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The Question

If {L(λ) : λ ∈ Λ} is the set of all simple SL4 modules over an

algebraically closed field k of characteristic 2, what is the

structure of L(λ)⊗k L(µ)?
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A Generalised Form of Alperin

Diagram



Alperin Diagrams: An Overview

• Diagram for conveying submodule structure

• Defined in the 1980s, but often used loosely

• Only describes a small class of modules

Definition (Often)

An Alperin Diagram for module M is a quiver Q

with a lattice bijection δ from the lattice of arrow

closed subsets of Q to the lattice of submodules

of M.

• Vertices of quiver labeled with simple module

isomorphism classes

• Edges correspond to non-split extensions as

subquotients

A

B C

DA
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Alperin Diagrams: When They Fail and Alternatives

Problems:

• The requirement δ is a bijection is very strong

• Requires infinite quivers or only finitely many submodules

• Infinitely many submodules occur frequently (e.g. R⊕ R
over R)

Possible Solutions:

• Drop surjectivity requirement on δ

• Generalise diagrams based on certain classes of filtrations (e.g.

radical, socle, socle-isotypic, etc.)

• Require socle and radical series to be read off
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Alperin Diagrams: Our Alternative

• An injective diagram, based on generated submodules,

annotated to give the socle and radical series
• Procedure for module M:

• Find n vectors {vi} where n is the composition length of M

such that,

• 〈v1〉 = M

• 〈vi 〉 = 〈vj〉 ⇐⇒ i = j

• 〈vi 〉/rad 〈vi 〉 is simple

• Draw a line vi → vj if vj ∈ rad 〈vi 〉\rad 2〈vi 〉 and

〈vj〉/rad 2〈vi 〉 ↪→ 〈vi 〉/rad 2〈vi 〉 is not split

• Construct δ to take the arrow-closure of vi to 〈vi 〉, be lattice

and top preserving.

• Decorate with more vectors to highlight socle and radical

series and other submodule structure.

• Examples to come in the context of quasi-hereditary algebras
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Quasi-Hereditary Algebras



Quasi-hereditary Algebras

• Really a class of categories of modules

• Simple modules L(λ) labeled by poset (Λ,≤)

• Standard and costandard modules ∆(λ) and ∇(λ) for each
λ ∈ Λ

• Simple head (resp. socle) of L(λ)

• All other factors L(µ) for µ < λ

• Maximal such quotient of projective cover (resp. submodule of

injective hull) of L(λ)

• Indecomposable tilting modules (both ∆- and ∇-filtrations)

T (λ)
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Rational (co)Modules of Algebraic Groups

• Λ is the set of dominant weights

• Tuples of naturals

• ≤ not lexicographical: depends on certain coroots

• Each L(λ), ∆(λ), ∇(λ) and T (λ) have highest weight λ.

• Contravariant dual

• Tilting modules contravariantly self-dual
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Example of Alternative Alperin Diagram

The module ∆(3, 0) of type G2 over characteristic 2
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Tensor Products of Simples of SL4



Return to the question

If {L(λ) : λ ∈ Λ} is the set of all simple SL4 modules over an

algebraically closed field k of characteristic 2, what is the

structure of L(λ)⊗k L(µ)?
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Philosophy

• “Twisting” by the Frobenius automorphism of G allows us

to reduce to finitely many cases sometimes

• Write “base p”

λ =
∑
j≥0

pjλj , µ =
∑
j≥0

pjµj

for p-restricted weights λj and µj

• E.g.

(3, 14, 5) = (1, 0, 1) + 2× (1, 1, 0) + 22× (0, 1, 1) + 23× (0, 1, 0)

• By the Steinburg tensor product theorem

L(λ)⊗ L(µ) ∼=
⊗
j∈N0

(L(λj)⊗ L(µj))[j]
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Helpful Facts

• Some restricted L(λ) = ∇(λ) = ∆(λ) = T (λ)

• Tiling modules are closed under ⊗
• In some cases, software can give form of ∆(λ) (and ∇(λ))

• Structure of contravariant dual can be read off (halving the

amount of work)

