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INTRODUCTION

G finite group

' (Xk) e Sequence of uniformly distributed G - valued random variables

Define a random variable:

1o = min{k > 1|{(x},...,x) = G}

e(G) = Z kP (g = k) Expectation of 7
k>0
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INTRODUCTION

G finite group

' (Xk) e Sequence of uniformly distributed G - valued random variables

Define a random variable:

1o = min{k > 1|{(x},...,x) = G}

The expected number of
lements of G which have to be
e(G)= ) kP(t.=k) ©
(G) Z ( G ) drawn at random, with
replacement, before a set of
generators 1s found

k>0
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INTRODUCTION

Since 75> k <= (x;,....x) # G we get

P(z; > k) = 1 — P(k),

h .1.
., 8) =G} the probability that k

(81> -2 81) - {81 -
| {(g; 8 : (&1 randomly chosen

GI*
elements generate G
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INTRODUCTION

Since 75> k <= (x;,....x) # G we get

P(z; > k) = 1 — P(k),

h li
1{(gps . s ) : {g1sng) = G} e probability that k

with Pg(k) = randomly chosen
| Gl elements generate G
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EXAMPLE

If G =C, isacyclic group of prime order p, then 7; is a geometric random
p—

variable of parameter s0 e(C)) = ——

p p—1
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EXAMPLE

Let G = D,, be the dihedral group of order 2p for an odd prime p

G=(xp,...x) =31 <i<j<n:x#1and x;  (x;)
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EXAMPLE

Let G = D,, be the dihedral group of order 2p for an odd prime p
G=(xp,...x) =31 <i<j<n:x#1and x;  (x;)
- The number of trials needed to obtain x # 1 in G 1s a geometric random variable

2p -1 . oD
and expectation L 1

with parameter

2p
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EXAMPLE

Let G = D,, be the dihedral group of order 2p for an odd prime p
G=(xp,...x) =31 <i<j<n:x#1and x;  (x;)
- The number of trials needed to obtain x # 1 in G 1s a geometric random variable

_ . 2p
P — 1 and expectation Ey = :

- With probability p; =

with parameter

. x has order 2 : the number of trials needed to

2p — 1

: L : 2
findy ¢ (x)is a geometric with expectation E, = P

2p —2
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EXAMPLE

Let G = D,, be the dihedral group of order 2p for an odd prime p
G=(xp,...x) =31 <i<j<n:x#1and x;  (x;)
- The number of trials needed to obtain x # 1 in G 1s a geometric random variable

_ . 2p
P — 1 and expectation Ey = :

- With probability p; =

with parameter

. x has order 2 : the number of trials needed to

2p — 1

: : : : 2
findy & (x) is a geometric with expectation E, = . P .
p —
p—1

S— x has order p : the number of trials needed to
p —

q : S : 2
findy € (x)1is a geometric with expectation E, = P

* With probability p, =

2p—p
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EXAMPLE

Let G = D,, be the dihedral group of order 2p for an odd prime p
G=(xp,...x) =31 <i<j<n:x#1and x;  (x;)
- The number of trials needed to obtain x # 1 in G 1s a geometric random variable

_ . 2p
P — 1 and expectation Ey = :

- With probability p; =

with parameter

. x has order 2 : the number of trials needed to

2p — 1

: : : : 2
findy & (x) is a geometric with expectation E, = . P .
p —
p—1

X has order p : the number of trials needed to
p —
q : : : : 2
findy & (x)is a geometric with expectation E, = 5 P
P —P
2p

* With probability p, =

2

e(sz) — EO +p1E1 +p2E2 — 2 SiE

2p - 1(2p - 2)
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EXAMPLE

Let G = D,, be the dihedral group of order 2p for an odd prime p
G=(xp,...x) =31 <i<j<n:x#1and x;  (x;)
- The number of trials needed to obtain x # 1 in G 1s a geometric random variable

_ . 2p
P — 1 and expectation Ey = :

- With probability p; =

with parameter

. x has order 2 : the number of trials needed to

2p — 1

: : : : 2
findy & (x) is a geometric with expectation E, = . P .
p —
p—1

S— x has order p : the number of trials needed to
p —
q : : : : 2
findy & (x)is a geometric with expectation E, = 5 P
P — P
2p
2p - 1(2p - 2)

