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Pell hyperbolas

The general quadratic Diophantine equation in the two unknown integers
x and y is given by

ax2 + by2 = k,

with a, b and k positive or negative integers.

The Pell equation is a special case of it and, for a fixed non-zero element
d ∈ K, it is

x2 − dy2 = 1. (1)

The Pell hyperbola over a field K is a curve defined as

Cd(K) =
{
(x, y) ∈ K×K |x2 − dy2 = 1

}
. (2)
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Pell hyperbolas

Brahmagupta was one of the first mathematicians to study the solutions
of (1); in particular, he studied the case with d = 83 and d = 92.
He discovered that given two solutions of (1), namely (x1, y1) and
(x2, y2), also (x1x2 + dy1y2, x1y2 + y1x2) will be a solution.

From the definition of the Brahmagupta product

(x1, y1)⊗d (x2, y2) = (x1x2 + dy1y2, x1y2 + y1x2),

it follows that (Cd(K),⊗d) is a group where the identity element is the
vertex of the hyperbola with coordinates (1, 0) and the inverse of a point
(x, y) is (x,−y).
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Pell hyperbolas

If K = Fq that is a finite field of order q, with q odd prime, then the
group over the Pell hyperbola is cyclic of order q − χq(d) where χq(d) is
the quadratic character of d ∈ Fq, i.e.

χq(d) =


0 if d = 0,

1 if d is a square in Fq,

−1 if d is a non–square in Fq.

All Pell hyperbolas such that χq(d) = χq(d
′) are isomorphic, in

particular, if d′ = ds2 for some s ∈ Fq, the group isomorphism is

δd,d′ :
(
Cd(Fq),⊗d

) ∼−−→
(
Cd′(Fq),⊗d′

)
,

(x, y) 7−→ (x, y/s).
(3)
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Generalized Pell hyperbolas
The equation of the Pell hyperbola is a particular case of the canonical
form of hyperbolas and ellipses that, over a finite field, is given by

Cc,d(Fq) =
{
(x, y) ∈ Fq × Fq |x2 − dy2 = c

}
.

Considering as identity any point (a, b) ∈ Cc,d(Fq), the Brahmagupta
product can be generalized obtaining ⊗a,b,c,d.

(x1, y1)⊗a,b,c,d (x2, y2) =
1

c
(a,−b)⊗d (x1, y1)⊗d (x2, y2). (4)

The inverse of a point (x, y) becomes the point

1

c
(a, b)⊗d (a, b)⊗d (x,−y) (5)

(
Cc,d(Fq),⊗a,b,c,d

)
is a group.
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Generalized Pell hyperbolas

Theorem (A., Dutto, Murru)

Given c, d ∈ F×q and a point (a, b) ∈ Cc,d(Fq), the following map
is a group isomorphism

τa,bc,d :
(
Cd(Fq),⊗d

) ∼−−→
(
Cc,d(Fq),⊗a,b,c,d

)
,

(x, y) 7−→ (a, b)⊗d (x, y).

Its inverse is

(τa,bc,d )
−1 :

(
Cc,d,⊗a,b,c,d

) ∼−−→
(
Cd,⊗d

)
,

(x, y) 7−→ (1, 0)⊗a,b,c,d (x, y).
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Generalized Pell hyperbolas

The explicit isomorphism between two generalized Pell hyperbolas with
same parameter d is(

Cc,d(Fq),⊗a,b,c,d

) ∼−−→
(
Cc′,d(Fq),⊗a′,b′,c′,d

)
,

(x, y) 7−→ (a′, b′)⊗a,b,c,d (x, y).
(6)

Whereas, if
(
Cc,d(Fq),⊗a,b,c,d

)
and

(
Cc′,d′ ,⊗a′,b′,c′d′

)
with

χq(d) = χq(d
′) and d′ = ds2, then the group isomorphism between the

two generalized Pell hyperbolas given explicitly by

τa
′,b′

c′,d′ ◦ δd,d′ ◦ (τa,bc,d )
−1(x, y) =

1

c

(
a′(ax− dby) + d′b′(ay − bx)/s,

a′(ay − bx)/s+ b′(ax− dby)
)
.
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Parameterization for Cd(Fq)

Let us consider the quotient

Rd,q = Fq[t]/(t
2 − d) =

{
x+ ty |x, y ∈ Fq, t

2 = d
}
.

