Some recent results on the conformal superalgebra CK_6

Lucia Bagnoli

Department of Mathematics, Faculty of Science, University of Zagreb

YRAC 2023, 26-28 July 2023

Definition (Conformal superalgebra)

A conformal superalgebra R is a left \mathbb{Z}_2 -graded $\mathbb{C}[\partial]$ -module endowed with a \mathbb{C} -linear map, called λ -bracket, $R \otimes R \to \mathbb{C}[\lambda] \otimes R$, $a \otimes b \mapsto [a_{\lambda}b]$, that satisfies the following properties for all $a, b, c \in R$:

$$[\partial a_{\lambda}b] = -\lambda[a_{\lambda}b], \quad [a_{\lambda}\partial b] = (\lambda + \partial)[a_{\lambda}b]$$

$$[a_{\lambda}b] = -(-1)^{p(a)p(b)}[b_{-\lambda-\partial}a];$$

where p(a) denotes the parity of the element $a \in R$ and $p(\partial a) = p(a)$ for all $a \in R$.

We can define an **ideal** of *R*. We can define **simple**, **finite** conformal superalgebra.

イロト イ団ト イヨト イヨト

Definition (Conformal superalgebra)

A conformal superalgebra R is a left \mathbb{Z}_2 -graded $\mathbb{C}[\partial]$ -module endowed with a \mathbb{C} -linear map, called λ -bracket, $R \otimes R \to \mathbb{C}[\lambda] \otimes R$, $a \otimes b \mapsto [a_{\lambda}b]$, that satisfies the following properties for all $a, b, c \in R$:

$$[a_{\lambda}b] = -(-1)^{p(a)p(b)}[b_{-\lambda-\partial}a];$$

$$[a_{\lambda}[b_{\mu}c]] = [[a_{\lambda}b]_{\lambda+\mu}c] + (-1)^{p(a)p(b)}[b_{\mu}[a_{\lambda}c]];$$

where p(a) denotes the parity of the element $a \in R$ and $p(\partial a) = p(a)$ for all $a \in R$.

We can define an **ideal** of *R*. We can define **simple**, **finite** conformal superalgebra.

Definition

A module M over a conformal superalgebra R is a left \mathbb{Z}_2 -graded $\mathbb{C}[\partial]$ -module endowed with the \mathbb{C} -linear map $R \otimes M \to \mathbb{C}[\lambda] \otimes M$, $a \otimes v \mapsto a_{\lambda}v$ that satisfies the following properties for all $a, b \in R$, $v \in M$:

$$(\partial a)_{\lambda}v = [\partial, a_{\lambda}]v = -\lambda a_{\lambda}v;$$

$$[a_{\lambda}, b_{\mu}]v = [a_{\lambda}b]_{\lambda+\mu}v.$$

A module *M* is called **finite** if it is a finitely generated $\mathbb{C}[\partial]$ -module.

Remark

We recall that it is possible to associate with a conformal superalgebra R a Lie superalgebra $\mathcal{A}(R)$ that plays a fundamental role in the representation theory of R.

Definition

A module M over a conformal superalgebra R is a left \mathbb{Z}_2 -graded $\mathbb{C}[\partial]$ -module endowed with the \mathbb{C} -linear map $R \otimes M \to \mathbb{C}[\lambda] \otimes M$, $a \otimes v \mapsto a_{\lambda}v$ that satisfies the following properties for all $a, b \in R$, $v \in M$:

$$(\partial a)_{\lambda}v = [\partial, a_{\lambda}]v = -\lambda a_{\lambda}v;$$

$$[a_{\lambda}, b_{\mu}]v = [a_{\lambda}b]_{\lambda+\mu}v.$$

A module *M* is called **finite** if it is a finitely generated $\mathbb{C}[\partial]$ -module.

Remark

We recall that it is possible to associate with a conformal superalgebra R a Lie superalgebra $\mathcal{A}(R)$ that plays a fundamental role in the representation theory of R.

