symmetries

Groups and Symmetries

- Groups are a mathematical model for studing symmetries.
- Example: Permutation groups (Rubik's cube)
- Example: Crystallographic groups (Wall papers and crystals)
- Example: Galois groups (Solving polynomial equations)

Cayley

Cayley 1854

- Introduced the abstract definition for groups:

Cayley

Cayley 1854

- Introduced the abstract definition for groups:
- Groups are sets with an associative multiplication.

Cayley

Cayley 1854

- Introduced the abstract definition for groups:
- Groups are sets with an associative multiplication.
- Defined isomorphism between groups.

Cayley

Cayley 1854

- Introduced the abstract definition for groups:
- Groups are sets with an associative multiplication.
- Defined isomorphism between groups.
- Project: classify groups of a given order up to isomorphism.

Sylow

Sylow 1872
Let G be a group of order $p^{n} m$ with $p \nmid m$. Then

Sylow

Sylow 1872
Let G be a group of order $p^{n} m$ with $p \nmid m$. Then

- G has a subgroup of order p^{n}.

Sylow

Sylow 1872

Let G be a group of order $p^{n} m$ with $p \nmid m$. Then

- G has a subgroup of order p^{n}.
- All subgroups in G of order p^{n} are conjugate.

Sylow

Sylow 1872

Let G be a group of order $p^{n} m$ with $p \nmid m$. Then

- G has a subgroup of order p^{n}.
- All subgroups in G of order p^{n} are conjugate.
- The number of subgroups of order p^{n} has the form $1+k p$.

Power-conjugate presentations

The proof of Sylow's theorem

contains many interesting observations on p-groups. For example:

Power-conjugate presentations

The proof of Sylow's theorem

contains many interesting observations on p-groups. For example:

- Each finite p-group has a non-trivial center.

Power-conjugate presentations

The proof of Sylow's theorem

contains many interesting observations on p-groups. For example:

- Each finite p-group has a non-trivial center.
- Each finite p-group is solvable.

Power-conjugate presentations

The proof of Sylow's theorem

contains many interesting observations on p-groups. For example:

- Each finite p-group has a non-trivial center.
- Each finite p-group is solvable.
- If $|G|=p^{n}$, then G has generators g_{1}, \ldots, g_{n} with

$$
\begin{aligned}
g_{i}^{p} & =g_{i+1,1+1}^{e_{i, i+1}} \cdots g_{n}^{e_{i, n}} \quad 1 \leq i \leq n \\
g_{j}^{-1} g_{i} g_{j} & =g_{i} g_{i+1}^{f_{j, i, i+1}} \cdots g_{n}^{f_{j, i, n}} \quad 1 \leq j<i \leq n
\end{aligned}
$$

with exponents $e_{i k}$ and $f_{j i k}$ in $\{0, \ldots, p-1\}$.

Power-conjugate presentations

The proof of Sylow's theorem

contains many interesting observations on p-groups. For example:

- Each finite p-group has a non-trivial center.
- Each finite p-group is solvable.
- If $|G|=p^{n}$, then G has generators g_{1}, \ldots, g_{n} with

$$
\begin{aligned}
g_{i}^{p} & =g_{i+1}^{e_{i, i+1}} \cdots g_{n}^{e_{i, n}} \quad 1 \leq i \leq n \\
g_{j}^{-1} g_{i} g_{j} & =g_{i} g_{i+1}^{f_{j, i, i+1+1}} \cdots g_{n}^{f_{j, i, n}} \quad 1 \leq j<i \leq n
\end{aligned}
$$

with exponents $e_{i k}$ and $f_{j i k}$ in $\{0, \ldots, p-1\}$.

- First steps twowards power-conjugate presentations.

P. Hall

Philip Hall (1932/1940/1960)

P. Hall

Philip Hall (1932/1940/1960)

- Used power-conjugate presentations.

P. Hall

Philip Hall (1932/1940/1960)

- Used power-conjugate presentations.
- Invented the 'Collection' algorithm (multiplication).

P. Hall

Philip Hall (1932/1940/1960)

- Used power-conjugate presentations.
- Invented the 'Collection' algorithm (multiplication).
- Introduced 'isoclinism'.

P. Hall

Philip Hall (1932/1940/1960)

- Used power-conjugate presentations.
- Invented the 'Collection' algorithm (multiplication).
- Introduced 'isoclinism'.
- Classified the groups of order 2^{5}.

