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Conformal superalgebras

Definition (Conformal superalgebra)

A conformal superalgebra R is a left Z,—graded C[0]—module endowed with a
C—linear map, called A—bracket, R® R — C[\] ® R, a® b+ [ayb], that satisfies
the following properties for all a, b, c € R:

Q [Daxb] = —Alaxb], [ar0b] = (A + 9)[arb];

Q [axb] = —(~1)P@PP)[b_y_pa];

© [ax[byc]] = [[axblrspc] + (—1)P@PO) b, [axc]];
where p(a) denotes the parity of the element a € R and p(9a) = p(a) for all
aeR.
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Conformal superalgebras

Definition (Conformal superalgebra)

A conformal superalgebra R is a left Z,—graded C[0]—module endowed with a
C—linear map, called A—bracket, R® R — C[\] ® R, a® b+ [ayb], that satisfies
the following properties for all a, b, c € R:

Q [0axb] = —A[axb], [ax0b] = (A + O)[arb];

Q [axb] = —(~1)P@PP)[b_y_pa];

© [ax[byc]] = [[axblrspc] + (—1)P@PO) b, [axc]];
where p(a) denotes the parity of the element a € R and p(9a) = p(a) for all
aeR.

We can define an ideal of R. We can define simple, finite conformal
superalgebra.
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Conformal superalgebras

Definition
A module M over a conformal superalgebra R is a left Zy—graded C[9]—module
endowed with the C—linear map R® M — C[A\] ® M, a® v — ayv that satisfies

the following properties for all a,b€ R, v € M:
@ (92)v = [0,a\]v = —Aayv;
(2] [a,\, bM]V = [a,\b],\+uv.

A module M is called finite if it is a finitely generated C[0]—module.
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Conformal superalgebras

Definition
A module M over a conformal superalgebra R is a left Zy—graded C[9]—module
endowed with the C—linear map R® M — C[A\] ® M, a® v — ayv that satisfies
the following properties for all a,b€ R, v € M:

Q (0a)av =[0,a]v = —Aayv;

e [a,\, bu]v = [a,\b],\+uv.

A module M is called finite if it is a finitely generated C[0]—module.

Remark

We recall that it is possible to associate with a conformal superalgebra R a Lie
superalgebra A(R) that plays a fundamental role in the representation theory of R.
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Conformal superalgebras

Theorem (Fattori, Kac 2002)

Any finite simple conformal superalgebra R is isomorphic to one of the conformal
superalgebras of the following list: Cur g, where g is a simple finite—dimensional
Lie superalgebra, W,(n > 0), Spp, Sp (n > 2, b€ C), Ky(n >0, n# 4), K;, CKs.

Lucia Bagnoli (University of Zagreb) YRAC 2023, 26-28 July 2023 4 /15



The conformal superalgebra of type K

Let A(N) be the Grassmann superalgebra in the N odd indeterminates &1, ..., En.
Let t be an even indeterminate and A(1, N) = C[t, t~1] @ A(N).

N
W(]., /V) = {D = ad; + Za,-a,- | a,a; € /\(1, N)}

i=1
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The conformal superalgebra of type K

Let A(N) be the Grassmann superalgebra in the N odd indeterminates &1, ..., En.
Let t be an even indeterminate and A(1, N) = C[t, t~1] @ A(N).

N
W(]., /V) = {D = ad; + Za,-a,- | a,a; € /\(1, N)}
i=1

Let w = dt — ., &d¢;.

K(1,N)={D € W(1,N) | Dw = fpw for some fp € A(1,N)}.

We can define A(1, N)+ = C[t] @ A(N), W(1, N)+ and K(1, N).
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The conformal superalgebra of type K

A(1, N) has a Lie superalgebra structure as follows: for all £, g € A(1, N)

[f. el = (2f - isia,f) (0rg) — (0:F) (28 - Zaa g)+!( (Za foig).

K(1,N) = A(1, N) as Lie superalgebras via:
A1, N) — K(1,N)

f—s 2f0, + f>z Ei0cf + 0iF)(&i0r + 0).
i=1
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The conformal superalgebra of type K

A(1, N) has a Lie superalgebra structure as follows: for all £, g € A(1, N)

[f. el = (2f - isia,f) (0rg) — (0:F) (28 - Zaa g)+!( (Za foig).