• Simple modules divide up into blocks

11



Example: SL4 over characteristic 2

• 2-restricted weights are elements of {0, 1}3

• Only cases not covered by symmetry (or trivial) are

001⊗ 001 001⊗ 010 001⊗ 011

001⊗ 100 001⊗ 101 001⊗ 110

001⊗ 111 010⊗ 010 010⊗ 011

010⊗ 101 010⊗ 111 011⊗ 011

011⊗ 101 011⊗ 110 011⊗ 111

101⊗ 101 101⊗ 111 111⊗ 111

• Many cases are immediately tilting

• Two cases can be shown to be tilting

• The others are contravariantly self dual but not tilting

12



Example: SL4 over characteristic 2

• 2-restricted weights are elements of {0, 1}3

• Only cases not covered by symmetry (or trivial) are

001⊗ 001 001⊗ 010 001⊗ 011

001⊗ 100 001⊗ 101 001⊗ 110

001⊗ 111 010⊗ 010 010⊗ 011

010⊗ 101 010⊗ 111 011⊗ 011

011⊗ 101 011⊗ 110 011⊗ 111

101⊗ 101 101⊗ 111 111⊗ 111

• Many cases are immediately tilting

• Two cases can be shown to be tilting

• The others are contravariantly self dual but not tilting

12



Example: SL4 over characteristic 2

• 2-restricted weights are elements of {0, 1}3

• Only cases not covered by symmetry (or trivial) are

001⊗ 001 001⊗ 010 001⊗ 011

001⊗ 100 001⊗ 101 001⊗ 110

001⊗ 111 010⊗ 010 010⊗ 011

010⊗ 101 010⊗ 111 011⊗ 011

011⊗ 101 011⊗ 110 011⊗ 111

101⊗ 101 101⊗ 111 111⊗ 111

• Many cases are immediately tilting

• Two cases can be shown to be tilting

• The others are contravariantly self dual but not tilting

12



Example: SL4 over characteristic 2

• 2-restricted weights are elements of {0, 1}3

• Only cases not covered by symmetry (or trivial) are

001⊗ 001 001⊗ 010 001⊗ 011

001⊗ 100 001⊗ 101 001⊗ 110

001⊗ 111 010⊗ 010 010⊗ 011

010⊗ 101 010⊗ 111 011⊗ 011

011⊗ 101 011⊗ 110 011⊗ 111

101⊗ 101 101⊗ 111 111⊗ 111

• Many cases are immediately tilting

• Two cases can be shown to be tilting

• The others are contravariantly self dual but not tilting

12



Example of Calculation: 001⊗ 111

• Characters gives composition factors

with multiplicites: 0114, 112, 1202, 2013 in

one block

• Tilting: has ∆-filtration and

contravariantly self-dual

• Must have direct summand T (112)

• Must have submodule ∆(112)

• Must have submodule R ∼= rad ∆(112)

and quotient module

M/Q ∼= ∇(112)/soc∇(112)

• The core is contravariantly self-dual with

direct summand 112

• Since no simple extends itself, either as

shown or all direct sum

• Finish with existence of ∆-filtration

011

011

011

011

201

201

201

120

120

112

13
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Extent of Calculations

001⊗ 001 001⊗ 010 001⊗ 011

001⊗ 100 001⊗ 101 001⊗ 110

001⊗ 111 010⊗ 010 010⊗ 011

010⊗ 101 010⊗ 111 011⊗ 011

011⊗ 101 011⊗ 110 011⊗ 111

101⊗ 101 101⊗ 111 111⊗ 111

• Can name all indecomposable summands

• Can give structure of all indecomposable summands

14
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Application



Donkin’s Tilting Module Conjecture

• Recall the Frobenius map, F

• Let G1 ≤ G be the kernel of F

• Simple modules of G1 labeled by p-restricted λ

• Let ρ = 111, ω0(abc) = (−c ,−b,−a)

• Let Q(λ) be the projective cover of λ as a G1 module

Conjecture (Donkin’s Tilting Module)

For all p-restricted λ,

T (2(p − 1)ρ+ ω0λ)|G1 = Q(λ)

• True for p ≥ 2h − 2

• False (Bendel, Nakano, Pillen, and Sobaje ’19) for type G2

over characteristic 2

15
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For all p-restricted λ,

T (2(p − 1)ρ+ ω0λ)|G1 = Q(λ)

• True for p ≥ 2h − 2

• False

(Bendel, Nakano, Pillen, and Sobaje ’19) for type G2

over characteristic 2
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Donkin’s Tilting Module Conjecture for SL4 over characteristic

2

Theorem (Sobaje ’18)

Donkin’s conjecture holds for G iff

(L(ρ)⊗ L(ρ))⊕p
rankG ∼=

⊕
λ∈X1

T ((p − 1)ρ+ λ)⊗ L ((p − 1)ρ− λ)

As both sides are tilting, this can be verified by characters

Corollary

Donkin’s conjecture holds for type A3 in characteristic 2.
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Thank You

Questions?
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