P. Hall

Philip Hall (1932/1940/1960)

- Used power-conjugate presentations.
- Invented the 'Collection' algorithm (multiplication).
- Introduced 'isoclinism'.
- Classified the groups of order 2^{5}.
- Determined the groups of order 2^{7} (unpublished).

GAP Examples 1

GAP Examples 1

SmallGroups Library I

SmallGroups Library in GAP

```
gap> ll := AllSmallGroups(8);
[ <pc group of size 8 with 3 generators>,
    <pc group of size 8 with 3 generators> ]
```

gap> List(ll, StructureDescription);
["C8", "C4 x C2", "D8", "Q8", "C2 x C2 x C2"]
gap> PrintPcpPresentation(PcGroupToPcpGroup(ll [4]));
$\mathrm{g} 1^{\wedge} 2=\mathrm{g} 3$
g2~2 $=\mathrm{g} 3$
g3^2 = id
g 2 ~ $\mathrm{g} 1=\mathrm{g} 2 * \mathrm{~g} 3$

Permutation groups

Permutation Groups

```
gap> G := SymmetricGroup(100);
Sym( [ 1 .. 100 ] )
gap> Collected(Factors(Size(G)));
[ [2, 97], [3, 48], [5, 24], [7, 16], [11, 9], [13, 7],
    [17, 5], [19, 5], [23, 4], [29, 3], [31, 3], [37, 2],
    [41, 2], [43, 2], [47, 2], [53, 1], [59, 1], [61, 1],
    [67, 1], [71, 1], [73, 1], [79, 1], [83, 1], [89, 1],
    [97, 1] ]
gap> H := SylowSubgroup(G, 7);
<permutation group of size 33232930569601 ...>
gap> iso := IsomorphismPcGroup(H);;
gap> U := Image(iso);
<pc group of size 33232930569601 with 16 generators>
```


Matrix groups

```
Matrix Groups
gap> G := GL(4, 9);
GL(4,9)
gap> U := SylowSubgroup(G, 3);
<matrix group of size }531441\mathrm{ with }6\mathrm{ generators>
```


Numbers of groups

```
Numbers of groups
gap> NumberSmallGroups(128);
2328
gap> Sum(List([1..200], NumberSmallGroups));
6065
gap> NumberSmallGroups(2^(10));
49487367289
gap> Sum(List([1..2000], NumberSmallGroups));
49910531351
```


Groups of order 2^{n}

	Number	Comment
2^{1}	1	
2^{2}	2	
2^{3}	5	
2^{4}	14	Hölder 1893
2^{5}	51	Miller 1898
2^{6}	267	Hall \& Senior 1964
2^{7}	2328	James, Newman \& O'Brien 1990
2^{8}	56092	O'Brien 1991
2^{9}	10494213	Eick \& O'Brien 2000
2^{10}	49487367289	Eick \& O'Brien 2000, Burrell 2021

Classifying p-groups

Classifying p-groups

Classifying of p-groups by order

Aims

- (Strong) Determine up to isomorphism a complete and irredundant list of groups of order p^{n}.

Classifying of p-groups by order

Aims

- (Strong) Determine up to isomorphism a complete and irredundant list of groups of order p^{n}.
- (Weaker) Determine the number $f(n, p)$ of isomorphism types of groups of order p^{n}.

Classifying of p-groups by order

Aims

- (Strong) Determine up to isomorphism a complete and irredundant list of groups of order p^{n}.
- (Weaker) Determine the number $f(n, p)$ of isomorphism types of groups of order p^{n}.
- (Variation) Investigate $f(n, p)$ as a function in n or as a function in p.

As a function in n

Theorem (Higman 1960 -Sims 1964)

Consider $f(n, p)$ as a function in n and write

$$
f(n, p)=p^{A n^{3}} \text { with } A=A(n, p) .
$$

Then there exists $\epsilon_{n}>0$ with $\epsilon_{n} \rightarrow \infty$ if $n \rightarrow \infty$ and

$$
\frac{2}{27}-\epsilon_{n} \leq A \leq \frac{2}{27}+\epsilon_{n}
$$

GAP Examples 2

GAP Examples 2

Descendants

Computing Descendants

gap> PqDescendants(SmallGroup(4,2) : AllDescendants:=true); [<pc group of size 8 with 3 generators>, <pc group of size 8 with 3 generators>, <pc group of size 8 with 3 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 16 with 4 generators>, <pc group of size 32 with 5 generators>]
gap> List(last, IdGroup);
$[[8,2],[8,3],[8,4],[16,2],[16,3],[16,4],[32,2]]$