* With probability p, =

2

e(sz) — EO +p1E1 +p2E2 — 2 SiE

: 29
In particular e(Sym(3)) = =

MARIAPIA MOSCATIELLO RANDOM GENERATION IN FINITE GROUPS



MOBIUS FUNCTION

The Mobius function 4 on the subgroup lattice of G 1s defined as:
ua(G) =1

pc(H) = — Z ug(K), VH<G
H<K
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MOBIUS FUNCTION

The Mobius function 4 on the subgroup lattice of G 1s defined as:
ua(G) =1

pc(H) = — Z ug(K), VH<G
H<K

Theorem (P Hall)
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MOBIUS FUNCTION

The Mobius function 4 on the subgroup lattice of G 1s defined as:
ua(G) =1

HgH) = = Y pug(K), VH<G
H<K

Theorem (P Hall)

Theorem (A. Lucchini)
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EXAMPLE

He(G) = 1
po(H) == ) uo(K), VH<G Sym(3)

H<K ((123»/ / \\

(12))  (d3)) ((23))

\

1)
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EXAMPLE

He(G) = 1
HotH) == D uG(K), VH <G Sym(3) 1

H<K ((123»/ / \\

(12))  (d3)) ((23))

\

1)
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EXAMPLE

Hg(G) =1
o) = = )" ug(K), VH<G Sym(3) 1

H<K ((123)}1/ / \\

((12)) -1 ((13))-1((23)) -1

\

1)
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EXAMPLE

Hg(G) =1
o) = = )" ug(K), VH<G Sym(3) 1

H<K ((123)}1/ / \\

((12)) -1 ((13))-1((23)) -1

\

1} 3
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EXAMPLE

He(G) = 1
H(H) == ) uo(K), VH <G Sym(3) |

H<K ((123)}1/ / \\

((12)) -1 ((13))-1((23)) -1

\

1} 3

) sy (D | Sym(3),
SymEN == ) ST

36 6 6 29

. + —
6—1 6—-2 6-3 10
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WHAT IS KNOWN
l Dixon proved that e(Sym(n)) — 2.5 and e(Alt(n)) - 2, n — oo
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WHAT IS KNOWN
l Dixon proved that e(Sym(n)) — 2.5 and e(Alt(n)) - 2, n — oo

More generally for a finite, non abelian, simple group S, famous results of
Dixon, Kantor-Lubotzky and Liebeck-Shalev establish that
Py2) - 1, [S| > o

From this one can deduce that e(S) — 2, |S| —» o
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WHAT IS KNOWN
l Dixon proved that e(Sym(n)) — 2.5 and e(Alt(n)) - 2, n — oo

More generally for a finite, non abelian, simple group S, famous results of
Dixon, Kantor-Lubotzky and Liebeck-Shalev establish that
Py2) - 1, [S| > o

From this one can deduce that e(S) — 2, |S| —» o

Lucchini proved that for a non abelian, simple group S, e(S) < e(Al1(6)) ~ 2.494
and that for n > 5, 2.5 < e(Sym(n)) < e(Sym(6)) ~ 2.8816
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WHAT IS KNOWN
l Dixon proved that e(Sym(n)) — 2.5 and e(Alt(n)) - 2, n — oo

More generally for a finite, non abelian, simple group S, famous results of
Dixon, Kantor-Lubotzky and Liebeck-Shalev establish that
Py2) - 1, [S| > o

From this one can deduce that e(S) - 2, |S| -

Lucchini proved that for a non abelian, simple group S, e(S) < e(Al1(6)) ~ 2.494
and that for n > 5, 2.5 < e(Sym(n)) < e(Sym(6)) ~ 2.8816

Pomerance proved that for a finite nilpotent group G, then e(G) < d(G) + o,

where o ~ 2.1185 1s an absolute constant that is explicitly described 1n terms
of the Riemann zeta function
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A PROBABILISTIC VERSION OF AN OLD THEOREM

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements
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A PROBABILISTIC VERSION OF AN OLD THEOREM

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Theorem (A. Lucchini, MM 2017)
It all the Sylow subgroups of a finite group G can be generated by d elements,

e e(G) Ld+«k

where x ~ 2.752394 1is an absolute constant that 1s explicitly described in terms
of the Riemann zeta function and best possible in this context
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A PROBABILISTIC VERSION OF AN OLD THEOREM

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Theorem (A. Lucchini, MM 2017)
It all the Sylow subgroups of a finite group G can be generated by d elements,

e e(G) Ld+«k

where x ~ 2.752394 1is an absolute constant that 1s explicitly described in terms
of the Riemann zeta function and best possible in this context

This result 1s an improvement of a bound already
obtained by Lucchini
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WHAT ABOUT A GENERALIZATION?

