Tensor Products of Restricted Simples of SL₄ over Characteristic 2

R. A. Spencer

DPMMS, University of Cambridge

If $\{L(\lambda) : \lambda \in \Lambda\}$ is the set of all **simple** SL_4 modules over an algebraically closed field k of characteristic 2, what is the structure of $L(\lambda) \otimes_{k} L(\mu)$?

A Generalised Form of Alperin Diagram

Quasi-Hereditary Algebras

Tensor Products of Simples of SL₄

Application

A Generalised Form of Alperin Diagram

- Diagram for conveying submodule structure
- Defined in the 1980s, but often used loosely
- Only describes a small class of modules

Definition (Often)

- Vertices of quiver labeled with simple module isomorphism classes
- Edges correspond to **non-split extensions as subquotients**

- Diagram for conveying submodule structure
- Defined in the 1980s, but often used loosely
- Only describes a small class of modules

Definition (Often)

- Vertices of quiver labeled with simple module isomorphism classes
- Edges correspond to **non-split extensions as subquotients**

- Diagram for conveying submodule structure
- Defined in the 1980s, but often used loosely
- Only describes a small class of modules

Definition (Often)

- Vertices of quiver labeled with simple module isomorphism classes
- Edges correspond to **non-split extensions as subquotients**

- Diagram for conveying submodule structure
- Defined in the 1980s, but often used loosely
- Only describes a small class of modules

Definition (Often)

- Vertices of quiver labeled with simple module isomorphism classes
- Edges correspond to **non-split extensions as subquotients**

- Diagram for conveying submodule structure
- Defined in the 1980s, but often used loosely
- Only describes a small class of modules

Definition (Often)

- Vertices of quiver labeled with simple module isomorphism classes
- Edges correspond to **non-split extensions as subquotients**

- Diagram for conveying submodule structure
- Defined in the 1980s, but often used loosely
- Only describes a small class of modules

Definition (Often)

- Vertices of quiver labeled with simple module isomorphism classes
- Edges correspond to **non-split extensions as subquotients**

Problems:

- The requirement δ is a **bijection** is very strong
- Requires infinite quivers or only finitely many submodules
- Infinitely many submodules occur frequently (e.g. $\mathbb{R} \oplus \mathbb{R}$ over \mathbb{R})

Possible Solutions:

- Drop surjectivity requirement on $\boldsymbol{\delta}$
 - Generalise diagrams based on certain classes of filtrations (e.g. radical, socle, socle-isotypic, etc.)
 - Require socle and radical series to be read off

Alperin Diagrams: Our Alternative

- An **injective** diagram, based on **generated submodules**, annotated to give the **socle and radical** series
- Procedure for module *M*:
 - Find *n* vectors {*v_i*} where *n* is the **composition length** of *M* such that,
 - $\langle v_1 \rangle = M$

•
$$\langle v_i \rangle = \langle v_j \rangle \iff i = j$$

- $\langle v_i \rangle / \text{rad} \langle v_i \rangle$ is simple
- Draw a line $v_i \rightarrow v_j$ if $v_j \in \operatorname{rad} \langle v_i \rangle \backslash \operatorname{rad}^2 \langle v_i \rangle$ and $\langle v_j \rangle / \operatorname{rad}^2 \langle v_i \rangle \hookrightarrow \langle v_i \rangle / \operatorname{rad}^2 \langle v_i \rangle$ is **not split**
- Construct δ to take the arrow-closure of v_i to (v_i), be lattice and top preserving.
- **Decorate** with more vectors to highlight **socle** and **radical series** and other **submodule structure**.
- Examples to come in the context of quasi-hereditary algebras

Quasi-Hereditary Algebras

Quasi-hereditary Algebras

- Really a class of categories of modules
- Simple modules $L(\lambda)$ labeled by poset (Λ, \leq)
- Standard and costandard modules $\Delta(\lambda)$ and $\nabla(\lambda)$ for each $\lambda \in \Lambda$
 - Simple head (resp. socle) of $L(\lambda)$
 - All other factors $L(\mu)$ for $\mu < \lambda$
 - Maximal such quotient of projective cover (resp. submodule of injective hull) of $L(\lambda)$
- Indecomposable tilting modules (both Δ and ∇ -filtrations) $T(\lambda)$

- Λ is the set of dominant weights
 - Tuples of naturals
- \leq not lexicographical: depends on certain **coroots**
- Each $L(\lambda)$, $\Delta(\lambda)$, $\nabla(\lambda)$ and $T(\lambda)$ have highest weight λ .
- Contravariant dual
 - Tilting modules contravariantly self-dual

Tensor Products of Simples of SL₄

If $\{L(\lambda) : \lambda \in \Lambda\}$ is the set of all **simple** SL_4 modules over an algebraically closed field \Bbbk of characteristic 2, what is the structure of $L(\lambda) \otimes_{\Bbbk} L(\mu)$?