Theorem (Fattori, Kac 2002)

Any finite simple conformal superalgebra R is isomorphic to one of the conformal superalgebras of the following list: Cur g, where g is a simple finite-dimensional Lie superalgebra, $W_n(n \ge 0)$, $S_{n,b}$, \tilde{S}_n $(n \ge 2, b \in \mathbb{C})$, $K_n(n \ge 0, n \ne 4)$, K'_4 , CK_6 .

Image: A math a math

The conformal superalgebra of type K

Let $\Lambda(N)$ be the Grassmann superalgebra in the N odd indeterminates $\xi_1, ..., \xi_N$. Let t be an even indeterminate and $\Lambda(1, N) = \mathbb{C}[t, t^{-1}] \otimes \Lambda(N)$.

$$W(1, N) = \left\{ D = a\partial_t + \sum_{i=1}^N a_i\partial_i \mid a, a_i \in \wedge(1, N)
ight\}.$$

Let $\omega = dt - \sum_{i=1}^N \xi_i d\xi_i$

 $K(1,N) = \{ D \in W(1,N) \mid D\omega = f_D \omega \text{ for some } f_D \in \wedge(1,N) \}.$

We can define $\wedge(1, \mathsf{N})_+ = \mathbb{C}[t] \otimes \wedge(\mathsf{N}), \ \mathsf{W}(1, \mathsf{N})_+$ and $K(1, \mathsf{N})_+.$

The conformal superalgebra of type K

Let $\Lambda(N)$ be the Grassmann superalgebra in the N odd indeterminates $\xi_1, ..., \xi_N$. Let t be an even indeterminate and $\Lambda(1, N) = \mathbb{C}[t, t^{-1}] \otimes \Lambda(N)$.

$$W(1, \mathsf{N}) = \left\{ D = \mathsf{a} \partial_t + \sum_{i=1}^{\mathsf{N}} \mathsf{a}_i \partial_i \mid \mathsf{a}, \mathsf{a}_i \in \wedge(1, \mathsf{N})
ight\}.$$

Let
$$\omega = dt - \sum_{i=1}^{N} \xi_i d\xi_i$$
.

 $K(1, N) = \{ D \in W(1, N) \mid D\omega = f_D \omega \text{ for some } f_D \in \wedge(1, N) \}.$

We can define $\wedge(1, N)_+ = \mathbb{C}[t] \otimes \wedge(N)$, $W(1, N)_+$ and $K(1, N)_+$.

 $\wedge(1,N)$ has a Lie superalgebra structure as follows: for all $f,g\in \wedge(1,N)$

$$[f,g] = \left(2f - \sum_{i=1}^{N} \xi_i \partial_i f\right) (\partial_t g) - (\partial_t f) \left(2g - \sum_{i=1}^{N} \xi_i \partial_i g\right) + (-1)^{p(f)} \left(\sum_{i=1}^{N} \partial_i f \partial_i g\right).$$

 $K(1, N) \cong \Lambda(1, N)$ as Lie superalgebras via:

$$\wedge (1, N) \longrightarrow \mathcal{K}(1, N)$$

$$f \longmapsto 2f \partial_t + (-1)^{p(f)} \sum_{i=1}^N (\xi_i \partial_t f + \partial_i f) (\xi_i \partial_t + \partial_i).$$

イロト イポト イヨト イヨト

YRAC 2023, 26-28 July 2023

3

6 / 15

We consider on K(1, N) the standard grading, i.e. $\deg(t^m \xi_{i_1} \cdots \xi_{i_s}) = 2m + s - 2.$

Lucia Bagnoli (University of Zagreb)

 $\wedge(1,N)$ has a Lie superalgebra structure as follows: for all $f,g\in \wedge(1,N)$

$$[f,g] = \left(2f - \sum_{i=1}^{N} \xi_i \partial_i f\right) (\partial_t g) - (\partial_t f) \left(2g - \sum_{i=1}^{N} \xi_i \partial_i g\right) + (-1)^{p(f)} \left(\sum_{i=1}^{N} \partial_i f \partial_i g\right).$$

