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The Hypercenter

All considered groups are finite.
1 The notion of the hypercenter naturally appears with the definition

of a nilpotent group through the upper central series.
2 As it was shown by Burnside a group is equal to its hypercenter iff

all its Sylow subgroups are normal.
3 One of the first characterizations of the hypercenter as the

intersection of some system of subgroups were obtained by Hall in
1937.

4 The previous result was generalized by Baer in 1953.

P. Hall, On the System Normalizers of a Soluble Group. Proc. London Math. Soc. 43(1) (1938)
507–528.
R. Baer, Group elements of prime power index. Trans. Amer. Math. Soc. 75 (1953) 20–47.
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The F-hypercenter

1 In 1959 Baer suggested the analogue of the hypercenter for
supersoluble groups.

2 In 1968 Huppert extended the notion of hypercenter for a local
formation F with the help of a local definition of F.

3 In 1974 Shemetkov extended the notion of hypercenter for a
graduated formation.

4 In 1989 Shemetkov and Skiba suggested the definition of the
X-hypercenter for wide range of formations X of algebraic systems.

R. Baer, Supersoluble immersion. Canad. J. Math. (1959) 11 353-369.
B. Huppert, Zur Theorie der Formationen. Arch. Math. (1968) 19(6) 561-574.
L. A. Shemetkov, Graduated formations of groups. Math. USSR-Sb. 23(4) (1974) 593–611.
L. A. Shemetkov and A. N. Skiba, Formations of algebraic systems, Nauka, 1989 (In Russian).
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The F-hypercenter

Let X be a class of groups. A chief factor H/K of a group G is called
X-central if

(H/K ) o G/CG (H/K ) ∈ X,

otherwise it is called X-eccentric.
A normal subgroup N of G is said to be X-hypercentral in G if N = 1 or
N 6= 1 and every chief factor of G below N is X-central.
The X-hypercenter ZX(G) is the product of all normal X-hypercentral
subgroups of G .
If X = N is the class of all nilpotent groups then ZN(G) is just the
hypercenter Z∞(G) of a group G .
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Shemetkov’s problem

Recall that a subgroup U of G is called X-maximal in G provided that
(a) U ∈ X; and (b) if U ≤ V ≤ G and V ∈ X, then U = V .
The symbol IntX(G) denotes the intersection of all X-maximal subgroups
of G .
It is well known that the intersection of maximal abelian subgroups of G
is the center of G . In 1953 Baer showed that the intersection of maximal
nilpotent subgroups of G is the hypercenter of G .
The intersection of maximal supersoluble subgroups of G does not
necessary coincide with the supersoluble hypercenter of G .

Shemetkov possed the following problem at Gomel Algebraic Seminar in
1995: “For what non-empty normally hereditary solubly saturated
formations X does the equality IntX(G) = ZX(G) hold for every
group G?”
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Formations

A formation is a class X of groups with the following properties:
(a) every homomorphic image of an X-group is an X-group;
(b) if G/M and G/N are X-groups, then also G/(M ∩ N) ∈ X.

A formation X is said to be:
(a) saturated (respectively solubly saturated) if G ∈ X whenever
G/Φ(N) ∈ X for some normal (respectively for some soluble normal)
subgroup N of G ;
(b) hereditary (respectively normally hereditary) if H ∈ X whenever
H ≤ G ∈ X (respectively whenever H E G ∈ X).

1 If F is a formation and G ∈ F, then G = ZF(G).
2 If F is a solubly saturated formation, then G ∈ F iff G = ZF(G).
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Local Formations

Recall that a function of the form f : P→ {formations} is called a
formation function and a formation F is called local if

F = (G |G/CG (H) ∈ f (p) for
every p ∈ π(H) and every chief factor H of G)

for a formation function f . In this case f is called a local definition of F.

By the Gaschütz-Lubeseder-Schmid theorem, a formation is local if and
only if it is non-empty and saturated

If F is a local formation, there exists a unique formation function F ,
defining F, such that

F (p) = NpF (p) ⊆ F for every p ∈ P.