Philosophy

- "Twisting" by the **Frobenius automorphism** of *G* allows us to reduce to finitely many cases sometimes
- Write "base p"

$$\lambda = \sum_{j \ge 0} p^j \lambda_j \quad , \quad \mu = \sum_{j \ge 0} p^j \mu_j$$

for *p*-restricted weights λ_j and μ_j

- E.g. $(3,14,5) = (1,0,1) + 2 \times (1,1,0) + 2^2 \times (0,1,1) + 2^3 \times (0,1,0)$
- By the Steinburg tensor product theorem

$$L(\lambda) \otimes L(\mu) \cong \bigotimes_{j \in \mathbb{N}_0} (L(\lambda_j) \otimes L(\mu_j))^{[j]}$$

Philosophy

- "Twisting" by the **Frobenius automorphism** of *G* allows us to reduce to finitely many cases sometimes
- Write "base p"

$$\lambda = \sum_{j \ge 0} p^j \lambda_j \quad , \quad \mu = \sum_{j \ge 0} p^j \mu_j$$

for *p*-restricted weights λ_j and μ_j

- E.g. $(3,14,5) = (1,0,1) + 2 \times (1,1,0) + 2^2 \times (0,1,1) + 2^3 \times (0,1,0)$
- By the Steinburg tensor product theorem

$$L(\lambda) \otimes L(\mu) \cong \bigotimes_{j \in \mathbb{N}_0} \left(\frac{L(\lambda_j) \otimes L(\mu_j)}{2} \right)^{[j]}$$

- Some restricted $L(\lambda) = \nabla(\lambda) = \Delta(\lambda) = T(\lambda)$
- $\bullet\,$ Tiling modules are closed under $\otimes\,$
- In some cases, software can give form of $\Delta(\lambda)$ (and $\nabla(\lambda)$)
- Structure of contravariant dual can be read off (halving the amount of work)
- Simple modules divide up into blocks

- 2-restricted weights are elements of $\{0,1\}^3$
- Only cases not covered by symmetry (or trivial) are

$001\otimes 001$	$001\otimes 010$	$001\otimes 011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes011$
$011 \otimes 101$	$011\otimes 110$	$011\otimes 111$
$101\otimes 101$	$101\otimes 111$	$111\otimes 111$

- 2-restricted weights are elements of $\{0,1\}^3$
- Only cases not covered by symmetry (or trivial) are

$001\otimes 001$	$001\otimes 010$	$001\otimes011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes 011$
$011\otimes 101$	$011\otimes 110$	$011\otimes 111$
$101\otimes 101$	$101\otimes 111$	$111\otimes 111$

• Many cases are immediately tilting

- 2-restricted weights are elements of $\{0,1\}^3$
- Only cases not covered by symmetry (or trivial) are

$001\otimes 001$	$001\otimes 010$	$001\otimes011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes 011$
$011\otimes 101$	$011\otimes 110$	$011\otimes 111$
$101\otimes 101$	$101\otimes 111$	$111\otimes 111$

- Many cases are immediately tilting
- Two cases can be shown to be tilting

- 2-restricted weights are elements of $\{0,1\}^3$
- Only cases not covered by symmetry (or trivial) are

$001\otimes 001$	$001\otimes 010$	$001\otimes011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes 011$
$011\otimes 101$	$011\otimes 110$	$011\otimes 111$
$101\otimes 101$	$101\otimes 111$	$111\otimes 111$

- Many cases are immediately tilting
- Two cases can be shown to be tilting
- The others are contravariantly self dual but not tilting

• **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has Δ-filtration and contravariantly self-dual

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has ∆-filtration and contravariantly self-dual
- Must have direct summand T(112)

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has ∆-filtration and contravariantly self-dual
- Must have direct summand T(112)
- Must have submodule $\Delta(112)$

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has Δ-filtration and contravariantly self-dual
- Must have direct summand T(112)
- Must have submodule $\Delta(112)$
- Must have submodule R ≃ rad Δ(112) and quotient module M/Q ≃ ∇(112)/soc ∇(112)

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has ∆-filtration and contravariantly self-dual
- Must have direct summand T(112)
- Must have submodule $\Delta(112)$
- Must have submodule R ≃ rad Δ(112) and quotient module M/Q ≃ ∇(112)/soc ∇(112)
- The **core** is contravariantly self-dual with direct summand 112

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has ∆-filtration and contravariantly self-dual
- Must have direct summand T(112)
- Must have submodule $\Delta(112)$
- Must have submodule R ≃ rad Δ(112) and quotient module M/Q ≃ ∇(112)/soc ∇(112)
- The **core** is contravariantly self-dual with direct summand 112
- Since no simple extends itself, either as shown or all direct sum