 $K(1, N) \cong \Lambda(1, N)$ as Lie superalgebras via:

$$\wedge (1, N) \longrightarrow \mathcal{K}(1, N)$$

$$f \longmapsto 2f \partial_t + (-1)^{p(f)} \sum_{i=1}^N (\xi_i \partial_t f + \partial_i f) (\xi_i \partial_t + \partial_i).$$

(日) (周) (三) (三)

YRAC 2023, 26-28 July 2023

3

6 / 15

We consider on K(1, N) the standard grading, i.e. $\deg(t^m \xi_{i_1} \cdots \xi_{i_s}) = 2m + s - 2.$

Lucia Bagnoli (University of Zagreb)

The conformal superalgebra of type K is defined as

 $K_N := \mathbb{C}[\partial] \otimes \bigwedge (N).$

For $f = \xi_{i_1} \cdots \xi_{i_r}$ and $g = \xi_{j_1} \cdots \xi_{j_s}$:

$$[f_{\lambda}g]=ig((r-2)\partial(fg)+(-1)^r\sum_{i=1}^N(\partial_i f)(\partial_i g)ig)+\lambda(r+s-4)fg.$$

We recall that

$$\mathfrak{g} = \mathcal{A}(K_N) = K(1, N)_+.$$

 $\mathfrak g$ has depth 2 with respect to the standard grading. $\mathfrak g_{-2}$ is one–dimensional, we call Θ the generator -1/2 of $\mathfrak g_{-2}.$

- 3

イロト イポト イヨト イヨト

Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -graded Lie superalgebra. We will use the notation $\mathfrak{g}_+ = \bigoplus_{i>0} \mathfrak{g}_i$, $\mathfrak{g}_- = \bigoplus_{i<0} \mathfrak{g}_i$ and $\mathfrak{g}_{\geq 0} = \bigoplus_{i\geq 0} \mathfrak{g}_i$.

Remark

Let *F* be a $g_{\geq 0}$ -module. We denote by M(F) the **generalized Verma module**. If *F* is a finite-dimensional irreducible $g_{\geq 0}$ -module, we call M(F) a **finite Verma module**.

If M(F) is not irreducible, we call M(F) degenerate.

We have a $\mathbb{Z}_{\geq 0}$ -grading on $U(\mathfrak{g}_{-})$ and M(F).

Definition

Given a g-module V, we call **singular vectors** the elements of:

$$\operatorname{Sing}(V) = \{ v \in V \mid \mathfrak{g}_+ \cdot v = 0 \}.$$

If V = M(F), we will call **trivial singular vectors** the singular vectors of degree 0 and **nontrivial singular vectors** the singular vectors of positive degree.

(a)

Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -graded Lie superalgebra. We will use the notation $\mathfrak{g}_+ = \bigoplus_{i>0} \mathfrak{g}_i$, $\mathfrak{g}_- = \bigoplus_{i<0} \mathfrak{g}_i$ and $\mathfrak{g}_{\geq 0} = \bigoplus_{i\geq 0} \mathfrak{g}_i$.

Remark

Let *F* be a $\mathfrak{g}_{\geq 0}$ -module. We denote by M(F) the **generalized Verma module**. If *F* is a finite-dimensional irreducible $\mathfrak{g}_{\geq 0}$ -module, we call M(F) a **finite Verma module**. If M(F) is not irreducible, we call M(F) **degenerate**.

We have a $\mathbb{Z}_{\geq 0}$ -grading on $U(\mathfrak{g}_{-})$ and M(F).

Definition

Given a g-module V, we call **singular vectors** the elements of:

$$\operatorname{Sing}(V) = \{ v \in V \mid \mathfrak{g}_+ \cdot v = 0 \}.$$

If V = M(F), we will call **trivial singular vectors** the singular vectors of degree 0 and **nontrivial singular vectors** the singular vectors of positive degree.