In this case F is called the canonical local definition of F.
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Shemetkov’s problem
The solution of this problem for hereditary saturated formation were
obtained Skiba (for the soluble case, see also Beidleman and Heineken).

Theorem (Skiba)
Let F be the canonical local definition of a hereditary saturated
formation F and π(F) 6= ∅. The IntF(G) = ZF(G) holds for every group
G if and only if for every prime p formation F contains every group
whose maximal subgroups belong F (p).

It is necessary to note that the methods of these papers are not
applicable for non-saturated or non-hereditary formations.

Thus, the answer to the Shemetkov’s question was not known even in
such an important special case, when X = N∗ is the class of all
quasinilpotent groups.
A. N. Skiba, On the F-hypercenter and the intersection of all F-maximal subgroups of a finite
group. J. Pure Appl. Algebra. 216(4) (2012) 789–799.
J. C. Beidleman and H. Heineken, A note of intersection of maximal F-subgroups. 333 (2010)
120–127.
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Recall that G is called a quasi-F-group if for every F-eccentric chief
factor H/K and every x ∈ G , x induces an inner automorphism on H/K .
We use F∗ to denote the class of all quasi-F-groups.
If N ⊆ F is a normally hereditary saturated formation, then F∗ is a
normally hereditary Baer-local (solubly saturated) formation.

Theorem
Let F be a hereditary saturated formation containing all nilpotent groups.
Then IntF(G) = ZF(G) holds for every group G if and only if
IntF∗ (G) = ZF∗ (G) holds for every group G.

Corollary
The intersection of all maximal quasinilpotent subgroups of a group is its
quasinilpotent hypercenter.

W. Guo and A. N. Skiba, On finite quasi-F-groups. Comm. Algebra. 37 (2009) 470–481.
V. I. Murashka, On the F-hypercenter and the intersection of F-maximal subgroups of a finite
group. J. Group. Theory. 21(3) (2018) 463–473.
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Example
Let Nca be a class of groups whose abelian chief factors are central and
non-abelian are simple groups.

Let J be a class of simple groups with nilpotent outer automorphism
group and NJ be a class of groups whose abelian chief factors are central
and non-abelian are simple groups from J.

The classes Nca and NJ are normally hereditary solubly saturated
formations.

Then
IntNJ

(G) = ZNJ
(G)

holds for every group G and there is a group H with

IntNca (G) 6= ZNca (G)
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The Direct Product of Formations

Recall that Gπ is the class of all π-groups where π is a set of primes.
The class

×
i∈I

Fπi = (G | Oπi (G) ∈ Fπi is a Hall πi -subgroup of G)

is a hereditary saturated formation where σ = {πi |i ∈ I} is a partition of
P into mutually disjoint subsets and Fπi is a hereditary saturated
formation with π(Fπi ) = πi for all i ∈ I.



Theorem
Assume that σ = {πi |i ∈ I} is a partition of P into mutually disjoint
subsets and F = ×

i∈I
Gπi

. The following properties of a πi -element g in G
are equivalent:
(1) g ∈ ZF(G);
(2) gx = xg for all π′i -elements x of G;
(3) |G : CG (〈g〉G )| is a πi -number;
(4) |G : CG (g)| is a πi -number and GF ≤ CG (g).

Corollary (R. Baer, 1953)
The following properties for a p-element g of a group G are equivalent:
(1) g ∈ Z∞(G);
(2) g permutes with every p′-element of G;
(3) |G : CG (gG )| is a power of p;
(4) |G : CG (g)| is a power of p and GN ≤ CG (g).



Remarks

V. I. Murashka, On one generalization of Baer’s theorems on hypercenter and nilpotent residual.
Prob. Fiz. Mat. Tech., 16 (2013) 84–88.

Every formation F = ×
i∈I

Gπi is a lattice formation, i.e. formation for
which the set of all F-subnormal subgroups of every group G is a
sublattice of the subgroup lattice of G .
A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite groups, Springer, 2006.