K(1,N) = A(1, N) as Lie superalgebras via:
A1, N) — K(1,N)

f—s 2f0, + f>z Ei0cf + 0iF)(&i0r + 0).
i=1

We consider on K(1, N) the standard grading, i.e.
deg(t™¢;, -+ &) =2m+s—2.
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The conformal superalgebra of type K

The conformal superalgebra of type K is defined as
Ky == C[d] ® A\(N
For f=¢,---¢, and g =¢&,---§.:
N
(gl = ((r —2)d(f; —1)") (0iF)(9ig)) + A(r + s — 4)fg.
i=1
We recall that

g =A(Kn) = K(L,N)+.

g has depth 2 with respect to the standard grading. g_» is one—dimensional, we
call © the generator —1/2 of g_».
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The conformal superalgebra of type K

Let g = D;czg; be a Z—graded Lie superalgebra. We will use the notation
g+ = Di>00i, 9— = Di<ogi and g>o0 = Di>09;-
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The conformal superalgebra of type K

Let g = D;czg; be a Z—graded Lie superalgebra. We will use the notation
g+ = Di>08i, §— = Di<o@i and g>o = Di>09;-

Remark

Let F be a g>o—module. We denote by M(F) the generalized Verma module.
If F is a finite—dimensional irreducible g>o—module, we call M(F) a finite
Verma module.

If M(F) is not irreducible, we call M(F) degenerate.

We have a Z>g—grading on U(g_) and M(F).
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The conformal superalgebra of type K

Let g = D;czg; be a Z—graded Lie superalgebra. We will use the notation
g+ = Di>08i, §— = Di<o@i and g>o = Di>09;-

Remark

Let F be a g>o—module. We denote by M(F) the generalized Verma module.
If F is a finite—dimensional irreducible g>o—module, we call M(F) a finite
Verma module.

If M(F) is not irreducible, we call M(F) degenerate.

We have a Z>g—grading on U(g_) and M(F).

Definition
Given a g—module V/, we call singular vectors the elements of:

Sing(V)={veV|gyv=0}.

If V = M(F), we will call trivial singular vectors the singular vectors of degree 0
and nontrivial singular vectors the singular vectors of positive degree.

v
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The conformal superalgebra of type K

Remark

By a series of results obtained by Boyallian, Kac, Liberati (2010), Kac, Rudakov
(2002) and Cheng, Lam (2001), it is known that for a conformal superalgebra of
type K the classification of finite irreducible modules can be obtained through the
classification of all degenerate finite Verma modules for the associated annihilation
superalgebra; moreover, this is equivalent to the classification of all (highest
weight) singular vectors in finite Verma modules.
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The conformal superalgebra CKj

For & € A(6) we define & to be such that &, = £1£28364858.

LFI(F]+1)
2

CKs = C[] — span { £ — i(~1) (—0)~MIF*, £ € A(6),0 < |f] < 3}
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The conformal superalgebra CKg

The conformal superalgebra CKj

For & € A(6) we define & to be such that &, = £1£28364858.

LFI(F]+1)
2

CKs = C[] — span { £ — i(~1) (—0)~MIF*, £ € A(6),0 < |f] < 3}

Remark

We recall that
g:= A(CKs) = E(1,6).

The homogeneous components of non—positive degree of g and K(1,6) coincide
and are:

g-2= <1>7
g-1—= <£17£2a"°7§6>7
go = (£, 1<i,j<6)=Ctdsl(4).
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The conformal superalgebra CKg

Remark

Let F be an irreducible finite-dimensional go—module. Then

M(F) = C[0] & A(6) ® F.

Lemma (B.; statement by Boyallian, Kac, Liberati 2013)

Let m € M(F) is a singular vector. Then the degree of m with respect to © is at
most 2.
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The conformal superalgebra CKg

Remark

Let F be an irreducible finite-dimensional go—module. Then

M(F) = C[0] & A(6) ® F.

Lemma (B.; statement by Boyallian, Kac, Liberati 2013)

Let m € M(F) is a singular vector. Then the degree of m with respect to © is at
most 2.

From now on we denote the highest weight of an irreducible finite—dimensional
go—module as p = (n1, na, n3, 1) where p; is the weight with respect to hy, hy,
h3 and t, where

hy = —if3s — i€s6, ho = —i&120 +i&3a, h3 = —i&34 + i&s6.

Boyallian, Kac and Liberati classified all highest weight singular vectors for CKg
and obtained the following morphisms between degenerate finite Verma modules.
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The conformal superalgebra CKg

Remark

Between M(u) and M(ji) there exists a morphism of g—modules if and only if
there exists a non trivial singular vector m in M(ji) of highest weight p.

Vi M(p) — M(ji)

VH’—>m

If m is a singular vector of degree d, we say that V is a morphism of degree d.
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The conformal superalgebra CKg

Proposition (B.)

As go—modules:

H™™ (M)

H™™(Mc)

I

1%

a0 @0

I'f-(l’ll7 n2) = (0, O),
otherwise.

If (n2, n3) = (1,0),
otherwise.
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Open problems

@ It remains to complete the study of the homology of the complexes for the
second quadrant of CKg;

@ it would be interesting to understand if it is possible to use similar techniques
to compute the homology of the complexes for E(5, 10).
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