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τG = min{k ≥ 1 |⟨x1, …, xk⟩ = G}

Define a random variable:

INTRODUCTION

G⋅ (xk)k∈ℕ  sequence of uniformly distributed   - valued random variables

 finite group ⋅ G

e(G) = ∑
k≥0

kP (τG = k)
The expected number of 

elements of G which have to be 
drawn at random, with 

replacement, before a set of 
generators is found
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INTRODUCTION

PG(k) =
|{(g1, …, gk) : ⟨g1, …, gk⟩ = G} |

|G |k

τG > k ⟺ ⟨x1, …, xk⟩ ≠ GSince we get

P(τG > k) = 1 − PG(k),

the probability that k 
randomly chosen 

elements generate G 

with
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= ∑
k≥1

kP (τG = k) = ∑
k≥1

∑
m≥k

P (τG = m)

= ∑
k≥1

P (τG ≥ k) = ∑
k≥0

P (τG > k)

∑
k≥0

(1 − PG (k))=

e(G)
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|G |k
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the probability that k 
randomly chosen 

elements generate G 

with
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G = CpIf is a cyclic group of prime order p, then is a geometric random
variable of parameter p − 1

p
, so e(Cp) =

p
p − 1

τG

EXAMPLE 
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G = D2pLet be the dihedral group of order 2p for an odd prime p

G = ⟨x1, …, xn⟩ ⟺ ∃ 1 ≤ i < j ≤ n : xi ≠ 1 and xj ∉ ⟨xi⟩
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G = ⟨x1, …, xn⟩ ⟺ ∃ 1 ≤ i < j ≤ n : xi ≠ 1 and xj ∉ ⟨xi⟩

2p − 1
2p

with parameter and expectation E0 =
2p

2p − 1
;

The number of trials needed to obtain x  in G is a geometric random variable 
≠ 1
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2p

2p − 1
;
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2 :p1 =
p

2p − 1
,With probability x has order

E1 =
2p

2p − 2
with expectationy ∉ ⟨x⟩
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is a geometricfind

p :p2 =
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with expectationy ∉ ⟨x⟩
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is a geometricfind
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G = ⟨x1, …, xn⟩ ⟺ ∃ 1 ≤ i < j ≤ n : xi ≠ 1 and xj ∉ ⟨xi⟩

2p − 1
2p

with parameter and expectation E0 =
2p

2p − 1
;

The number of trials needed to obtain x  in G is a geometric random variable 
≠ 1

2 :p1 =
p

2p − 1
,With probability x has order

E1 =
2p

2p − 2
with expectationy ∉ ⟨x⟩

the number of trials needed to

is a geometricfind

p :p2 =
p − 1
2p − 1

,With probability x has order

E2 =
2p

2p − p
with expectationy ∉ ⟨x⟩

the number of trials needed to

is a geometricfind

e(D2p) = E0 + p1E1 + p2E2 = 2 +
2p2

(2p − 1)(2p − 2)

EXAMPLE 
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G = D2pLet be the dihedral group of order 2p for an odd prime p

G = ⟨x1, …, xn⟩ ⟺ ∃ 1 ≤ i < j ≤ n : xi ≠ 1 and xj ∉ ⟨xi⟩

2p − 1
2p

with parameter and expectation E0 =
2p

2p − 1
;

The number of trials needed to obtain x  in G is a geometric random variable 
≠ 1

2 :p1 =
p

2p − 1
,With probability x has order

E1 =
2p

2p − 2
with expectationy ∉ ⟨x⟩

the number of trials needed to

is a geometricfind

p :p2 =
p − 1
2p − 1

,With probability x has order

E2 =
2p

2p − p
with expectationy ∉ ⟨x⟩

the number of trials needed to

is a geometricfind

e(D2p) = E0 + p1E1 + p2E2 = 2 +
2p2

(2p − 1)(2p − 2)

In particular e(Sym(3)) =
29
10

EXAMPLE 
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The Möbius function       on the subgroup lattice of G is defined as:μG

μG(G) = 1

μG(H) = − ∑
H<K

μG(K ), ∀H < G

MÖBIUS FUNCTION
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μG(G) = 1

μG(H) = − ∑
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μG(K ), ∀H < G

Theorem (P. Hall)

PG(t) = ∑
H≤G

μG(H)
|G : H |t
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The Möbius function       on the subgroup lattice of G is defined as:μG

μG(G) = 1

μG(H) = − ∑
H<K

μG(K ), ∀H < G

Theorem (P. Hall)

PG(t) = ∑
H≤G

μG(H)
|G : H |t

Theorem (A. Lucchini)

e(G) = − ∑
H<G

μG(H) |G |
|G | − |H |

MÖBIUS FUNCTION
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Sym(3)