Theorem (A. Lucchini, MM 2017)
It all the Sylow subgroups of a finite group G can be generated by d elements,

then e(G) < d+x

where k ~ 2.752394 1s an absolute constant that 1s explicitly described in terms
of the Riemann zeta function and best possible 1n this context

Relaxing the hypotheses

Replace the fact that all the Sylow subgroups are d-generated, with
the assumption that there exists a family of coprime index subgroup
all d-generated
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GENERALIZATION IN SOLUBLE CASE

Theorem (A. Lucchini, MM 2017)
It all the Sylow subgroups of a finite group G can be generated by d elements,

then e(G) < d + x

where k ~ 2.752394 1s an absolute constant that 1s explicitly described in terms
of the Riemann zeta function and best possible 1n this context

Theorem (A. Lucchini, MM 2019)

Let G be a finite soluble group. Assume that for every p € z(G) there exists
a subgroup G, such that p does not divide |G : G,| and e(G,) < d.

Then e(G) <d+9
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PERMUTATION GROUPS
l If G 1s a p-subgroup of Sym(n), then G can be generated by |n/p] elements
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PERMUTATION GROUPS
l If G 1s a p-subgroup of Sym(n), then G can be generated by |n/p] elements

Corollary

If G 1s a permutation group of degree n, e(G) < |n/2| + k, with k ~ 2.752395
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PERMUTATION GROUPS
l If G 1s a p-subgroup of Sym(n), then G can be generated by |n/p] elements

Corollary

If G 1s a permutation group of degree n, e(G) < |n/2| + k, with k ~ 2.752395

This bound 1s not best possible
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PERMUTATION GROUPS
l If G 1s a p-subgroup of Sym(n), then G can be generated by |n/p] elements

Corollary

If G 1s a permutation group of degree n, e(G) < |n/2| + k, with k ~ 2.752395

This bound 1s not best possible

Theorem (A. Lucchini, MM 2017)

If G 1s a permutation group of degree n, then either G=Sym(3) and
e(G) =29 or e(G) < |n/2] +&,with & ~ 1.606695
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PERMUTATION GROUPS

Theorem (A. Lucchini, MM 2017)

It G 1s a permutation group of degree n, then either G=Sym(3) and
e(G) =29 or e(G) <L |n/2] + & ,with £ ~ 1.606695

K 1s best possible
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PERMUTATION GROUPS

Theorem (A. Lucchini, MM 2017)

It G 1s a permutation group of degree n, then either G=Sym(3) and
e(G) =29 or e(G) <L |n/2] + & ,with £ ~ 1.606695

K 1s best possible

Let m= |n/2| and set

m

. {Sym(Z)m, n =0, if mis even
L SymQ@)" ! x Sym(3), n = 1, if mis odd

( \

1 3\

20 |\ 1<i<m

\ N T )

For m > 4, e(G,)— m increase with m and lim e(G,) —m =k

m—o0
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A DIFFERENT QUESTION HAVING SAME ORIGIN

A subset X C G 1s a minimal generating set for G 1f X is a generating set for G

and no proper subset of X 1s a generating set for G
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A subset X C G 1s a minimal generating set for G 1f X is a generating set for G

and no proper subset of X 1s a generating set for G

{(1,2),(2,3), ..., (n — 1,n)}minimally generates Sym(n)
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l Denote with 7(G) the largest size of a minimal generating set for G
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A DIFFERENT QUESTION HAVING SAME ORIGIN

A subset X C G 1s a minimal generating set for G 1f X is a generating set for G

and no proper subset of X 1s a generating set for G

{(1,2),(2,3), ..., (n — 1,n)}minimally generates Sym(n)

l Denote with 7(G) the largest size of a minimal generating set for G

Theorem ( P Cameron, P Cara, J. Whiston)

If G 1s a subgroup of Sym(n), then m(G) < n — 1. The equality
holds if and only 1f G=Sym(n). In particular m(Sym(n))=n-1
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A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

MARIAPIA MOSCATIELLO RANDOM GENERATION IN FINITE GROUPS



A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Denote with ¢,(G) the minimal cardinality of
a generating set of a Sylow p-subgroup of G
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A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Denote with ¢,(G) the minimal cardinality of
a generating set of a Sylow p-subgroup of G

Is it possible to bound m(G) as a function of d,(G),with p running through the
prime divisors of the order of G?
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A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Denote with ¢,(G) the minimal cardinality of
a generating set of a Sylow p-subgroup of G

Is it possible to bound m(G) as a function of d,(G),with p running through the
prime divisors of the order of G?