Skiba extended the theory of nilpotent groups on such formations (theory
of σ-nilpotent groups).
A. N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups. J. Algebra 436
(2015) 1–16.
A. N. Skiba, On Some Results in the Theory of Finite Partially Soluble Groups. Commun. Math.
Stat. 4(3) (2016) 281–309.
A. N. Skiba, On some arithmetic properties of finite groups. Note Mat. 36 (2016) 35–59.
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The Intersection of Normalizers of F-maximal Subgroups
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Denote the intersection of all normalizers of F-maximal subgroups of G
by NIF(G).

Theorem
Let σ = {πi |i ∈ I} be a partition of P into mutually disjoint subsets, Fπi

be a hereditary saturated formation with π(Fπi ) = πi for all i ∈ I and
F = ×

i∈I
Fπi . The following statements are equivalent:

(1) IntF(G) = ZF(G) for every group G;
(2) IntFπi

(G) = ZFπi
(G) for every πi -group G and every i ∈ I;

(3)
⋂
i∈I

NIFπi
(G) = ZF(G) for every group G.
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Its Applications. 16(2) (2017) 1750202 (7 pages).
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Corollaries

Corollary
Let G be a group. Then
(1) (Hall) The hypercenter of G is the intersection of all normalizers of
all Sylow subgroups of G.
(2) (Baer) The hypercenter of G is the intersection of all maximal
nilpotent subgroups of G.

Corollary
Let σ = {πi |i ∈ I} be a partition of P into mutually disjoint subsets,
F = ×

i∈I
Gπi and G be a group. Then

(1) The intersection of all normalizers of all πi -maximal subgroups of G
for all i ∈ I is the F-hypercenter of G.
(2) (Skiba) The intersection of all F-maximal subgroups of G is the
F-hypercenter of G.
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Recall that G satisfies the Sylow tower property if G has a normal series
whose factors are isomorphic to Sylow subgroups of G .

Theorem

Let F be a hereditary saturated formation, F be its canonical local
definition and N be a normal subgroup of G that satisfies the Sylow
tower property. Then N ≤ ZF(G) if and only if NG (P)/CG (P) ∈ F (p) for
all P ∈ Sylp(N) and p ∈ π(N).



Supersoluble-like Classes of Groups

Recall that a subgroup H of a group G is called P-subnormal if either
H = G or there exists a chain of subgroups H = H0 < · · · < Hn = G
such that |Hi : Hi−1| is a prime number.

Recall that a group G is called widely w-supersoluble (resp.,
v-supersoluble) if all Sylow subgroups (resp. cyclic primary) of G are
P-subnormal in G .

Like the class of all supersoluble groups U the classes of all
w-supersoluble groups wU and v-supersoluble groups vU are a hereditary
saturated formations with the Sylow tower of supersoluble type.
A. F. Vasil’ev, T. I. Vasil’eva and V. N. Tyutyanov, On the finite groups of supersoluble
type. Sib. Math. J. 51(6) (2010) 1004–1012.
V. S. Monakhov and V. N. Kniahina, Finite groups with P-subnormal subgroups. Ricerche
mat. 62 (2013) 307–322.
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Corollaries

Corollary

Let N be a normal subgroup of a group G with the Sylow tower of
supersoluble type.
(a) (Baer) N ≤ ZU(G) if and only if

NG (P)/CG (P) ∈ NpA(p − 1) for all P ∈ Sylp(N) and p ∈ π(N).

(b) N ≤ ZwU(G), if and only if

NG (P)/CG (P) ∈ Np(A(p−1)∩wU) for all P ∈ Sylp(N) and p ∈ π(N).

(d) N ≤ ZvU(G) if and only if

NG (P)/CG (P) ∈ Np(S(p − 1)∩ vU) for all P ∈ Sylp(N) and p ∈ π(N).

V. I. Murashka, Properties of the class of finite groups with P-subnormal cyclic primary
subgroups // Dokl. NAN Belarusi. 58(1) (2014) 5–8 (In Russian).
V. I. Murashka, On analogues of Baer’s theorems for widely supersoluble hypercenter of finite
groups. Asian-European J. Math. 11(3) (2018) 1850043 (8 pages).



Baer-local (Composittion) Formations

Recall that a function of the form f : P ∪ {0} → {formations} is called a
composition definition. A formation F is called composition or Baer-local
if

F = (G |G/GS ∈ f (0) and G/CG (H) ∈ f (p) for every abelian p-chief
factor H of G)

for some composition definition f .