For any two elements x1 + ty1, x2 + ty2 ∈ Rd,q, the product naturally
induced from the quotient is

(x1 + ty1)(x2 + ty2) = (x1x2 + dy1y2) + t(x1y2 + y1x2),

which is essentially the classic Brahmagupta product, so that in the
following we will use the notation ⊗d adopted with the Pell hyperbola.
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Parameterization for Cd(Fq)

The invertible elements of Rd,q with respect to ⊗d indicated as R⊗d

d,q,
may be:

1 if d ∈ F×q is a non–square, then

R⊗d

d,q = Rd,q ∖ {0};

2 if d ∈ F×q is a square and s ∈ F× is a square root of d, then

R⊗d

d,q = Rd,q ∖ {0,±sy + yt | y ∈ Fq}.

Thus, we define Pd,q = R⊗d

d,q/F×q .
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Parameterization for Cd(Fq)

Pd,q =

{{
[m+ t]|m ∈ Fq

}
∪ {[1]}, if d is a non–square,{

[m+ t] |m ∈ Fq ∖ {±s}
}
∪ {[1]}, otherwise

∼

{
Fq ∪ {α}, if d is a non–square,

Fq ∖ {±s} ∪ {α}, otherwise.

(7)

The operation ⊗d between canonical representatives in Pd,q is

m1 ⊗d m2 =


m1, if m2 = α,

m2, if m1 = α,
m1m2+d
m1+m2

, if m1 +m2 ̸= 0,

α, otherwise.

(8)
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Parameterization for Cd(Fq)

Considering the canonical representatives in Pd,q, the group isomorphism
is

ϕd :
(
Pd,q,⊗d

) ∼−−→
(
Cd(Fq),⊗d

)
,

m 7−→

{(
m2+d
m2−d ,

2m
m2−d

)
, if m ̸= α,

(1, 0), otherwise,

ϕ−1d :
(
Cd(Fq),⊗d

) ∼−−→
(
Pd,q,⊗d

)
,

(x, y) 7−→


(x+ 1)/y, if y ̸= 0,

0, if (x, y) = (−1, 0),
α, if (x, y) = (1, 0).

Thus, the parameters in Pd,q of the Pell hyperbola can be obtained
considering the lines y = 1

m (x+ 1) for m varying in Fq or m = α.
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A geometric interpretation

Given two points P and Q of the Pell Hyperbola, their product P ⊗d Q is
obtaining by considering the intersection between the hyperbola and the
line through the identity point (1, 0) and parallel to the line through P
and Q.

Geometric interpretation of the Brahmagupta product.
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Three different ElGamal like schemes

Since the group of the Pell hyperbola is cyclic, it can be applied in
Public-Key Encryption (PKE) schemes where the security is based on the
Discrete Logarithm Problem (DLP), such as the ElGamal PKE scheme.

In particular, three schemes have been studied

ElGamal with Pell hyperbola,

ElGamal with the parameterization,

ElGamal with the obtained isomorphisms.
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Classic ElGamal cryptosystem

KeyGen(n):

1: q ←$ {0, 1}n order of (G, ·)
2: g generator of (G, ·)
3: sk ←$ {2, . . . , q − 1}
4: h = gsk ∈ G
5: pk = (G, g, h)
6: return pk, sk

Encrypt(msg, pk):

1: r ←$ {1, . . . , q − 1}
2: e = hr ∈ G
3: c1 = gr ∈ G
4: c2 = msg · e ∈ G
5: return c1, c2

Decrypt(c1, c2, pk, sk):

1: d = csk1 ∈ G
2: msg = c2 · d−1 ∈ G
3: return msg

The verification of decryption phase:

c2 · d−1 = msg · e · d−1 = msg · hr · c−sk1 =

= msg · hr · g−r·sk = msg · hr · h−r = msg
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ElGamal with two Pell hyperbolas

KeyGen(n):

1: q ←$ {0, 1}n power of a prime
2: d ∈ Fq minimum with

χq(d) = −1
3: g ←$ Pd,q of order q + 1
4: sk ←$ {2, . . . , q}
5: h = g⊗dsk ∈ Pd,q

6: pk = (q, d, g, h)
7: return pk, sk

The key generation is standard,
except for the smallest non-square d
taken in step 2, which is used for the
exponentiation in step 5 and then
included in the public key.