Theorem (A. Lucchini, P Spiga, MM 2019)
Let G be a finite soluble group. Then m(G) < 2 d,(G)
pEn(G)
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A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Denote with ¢,(G) the minimal cardinality of
a generating set of a Sylow p-subgroup of G

Is it possible to bound m(G) as a function of d,(G),with p running through the
prime divisors of the order of G?

Theorem (A. Lucchini, P Spiga, MM 2019) Is this result
Let G be a finite soluble group. Then m(G) < )’ d,(G) true for all finite
pen(G) group?
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A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d
clements, then the group G itself can be generated by d+1 elements

Denote with ¢,(G) the minimal cardinality of
a generating set of a Sylow p-subgroup of G

Is it possible to bound m(G) as a function of d,(G),with p running through the
prime divisors of the order of G?

Theorem (A. Lucchini, P Spiga, MM 2019) Is this result
Let G be a finite soluble group. Then m(G) < Z d(G) = 5(G) true for all finite
pen(G) group?
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NOT TRUE FOR THE SYMMETRIC GROUP

l m(Sym(9))=8 > » d,(Sym(9)) =7
p
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NOT TRUE FOR THE SYMMETRIC GROUP

I m(Sym(9))=8 > » d,(Sym(9)) =7
p

Theorem (A. Lucchini, P Spiga, MM 2019)

o(Sym(n)) = Z dp(Sym(n)) = log 2 -n+ o(n)
pen(Sym(n))
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NOT TRUE FOR THE SYMMETRIC GROUP

l m(Sym(9))=8 > » d,(Sym(9)) =7
p

Theorem (A. Lucchini, P Spiga, MM 2019)

S(Symm) = Y d(Symn) =log2-n+o(m)  MESymm)=n-l
pEn(Sym(n))
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NOT TRUE FOR THE SYMMETRIC GROUP

m(Sym(9))=8 > » d,(Sym(9)) =7

P

Theorem (A. Lucchini, P Spiga, MM 2019)

Z dp(Sym(n)) = log 2 -n+ o(n)
pen(Sym(n))

m(Sym(n))=n-1

o(Sym(n)) =

As n — oo, m(Sym(n)) — 6(Sym(n)) — oo and m(Sym(n)) < 5(Sym(n))
is satisfies only by finitely many values of n
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NOT TRUE FOR THE SYMMETRIC GROUP

m(Sym(9))=8 > » d,(Sym(9)) =7

P

Theorem (A. Lucchini, P Spiga, MM 2019)

S(Symm) = Y d(Symn) =log2-n+o(m)  MESymm)=n-l
pEn(Sym(n))

As n — oo, m(Sym(n)) — 6(Sym(n)) — oo and m(Sym(n)) < 5(Sym(n))
is satisfies only by finitely many values of n

Theorem (A. Lucchini, P Spiga, MM 2019)

For every positive real number n > 1, there exists a constant ¢ such that
m(Sym(n)) < c(6(Sym(n)))", for every n € N
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CONJECTURE AND REDUCTION

Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants ¢ and # such that m(G) < ¢( Z d,(G))" = c(8(G))",
for every finite group G p
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CONJECTURE AND REDUCTION

Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants ¢ and # such that m(G) < ¢( Z d,(G))" = c(8(G))",
for every finite group G p

Theorem (A. Lucchini, P Spiga, MM 2019)

If there are ¢ > 1 and 5 > 2 such that m(X) — m(X/S) < o - | n(S)|" for every
composition factor S of G and for every almost simple group X with soc X = S.

Then m(G) < o Z d,(G))" = 0(6(G))"
p
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CONJECTURE AND REDUCTION

Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants ¢ and # such that m(G) < ¢( Z d,(G))" = c(8(G))",
for every finite group G p

Theorem (A. Lucchini, P Spiga, MM 2019)

If there are o > 1 and 5 > 2 such that m(X) — m(X/S) < o - | z(S)|" for every
composition factor S of G and for every almost simple group X with soc X = S.