A formation is composition (Baer-local) if and only if it is solubly
saturated.

Recall that any nonempty composition formation F has an unique
composition definition F such that F (p) = NpF (p) ⊆ F for all primes p
and F (0) = F. In this case F is called the canonical composition
definition of F.

Every non-empty composition formation F contains the greatest by
inclusion local subformation Fl .
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Reduction Theorem

Theorem

Let F be the canonical composition definition of a non-empty solubly
saturated formation F. Assume that F (p) ⊆ Fl for all p ∈ P and Fl is
hereditary.

(1) Assume that IntFl (G) = ZFl (G) holds for every group G. Let

H = (S is a simple group | every F-central chief
D0(S)-factor is Fl -central).

Then every chief D0H-factor of G below IntF(G) is Fl -central in G.

(2) If IntF(G) = ZF(G) holds for every group G, then IntFl (G) = ZFl (G)
holds for every group G.

V. I. Murashka, On one question of Shemetkov about composition formations.
arXiv:1904.04244v1 [math.GR] 7 Apr 2019
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Rank formations

Let N be a chief factor of G . Then N = N1 × · · · × Nn where N i are
isomorphic simple groups.
The number n = r(N,G) is the rank of N in G .
A rank function R is a map which associates with each prime p a set
R(p) of natural numbers. For each rank function let

E(R) = (G ∈ S | for all p ∈ P each p-chief factor of G has rank in R(p)).

H. Heineken, Group classes defined by chief factor ranks. Boll. Un. Mat. Ital. B. 16 (1979)
754–764.
D. Harman, Characterizations of some classes of finite soluble groups. Ph.D. thesis, University of
Warwick, 1981.
B. Huppert, Zur Gaschiitzschen Theorie der Formationen. Math. Ann. 164 (1966) 133–141.
J. Kohler, Finite groups with all maximal subgroups of prime or prime square index. Canad. J.
Math. 16 (1964) 435-442.
K. L. Haberl and H. Heineken, Fitting classes defined by chief factor ranks. J. London Math.
Soc. 29 (1984) 34-40.
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Definition

(1) A generalized rank function R is a map defined on direct products of
isomorphic simple groups by
(a) R associates with each simple group S a pair
R(S) = (AR(S),BR(S)) of possibly empty disjoint sets AR(S) and
BR(S) of natural numbers.
(b) If N is the direct products of simple isomorphic to S groups, then
R(N) = R(S).

(2) Let N be a chief factor of G . We shall say that a generalized rank of
N in G lies in R(N) (briefly gr(N,G) ∈ R(N)) if r(N,G) ∈ AR(N) or
r(N,G) ∈ BR(N) and if some x ∈ G fixes a composition factor H/K of
N (i.e. Hx = H and K x = K ), then x induces an inner automorphism on
it.

(3) With each generalized rank function R and a class of groups X we
associate a class

X(R) = (G |H 6∈ X and gr(H,G) ∈ R(H) for every
X-eccentric chief factor H of G)
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1 Let E = (1). Assume that R(H) = ({1}, ∅) if H is abelian and
R(H) = (∅, ∅) otherwise. Then E(R) = U.

2 If R(H) ≡ ({1}, ∅), then E(R) is the class Uc of all c-supersoluble
groups.

3 Let J be a class of simple groups. If R(H) ≡ ({1}, ∅) for H ∈ J and
R(H) = (N, ∅) otherwise, then E(R) is the class of all
Jc-supersoluble groups.

4 Assume that R(H) = (AR(H), ∅) if H is abelian and R(H) = (∅, ∅)
otherwise. Then R is a rank function.

5 Let R(H) = (∅, {1}) if H is abelian and R(H) = (∅, ∅) otherwise.
Then E(R) = N. If R(H) ≡ (∅, {1}), then E(R) = N∗.

6 Assume that R(H) = (∅, {1}) if H is abelian and R(H) = ({1}, ∅)
otherwise. Then E(R) = Nca.

7 Let N ⊆ F be a normally hereditary saturated formation. If
R(H) ≡ (∅, {1}), then F(R) = F∗.

8 Let F ⊆ S be a normally hereditary saturated formation,
R(H) = (∅, ∅) for abelian H 6∈ F and R(H) = ({1}, ∅) for
non-abelian H. Then F(R) = Fca.
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6 Assume that R(H) = (∅, {1}) if H is abelian and R(H) = ({1}, ∅)
otherwise. Then E(R) = Nca.