Gessica Alecci 33 of 40

Exploring the use of Pell hyperbolas in DLP-based cryptosystems



Introduction Generalized Pell Hyperbolas Parameterization Pell Cryptosystem with Isomorphisms Numerical results References

ElGamal with two Pell hyperbolas

Encrypt(msg, pk):

Require: msg ≤ (q − 1)2

1: (x, y)← msg

2: d′ = x2−1

y2 ∈ Fq with χq(d
′) = −1

3: m = x+1
y ∈ Pd′,q

4: r ←$ {2, . . . , q}
5: s =

√
d′/d ∈ Fq

6: c1 = (gs)⊗d′r ∈ Pd′,q

7: c2 = (hs)⊗d′r ⊗d′ m ∈ Pd′,q
8: return c1, c2, d

′

Decrypt(c1, c2, d
′, pk, sk):

1: m = (−c
⊗

d′sk
1 )⊗d′ c2

2: msg←
(

m2+d′

m2−d′
, 2m
m2−d′

)
3: return msg

Step 2 searches for a quadratic
non-residue d′ ∈ Fq such that
(x, y) ∈ Cd′(Fq). Then, in step 3,
the parameter m related to the
point is obtained through the
parameterization. Now, since the
public key contains parameters of
points of Cd(Fq), the isomorphism
between Pell hyperbolas δd,d′ is
exploited.

In the decryption the message is
retrieved from the point related to
the obtained parameter (step 2).
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ElGamal with two Pell hyperbolas

Encrypt(msg, pk):

Require: msg ≤ (q − 1)2
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y2 ∈ Fq with χq(d
′) = −1

3: m = x+1
y ∈ Pd′,q

4: r ←$ {2, . . . , q}
5: s =

√
d′/d ∈ Fq

6: c1 = (gs)⊗d′r ∈ Pd′,q

7: c2 = (hs)⊗d′r ⊗d′ m ∈ Pd′,q
8: return c1, c2, d

′

Decrypt(c1, c2, d
′, pk, sk):

1: m = (−c
⊗

d′sk
1 )⊗d′ c2

2: msg←
(

m2+d′

m2−d′
, 2m
m2−d′

)
3: return msg

Step 2 searches for a quadratic
non-residue d′ ∈ Fq such that
(x, y) ∈ Cd′(Fq). Then, in step 3,
the parameter m related to the
point is obtained through the
parameterization. Now, since the
public key contains parameters of
points of Cd(Fq), the isomorphism
between Pell hyperbolas δd,d′ is
exploited.

In the decryption the message is
retrieved from the point related to
the obtained parameter (step 2).
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Security
The security strength for the DLP–based cryptosystems relies on the
adopted cyclic group. Since in the introduced scheme the parameter
d ∈ Fq is a non-square, there is an explicit group isomorphism between(
Cd(Fq),⊗d

)
and the multiplicative subgroup G ⊂ F×q2 of order q + 1.

This is true also for
(
Pd,q,⊗d

)
.

The DLP related to the Pell hyperbola can be reduced to that in a finite
field that, with respect to the standard security strengths for ElGamal in
Finite Field Cryptography (FFC), has halved size of q.

Sec. FFC PCI
80 1024 512
112 2048 1024
128 3072 1536
192 7680 3840
256 15360 7680

Field size in bits for FFC and PCI depending on the cyclic group and the classical security strength
in bits.
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Data–size

Data–size in bits for ElGamal with FFC and PCI depending on the size n
of q and for 80 bits of security.

Formulation par pk sk msg c1, c2
FFC 2n n n n 2n

2048 1024 1024 1024 2048
PCI 2n n n 2n n

1024 512 512 1024 1536
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Performance

Sec. Alg. FFC PCI
80 Gen 0.011079 0.007524

Enc 0.022311 0.028152
Dec 0.012183 0.010203

112 Gen 0.074718 0.038527
Enc 0.149400 0.164122
Dec 0.077622 0.057106

128 Gen 0.233983 0.112873
Enc 0.467730 0.496599
Dec 0.239429 0.171190

192 Gen 3.188959 1.372381
Enc 6.372422 6.291258
Dec 3.218019 2.103753

256 Gen 22.874051 9.519104
Enc 45.766954 42.658508
Dec 22.981310 14.464945

Average times in seconds for 10 random instances of fixed msg length, depending on the security
strength.
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