イロト イヨト イヨト イヨト

Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -graded Lie superalgebra. We will use the notation $\mathfrak{g}_+ = \bigoplus_{i>0} \mathfrak{g}_i$, $\mathfrak{g}_- = \bigoplus_{i<0} \mathfrak{g}_i$ and $\mathfrak{g}_{\geq 0} = \bigoplus_{i\geq 0} \mathfrak{g}_i$.

Remark

Let *F* be a $\mathfrak{g}_{\geq 0}$ -module. We denote by M(F) the **generalized Verma module**. If *F* is a finite-dimensional irreducible $\mathfrak{g}_{\geq 0}$ -module, we call M(F) a **finite Verma module**. If M(F) is not irreducible, we call M(F) **degenerate**.

We have a $\mathbb{Z}_{\geq 0}$ -grading on $U(\mathfrak{g}_{-})$ and M(F).

Definition

Given a g-module V, we call **singular vectors** the elements of:

$$\operatorname{Sing}(V) = \{v \in V \mid \mathfrak{g}_+.v = 0\}.$$

If V = M(F), we will call **trivial singular vectors** the singular vectors of degree 0 and **nontrivial singular vectors** the singular vectors of positive degree.

By a series of results obtained by Boyallian, Kac, Liberati (2010), Kac, Rudakov (2002) and Cheng, Lam (2001), it is known that for a conformal superalgebra of type K the classification of finite irreducible modules can be obtained through the classification of all degenerate finite Verma modules for the associated annihilation superalgebra; moreover, this is equivalent to the classification of all (highest weight) singular vectors in finite Verma modules.

The conformal superalgebra CK_6

For $\xi_I \in \Lambda(6)$ we define ξ_I^* to be such that $\xi_I \xi_I^* = \xi_1 \xi_2 \xi_3 \xi_4 \xi_5 \xi_6$.

$$\mathcal{CK}_6 = \mathbb{C}[\partial] - \operatorname{span}\left\{f - i(-1)^{\frac{|f|(|f|+1)}{2}}(-\partial)^{3-|f|}f^*, \ f \in \wedge(6), 0 \le |f| \le 3\right\}.$$

Remark

We recall that

$$\mathfrak{g} := \mathcal{A}(CK_6) \cong E(1,6).$$

The homogeneous components of non–positive degree of $\mathfrak g$ and $K(1,6)_+$ coincide and are:

$$\begin{split} \mathfrak{g}_{-2} &= \langle 1 \rangle, \\ \mathfrak{g}_{-1} &= \langle \xi_1, \xi_2, \dots, \xi_6 \rangle, \\ \mathfrak{g}_0 &= \langle t, \xi_i \xi_j : \ 1 \le i, j \le 6 \rangle \cong \mathbb{C}t \oplus \mathfrak{sl}(4). \end{split}$$

The conformal superalgebra CK_6

For $\xi_I \in \Lambda(6)$ we define ξ_I^* to be such that $\xi_I \xi_I^* = \xi_1 \xi_2 \xi_3 \xi_4 \xi_5 \xi_6$.

$$\mathcal{CK}_6 = \mathbb{C}[\partial] - \operatorname{span}\left\{f - i(-1)^{\frac{|f|(|f|+1)}{2}}(-\partial)^{3-|f|}f^*, \ f \in \wedge(6), 0 \le |f| \le 3\right\}.$$

Remark

We recall that

$$\mathfrak{g} := \mathcal{A}(CK_6) \cong E(1,6).$$

The homogeneous components of non–positive degree of \mathfrak{g} and $\mathcal{K}(1,6)_+$ coincide and are:

$$\begin{split} \mathfrak{g}_{-2} &= \langle 1 \rangle, \\ \mathfrak{g}_{-1} &= \langle \xi_1, \xi_2, ..., \xi_6 \rangle, \\ \mathfrak{g}_0 &= \langle t, \xi_i \xi_j : \ 1 \le i, j \le 6 \rangle \cong \mathbb{C}t \oplus \mathfrak{sl}(4). \end{split}$$