Then m(G) < o Z d(G))" = 6(8(G))"
P
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CONJECTURE AND REDUCTION

Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants ¢ and # such that m(G) < ¢( Z d,(G))" = c(8(G))",
for every finite group G p

Theorem (A. Lucchini, P Spiga, MM 2019)

If there are o > 1 and 5 > 2 such that m(X) — m(X/S) < o - | z(S)|" for every
composition factor S of G and for every almost simple group X with soc X = S.

Then m(G) < o Z d(G))" = 6(8(G))"
P

Reduced Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants ¢ and # such that m(X) — m(X/socX) < o(| n(socX)|)",
for every finite almost simple group X
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TOWARD A PROOF

Reduced Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants o and # such that m(X) — m(X/socX) < o(| n(socX)|)",
for every finite almost simple group X

Proposition Reduced Conjecture holds true for socX not of Lie type

There exists a constants such that, if X is a finite almost simple group and socX 1is
not a simple group of Lie type, then m(X) — m(X/socX) < o(| n(socX)|)?
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TOWARD A PROOF

Reduced Conjecture (A. Lucchini, P Spiga, MM 2019)

There exist two constants o and # such that m(X) — m(X/socX) < o(| n(socX)|)",
for every finite almost simple group X

Proposition Reduced Conjecture holds true for socX not of Lie type

There exists a constants such that, if X is a finite almost simple group and socX 1is
not a simple group of Lie type, then m(X) — m(X/socX) < o(| n(socX)|)?

Conjecture

holds true if
there are no
composition
factor of Lie

type

There exists a constant ¢ such that if G has no composition factor
of Lie type, then m(G) < o( )’ d(G))* = 6(5(G))?

P
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Theorem (J. Whiston, J. Saxl)
Let p be a prime number, then m(PSL(2,p")) < max(6, #(r) + 2), where 7(r) is
the number of distinct prime divisors of r
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Theorem (J. Whiston, J. Saxl)
Let p be a prime number, then m(PSL(2,p")) < max(6, #(r) + 2), where 7(r) is
the number of distinct prime divisors of r

l a(r) < a(p" —1) < |7a(PSLy(p"))|
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Theorem (J. Whiston, J. Saxl)
Let p be a prime number, then m(PSL(2,p")) < max(6, #(r) + 2), where 7(r) is
the number of distinct prime divisors of r

Reduced Conjecture

ﬁ'(l") < ﬁ'(pr — 1) < |7Z'(PSL2(pr))| m(PSL (pr)) < |7Z'(PSL (pr)) |2 holds true for
; 2= : PSLy(p")
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Theorem (J. Whiston, J. Saxl)
Let p be a prime number, then m(PSL(2,p")) < max(6, #(r) + 2), where 7(r) is
the number of distinct prime divisors of r

Reduced Conjecture

ﬁ'(l") < ﬁ'(pr — 1) < |7Z'(PSL2(pr))| m(PSL (pr)) < |7Z'(PSL (pr)) |2 holds true for
; 2= : PSLy(p")

m(PSL;(p")), m(SO(3,p")), m(SU(3,p")) have linear bounds in terms of 7(r)
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Theorem (J. Whiston, J. Saxl)
Let p be a prime number, then m(PSL(2,p")) < max(6, #(r) + 2), where 7(r) is
the number of distinct prime divisors of r

Reduced Conjecture

PSL(0™) < | m(PSL~(p") |2 holds true for
m(PSLy(p")) < | n(PSLy(p") i

i(r) < 7(p" = 1) < [w(PSLy(p")) |

m(PSL;(p")), m(SO(3,p")), m(SU(3,p")) have linear bounds in terms of 7(r)

Let X an almost simple group with socX = G,(p”) be a group of
Lie type with rank n over . 18 m(X)-m(X/socX) polynomially

bounded in terms of » and 7#(r) ?
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Theorem (J. Whiston, J. Saxl)
Let p be a prime number, then m(PSL(2,p")) < max(6, #(r) + 2), where 7(r) is
the number of distinct prime divisors of r

Reduced Conjecture

a(r) < a(p"—1) < |a(PSLy,(p")) | PSL-(p")) < PSL(p" 2 holds true for
l m( »(P") < | a( »(P") | PSL(p")

m(PSL;(p")), m(SO(3,p")), m(SU(3,p")) have linear bounds in terms of 7(r)

Let X an almost simple group with socX = G,(p”) be a group of
Lie type with rank n over . 18 m(X)-m(X/socX) polynomially

bounded in terms of » and 7#(r) ?

If this question has an affirmative answer, both our conjectures would be true
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