- **Characters** gives composition factors with multiplicites: 011⁴, 112, 120², 201³ in one block
- Tilting: has ∆-filtration and contravariantly self-dual
- Must have direct summand T(112)
- Must have submodule $\Delta(112)$
- Must have submodule R ≃ rad Δ(112) and quotient module M/Q ≃ ∇(112)/soc ∇(112)
- The **core** is contravariantly self-dual with direct summand 112
- Since no simple extends itself, either as shown or all direct sum

Extent of Calculations

$001\otimes 001$	$001\otimes 010$	$001\otimes 011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes 011$
$011 \otimes 101$	$011 \otimes 110$	$011\otimes 111$
$101\otimes 101$	$101\otimes 111$	$111\otimes 111$

$001\otimes 001$	$001\otimes 010$	$001\otimes 011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes 011$
$011\otimes 101$	$011\otimes 110$	$011\otimes 111$
$101\otimes 101$	$101\otimes 111$	$111\otimes 111$

• Can name all indecomposable summands

$001\otimes 001$	$001\otimes 010$	$001\otimes 011$
$001\otimes 100$	$001\otimes 101$	$001\otimes 110$
$001\otimes 111$	$010\otimes010$	$010\otimes011$
$010\otimes 101$	$010\otimes 111$	$011\otimes 011$
$011 \otimes 101$	$011\otimes 110$	$011\otimes 111$
$101 \otimes 101$	$101\otimes 111$	$111\otimes 111$

- Can name all indecomposable summands
- Can give structure of all indecomposable summands

Application

• Recall the Frobenius map, F

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ
- Let $\rho = 111$, $\omega_0(abc) = (-c, -b, -a)$

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ
- Let $\rho = 111$, $\omega_0(abc) = (-c, -b, -a)$
- Let $Q(\lambda)$ be the **projective cover** of λ as a G_1 module

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ
- Let $\rho = 111$, $\omega_0(abc) = (-c, -b, -a)$
- Let Q(λ) be the projective cover of λ as a G₁ module

Conjecture (Donkin's Tilting Module)

For all p-restricted λ ,

$$T(2(p-1)
ho+\omega_0\lambda)|_{G_1}=Q(\lambda)$$

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ
- Let $\rho = 111$, $\omega_0(abc) = (-c, -b, -a)$
- Let Q(λ) be the projective cover of λ as a G₁ module

Conjecture (Donkin's Tilting Module)

For all p-restricted λ ,

$$T(2(p-1)
ho+\omega_0\lambda)|_{G_1}=Q(\lambda)$$

• True for $p \ge 2h - 2$

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ
- Let $\rho = 111$, $\omega_0(abc) = (-c, -b, -a)$
- Let Q(λ) be the projective cover of λ as a G₁ module

Conjecture (Donkin's Tilting Module)

For all p-restricted λ ,

$$T(2(p-1)
ho+\omega_0\lambda)|_{G_1}=Q(\lambda)$$

- True for $p \ge 2h-2$
- False

- Recall the Frobenius map, F
- Let $G_1 \leq G$ be the **kernel** of F
- Simple modules of G_1 labeled by *p*-restricted λ
- Let $\rho = 111$, $\omega_0(abc) = (-c, -b, -a)$
- Let Q(λ) be the projective cover of λ as a G₁ module

Conjecture (Donkin's Tilting Module)

For all p-restricted λ ,

$$T(2(p-1)
ho+\omega_0\lambda)|_{G_1}=Q(\lambda)$$

- True for $p \ge 2h 2$
- False (Bendel, Nakano, Pillen, and Sobaje '19) for type G₂ over characteristic 2

Theorem (Sobaje '18) Donkin's conjecture holds for G iff $(L(\rho) \otimes L(\rho))^{\oplus p^{rankG}} \cong \bigoplus_{\lambda \in X_1} T((p-1)\rho + \lambda) \otimes L((p-1)\rho - \lambda)$

Theorem (Sobaje '18)
Donkin's conjecture holds for G iff
$$(L(\rho) \otimes L(\rho))^{\oplus p^{rankG}} \cong \bigoplus_{\lambda \in X_1} T((p-1)\rho + \lambda) \otimes L((p-1)\rho - \lambda)$$

As both sides are tilting, this can be verified by characters

Theorem (Sobaje '18)
Donkin's conjecture holds for G iff
$$(L(\rho) \otimes L(\rho))^{\oplus p^{rankG}} \cong \bigoplus_{\lambda \in X_1} T((p-1)\rho + \lambda) \otimes L((p-1)\rho - \lambda)$$

As both sides are tilting, this can be verified by characters

Corollary

Donkin's conjecture holds for type A_3 in characteristic 2.

Thank You

Questions?