Let *F* be an irreducible finite-dimensional g_0 -module. Then

 $M(F) \cong \mathbb{C}[\Theta] \otimes \wedge (6) \otimes F.$

Lemma (B.; statement by Boyallian, Kac, Liberati 2013)

Let $\vec{m} \in M(F)$ is a singular vector. Then the degree of \vec{m} with respect to Θ is at most 2.

From now on we denote the highest weight of an irreducible finite-dimensional \mathfrak{g}_0 -module as $\mu = (n_1, n_2, n_3, \mu_t)$ where μ_t is the weight with respect to h_1 , h_2 , h_3 and t, where

 $h_1 = -i\xi_{34} - i\xi_{56}, \quad h_2 = -i\xi_{12} + i\xi_{34}, \quad h_3 = -i\xi_{34} + i\xi_{56}.$

Boyallian, Kac and Liberati classified all highest weight singular vectors for *CK*6 and obtained the following morphisms between degenerate finite Verma modules.

・ロン ・四 と ・ ヨン ・ ヨン

Let *F* be an irreducible finite-dimensional g_0 -module. Then

 $M(F) \cong \mathbb{C}[\Theta] \otimes \wedge(6) \otimes F.$

Lemma (B.; statement by Boyallian, Kac, Liberati 2013)

Let $\vec{m} \in M(F)$ is a singular vector. Then the degree of \vec{m} with respect to Θ is at most 2.

From now on we denote the highest weight of an irreducible finite-dimensional \mathfrak{g}_0 -module as $\mu = (n_1, n_2, n_3, \mu_t)$ where μ_t is the weight with respect to h_1 , h_2 , h_3 and t, where

$$h_1 = -i\xi_{34} - i\xi_{56}, \quad h_2 = -i\xi_{12} + i\xi_{34}, \quad h_3 = -i\xi_{34} + i\xi_{56}.$$

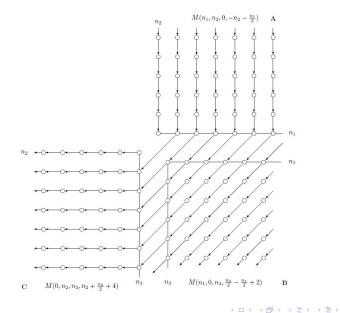
Boyallian, Kac and Liberati classified all highest weight singular vectors for CK_6 and obtained the following morphisms between degenerate finite Verma modules.

Between $M(\mu)$ and $M(\tilde{\mu})$ there exists a morphism of \mathfrak{g} -modules if and only if there exists a non trivial singular vector \vec{m} in $M(\tilde{\mu})$ of highest weight μ .

$$abla : M(\mu) \longrightarrow M(ilde{\mu})
onumber \ v_{\mu} \longmapsto ec{m}$$

If \vec{m} is a singular vector of degree d, we say that ∇ is a morphism of degree d.

Boyallian, Kac, Liberati 2013:



2

Proposition (B.)

As \mathfrak{g}_0 -modules:

$$H^{n_1,n_2}(M_A) \cong \begin{cases} \mathbb{C} & \text{ if } (n_1,n_2) = (0,0), \\ 0 & \text{ otherwise.} \end{cases}$$

$$H^{n_2,n_3}(M_C) \cong \begin{cases} \mathbb{C} & \text{ if } (n_2,n_3) = (1,0), \\ 0 & \text{ otherwise.} \end{cases}$$

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Open problems

- It remains to complete the study of the homology of the complexes for the second quadrant of CK_6 ;
- it would be interesting to understand if it is possible to use similar techniques to compute the homology of the complexes for E(5, 10).