7 Let N ⊆ F be a normally hereditary saturated formation. If
R(H) ≡ (∅, {1}), then F(R) = F∗.

8 Let F ⊆ S be a normally hereditary saturated formation,
R(H) = (∅, ∅) for abelian H 6∈ F and R(H) = ({1}, ∅) for
non-abelian H. Then F(R) = Fca.



1 Let E = (1). Assume that R(H) = ({1}, ∅) if H is abelian and
R(H) = (∅, ∅) otherwise. Then E(R) = U.

2 If R(H) ≡ ({1}, ∅), then E(R) is the class Uc of all c-supersoluble
groups.

3 Let J be a class of simple groups. If R(H) ≡ ({1}, ∅) for H ∈ J and
R(H) = (N, ∅) otherwise, then E(R) is the class of all
Jc-supersoluble groups.

4 Assume that R(H) = (AR(H), ∅) if H is abelian and R(H) = (∅, ∅)
otherwise. Then R is a rank function.

5 Let R(H) = (∅, {1}) if H is abelian and R(H) = (∅, ∅) otherwise.
Then E(R) = N. If R(H) ≡ (∅, {1}), then E(R) = N∗.

6 Assume that R(H) = (∅, {1}) if H is abelian and R(H) = ({1}, ∅)
otherwise. Then E(R) = Nca.

7 Let N ⊆ F be a normally hereditary saturated formation. If
R(H) ≡ (∅, {1}), then F(R) = F∗.

8 Let F ⊆ S be a normally hereditary saturated formation,
R(H) = (∅, ∅) for abelian H 6∈ F and R(H) = ({1}, ∅) for
non-abelian H. Then F(R) = Fca.



We shall say that a generalized rank function R is (resp. stromgly)
hereditary if for any simple group S holds:
(a) from a ∈ AR(S) it follows that b ∈ AR(S) for any natural b|a (resp.
b ≤ a);
(b) from a ∈ BR(S) it follows that b ∈ AR(S) ∪ BR(S)
(resp.b ∈ BR(S)) for any natural b|a (resp. b ≤ a).

Theorem

Let N ⊆ F be a composition formation with the canonical composition
definition F and R be a generalized rank function. Then
(1) F(R) is a composition formation with the canonical composition
definition FR such that FR(0) = F(R) and FR(p) = F (p) for all p ∈ P.
(2) If F is normally hereditary and R is hereditary, then F(R) is normally
hereditary.



The Main Result

Theorem

Let F be a hereditary saturated formation containing all nilpotent groups,
m be a natural number with G{q∈P | q≤m} ⊆ F, R be a strongly
hereditary rank function such that R(N) ⊆ [0,m] for any simple group
N. Then the following statements are equivalent:
(1) ZF(G) = IntF(G) holds for every group G and⋃m

n=1(Out(G) o Sn |G 6∈ F is a simple group and n ∈ AR(G)) ⊆ F.

(2) ZF(R)(G) = IntF(R)(G) holds for every group G.



Remark

Theorem

Let F 6= G be a hereditary saturated formation containing all nilpotent
groups and R be a strongly hereditary generalized rank function.
(1) Assume that ZF(R)(G) = IntF(R)(G) holds for every group G. Let

C1 = min
G∈M(F) with F(G)=F̃(G)

max
M is a maximal subgroup of G

|M| − 1.

Then R(S) ⊆ [0,C1] for every simple group S 6∈ F.
(2) Let

C2 = max {m ∈ N |G{q∈P | q≤m} ⊆ F}.

If R(S) ⊆ [0,C2] for every simple group S 6∈ F, then gr(H,G) ∈ R(H)
for every G-composition factor H 6∈ F below IntF(R)(G).
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