⟨(123)⟩
⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

{1}

μG(G) = 1

μG(H) = − ∑
H<K

μG(K ), ∀H < G
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Sym(3)

⟨(123)⟩
⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

{1}

μG(G) = 1

μG(H) = − ∑
H<K

μG(K ), ∀H < G 1

−1

−1 −1 −1

3

e(Sym(3)) = − ∑
H<Sym(3)

μSym(3)(H) |Sym(3) |

|Sym(3) | − |H |

= −
3 ⋅ 6
6 − 1

+ 3 ⋅
6

6 − 2
+

6
6 − 3

=
29
10

EXAMPLE 
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WHAT IS KNOWN

Dixon proved that e(Sym(n)) → 2.5 and e(Alt(n)) → 2, n → ∞
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WHAT IS KNOWN

     

More generally for a finite, non abelian, simple group S,  famous results of  
Dixon, Kantor-Lubotzky and Liebeck-Shalev establish that

PS(2) → 1, |S | → ∞
From this one can deduce that e(S) → 2, |S | → ∞

Dixon proved that e(Sym(n)) → 2.5 and e(Alt(n)) → 2, n → ∞
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WHAT IS KNOWN

     

More generally for a finite, non abelian, simple group S,  famous results of  
Dixon, Kantor-Lubotzky and Liebeck-Shalev establish that

PS(2) → 1, |S | → ∞
From this one can deduce that e(S) → 2, |S | → ∞

Dixon proved that e(Sym(n)) → 2.5 and e(Alt(n)) → 2, n → ∞

     Lucchini proved that for a non abelian, simple group S, e(S) ≤ e(Alt(6)) ∼ 2.494
n ≥ 5, 2.5 ≤ e(Sym(n)) ≤ e(Sym(6)) ∼ 2.8816and that for

Pomerance proved that for a finite nilpotent group G, then   e(G) ≤ d(G) + σ,
where σ ∼ 2.1185 is an absolute constant that is explicitly described in terms
of the Riemann zeta function
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A PROBABILISTIC VERSION OF AN OLD THEOREM 

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1
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Theorem (A. Lucchini, MM 2017)

e(G) ≤ d + κ
where                     is an absolute constant that is explicitly described in terms 
of the Riemann zeta function and best possible in this context 

κ ∼ 2.752394

If all the Sylow subgroups of a finite group G can be generated by d elements, 
then 
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Theorem (A. Lucchini, MM 2017)

e(G) ≤ d + κ
where                     is an absolute constant that is explicitly described in terms 
of the Riemann zeta function and best possible in this context 

κ ∼ 2.752394

If all the Sylow subgroups of a finite group G can be generated by d elements, 
then 

A PROBABILISTIC VERSION OF AN OLD THEOREM 

This result is an improvement of a bound already 
obtained by Lucchini

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1
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WHAT ABOUT A GENERALIZATION?

Relaxing the hypotheses

Replace the fact that all the Sylow subgroups are d-generated,  with 
the assumption that there exists a family of coprime index subgroup 
all d-generated

Theorem (A. Lucchini, MM 2017)

e(G) ≤ d + κ
where                     is an absolute constant that is explicitly described in terms 
of the Riemann zeta function and best possible in this context 

κ ∼ 2.752394

If all the Sylow subgroups of a finite group G can be generated by d elements, 
then 
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GENERALIZATION IN SOLUBLE CASE

Theorem (A. Lucchini, MM 2017)

e(G) ≤ d + κ
where                     is an absolute constant that is explicitly described in terms 
of the Riemann zeta function and best possible in this context 

κ ∼ 2.752394

If all the Sylow subgroups of a finite group G can be generated by d elements, 
then 

Theorem (A. Lucchini, MM 2019)
Let �  be a finite soluble group. Assume that for every �  there exists 
a subgroup �  such that p does not divide �  and � . 
Then �

G p ∈ π(G)
Gp |G : Gp | e(Gp) ≤ d

e(G) ≤ d + 9
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PERMUTATION GROUPS

If G is a p-subgroup of Sym(n), then G can be generated by           elements⌊n /p⌋
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Corollary

e(G) ≤ ⌊n /2⌋ + κ κ ∼ 2.752395If G is a permutation group of degree n, , with 
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If G is a p-subgroup of Sym(n), then G can be generated by           elements⌊n /p⌋

Corollary

e(G) ≤ ⌊n /2⌋ + κ κ ∼ 2.752395If G is a permutation group of degree n, , with 

This bound is not best possible

Theorem (A. Lucchini, MM 2017)

e(G) ≤ ⌊n /2⌋ + κ̃ κ̃ ∼ 1.606695
If G is a permutation group of degree n, then either G=Sym(3) and 

, with e(G) = 2.9 or
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PERMUTATION GROUPS

κ̃ is best possible
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PERMUTATION GROUPS

κ̃ is best possible

Let m = ⌊n /2⌋ and set

Gm = {Sym(2)m, η = 0, if m is even
Sym(2)m−1 × Sym(3), η = 1, if m is odd

e(Gm) = m + ∑
j≥0

∏
1≤l≤m

(1 −
1

2 j+l ) (1 −
3

3j+m )
η

For             m ≥ 4, e(Gm) − m increase with m  andm lim
m→∞

e(Gm) − m = k̃

Theorem (A. Lucchini, MM 2017)

e(G) ≤ ⌊n /2⌋ + κ̃ κ̃ ∼ 1.606695
If G is a permutation group of degree n, then either G=Sym(3) and 

, with e(G) = 2.9 or
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A subset X �  G is a minimal generating set for G if X is a generating set for G 

and no proper subset of X is a generating set for G
⊆

A DIFFERENT QUESTION HAVING SAME ORIGIN
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{(1,2), (2,3), …, (n − 1, n)}minimally generates Sym(n)
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A subset X �  G is a minimal generating set for G if X is a generating set for G 

and no proper subset of X is a generating set for G
⊆

Denote with m(G) the largest size of a minimal generating set for G

Theorem ( P. Cameron, P. Cara, J. Whiston) 

If G is a subgroup of Sym(n), then � . The equality 
holds if and only if G=Sym(n). In particular m(Sym(n))=n-1

m(G) ≤ n − 1

A DIFFERENT QUESTION HAVING SAME ORIGIN

{(1,2), (2,3), …, (n − 1, n)}minimally generates Sym(n)

Example
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A DIFFERENT QUESTION HAVING SAME ORIGIN

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1
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A DIFFERENT QUESTION HAVING SAME ORIGIN

                                 the minimal cardinality of 
a generating set of a Sylow p-subgroup of G
Denote with dp(G)

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1
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A DIFFERENT QUESTION HAVING SAME ORIGIN

                                 the minimal cardinality of 
a generating set of a Sylow p-subgroup of G
Denote with dp(G)

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1

Is it possible to bound m(G) as a function of         ,with p running through the 
prime divisors of the order of G? 

dp(G)
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                                 the minimal cardinality of 
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Let G be a finite soluble group. Then m(G) ≤ ∑

p∈π(G)
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A DIFFERENT QUESTION HAVING SAME ORIGIN

                                 the minimal cardinality of 
a generating set of a Sylow p-subgroup of G
Denote with dp(G)
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Let G be a finite soluble group. Then m(G) ≤ ∑

p∈π(G)

dp(G)

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1

Is this result 
true for all finite 

group?

Is it possible to bound m(G) as a function of         ,with p running through the 
prime divisors of the order of G? 

dp(G)
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A DIFFERENT QUESTION HAVING SAME ORIGIN

                                 the minimal cardinality of 
a generating set of a Sylow p-subgroup of G
Denote with dp(G)

Theorem (A. Lucchini, P. Spiga, MM 2019)

∑
p∈π(G)

dp(G) = δ(G)Let G be a finite soluble group. Then m(G) ≤

Theorem (R. Guralnick, A. Lucchini)

If all the Sylow subgroups of a finite group G can be generated by d 
elements, then the group G itself can be generated by d+   elements 
1

Is this result 
true for all finite 

group?

Is it possible to bound m(G) as a function of         ,with p running through the 
prime divisors of the order of G? 

dp(G)
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NOT TRUE FOR THE SYMMETRIC GROUP

m(Sym(9))=8  >

Example (smallest degree for a negative answer)

∑
p

dp(Sym(9)) = 7
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Example (smallest degree for a negative answer)

∑
p

dp(Sym(9)) = 7

Theorem (A. Lucchini, P. Spiga, MM 2019)

δ(Sym(n)) = ∑
p∈π(Sym(n))

dp(Sym(n)) = log 2 ⋅ n + o(n)
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NOT TRUE FOR THE SYMMETRIC GROUP

m(Sym(9))=8  >

Example (smallest degree for a negative answer)

∑
p

dp(Sym(9)) = 7

Theorem (A. Lucchini, P. Spiga, MM 2019)

δ(Sym(n)) = ∑
p∈π(Sym(n))

dp(Sym(n)) = log 2 ⋅ n + o(n) m(Sym(n))=n-1

Corollary
m(Sym(n)) − δ(Sym(n)) → ∞As � ,n → ∞ and m(Sym(n)) ≤ δ(Sym(n))

is satisfies only by finitely many values of n 

Theorem (A. Lucchini, P. Spiga, MM 2019)
For every positive real number , there exists a constant c such that 
� , for every �

η > 1
m(Sym(n)) ≤ c(δ(Sym(n)))η n ∈ ℕ
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CONJECTURE AND REDUCTION

There exist two constants c and �  such that                                     
for every finite group G 

η m(G) ≤ c(∑
p

dp(G))η = c(δ(G))η,
Conjecture (A. Lucchini, P. Spiga, MM 2019)
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Then

If there are �  and �  such that �σ ≥ 1 η ≥ 2 m(X) − m(X /S) ≤ σ ⋅ |π(S) |η
 for every

composition factor S of G and for every almost simple group X with soc X = S.
m(G) ≤ σ(∑

p

dp(G))η = σ(δ(G))η
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There exist two constants �  and �  such that                                     σ η m(X) − m(X /socX) ≤ σ( |π(socX) | )η,

Reduced Conjecture (A. Lucchini, P. Spiga, MM 2019)

for every finite almost simple group X

There exist two constants c and �  such that                                     
for every finite group G 

η m(G) ≤ c(∑
p

dp(G))η = c(δ(G))η,
Conjecture (A. Lucchini, P. Spiga, MM 2019)
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Then

If there are �  and �  such that �σ ≥ 1 η ≥ 2 m(X) − m(X /S) ≤ σ ⋅ |π(S) |η
 for every
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TOWARD A PROOF

There exist two constants �  and �  such that                                     σ η m(X) − m(X /socX) ≤ σ( |π(socX) | )η,

Reduced Conjecture (A. Lucchini, P. Spiga, MM 2019)

for every finite almost simple group X

There exists a constants such that, if X is a finite almost simple group and socX  is 
not a simple group of Lie type, then                                 m(X) − m(X /socX) ≤ σ( |π(socX) | )2

Proposition   Reduced Conjecture holds true for socX not of Lie type
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TOWARD A PROOF

There exist two constants �  and �  such that                                     σ η m(X) − m(X /socX) ≤ σ( |π(socX) | )η,

Reduced Conjecture (A. Lucchini, P. Spiga, MM 2019)

for every finite almost simple group X

There exists a constants such that, if X is a finite almost simple group and socX  is 
not a simple group of Lie type, then                                 m(X) − m(X /socX) ≤ σ( |π(socX) | )2

Proposition   Reduced Conjecture holds true for socX not of Lie type

There exists a constant �  such that if G has no composition factor 
of Lie type, then                                   

σ
m(G) ≤ σ(∑

p

dp(G))2 = σ(δ(G))2

CorollaryConjecture  
holds true if 
there are no 
composition 
factor of Lie 

type 
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WHAT ABOUT THE SIMPLE GROUPS OF LIE TYPE?

Let p be a prime number, then � where �  is 
the number of distinct prime divisors of r

m(PSL(2,pr)) ≤ max(6, π̃(r) + 2), π̃(r)
Theorem (J. Whiston, J. Saxl)
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the number of distinct prime divisors of r
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π̃(r) ≤ π̃(pr − 1) ≤ |π(PSL2(pr)) |
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P. J. Keen
m(PSL3(pr)), m(SO(3,pr)), m(SU(3,pr))have linear bounds in terms of π̃(r)
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Corollary Reduced Conjecture 

holds true for 
�PSL2(pr)

P. J. Keen
m(PSL3(pr)), m(SO(3,pr)), m(SU(3,pr))have linear bounds in terms of π̃(r)

Let X an almost simple group with                        be a group of 
Lie type with rank n over � .  Is m(X)-m(X/socX) polynomially 
bounded in terms of n and �  ? 

𝔽pr

π̃(r)

socX = Gn(pr)
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Let p be a prime number, then � where �  is 
the number of distinct prime divisors of r

m(PSL(2,pr)) ≤ max(6, π̃(r) + 2), π̃(r)
Theorem (J. Whiston, J. Saxl)

π̃(r) ≤ π̃(pr − 1) ≤ |π(PSL2(pr)) | m(PSL2(pr)) ≤ |π(PSL2(pr)) |2
Corollary Reduced Conjecture 

holds true for 
�PSL2(pr)

P. J. Keen
m(PSL3(pr)), m(SO(3,pr)), m(SU(3,pr))have linear bounds in terms of π̃(r)

Let X an almost simple group with                        be a group of 
Lie type with rank n over � .  Is m(X)-m(X/socX) polynomially 
bounded in terms of n and �  ? 

𝔽pr

π̃(r)

socX = Gn(pr)

If this question has an affirmative answer, both our conjectures would be true
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