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Preliminaries

Definition [1]

An algebra (X; ∗, 1X) is called a BE-algebra if the following
hold: for all x, y, z ∈ X,

(BE1) x ∗ x = 1X
(BE2) x ∗ 1X = 1X
(BE3) 1X ∗ x = x
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

A relation “≤” on X, called BE-ordering, is defined by
x ≤ y if and only if x ∗ y = 1X .
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Preliminaries

Example [3]

Let N0 = N ∪ {0} and let ∗ be the binary operation on N0

defined by

x ∗ y =

{
0 if y ≤ x

y − x if x < y.

Then (N0; ∗, 0) is a BE-algebra where 1N0 = 0.
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Preliminaries

• A BE-algebra (X, ∗, 1X) is said to be self distributive if
x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

• A BE-algebra (X, ∗, 1X) is said to be transitive if it
satisfies the condition: y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all
x, y, z ∈ X.

• A BE-algebra (X, ∗, 1X) is said to be commutative if it
satisfies (x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X.
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Preliminaries

• An element a 6= 1X of a BE-algebra (X, ∗, 1X) is said
to be a dual atom of X if a ≤ x implies either a = x or
x = 1X for all x ∈ X.

• A BE-algebra (X, ∗, 1X) is called dual atomistic if
every non-unit element of X is a dual atom in X.

• Denote by A(X) the set of all dual atoms of X.
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Some Properties of rX

Definition

Let X be a BE-algebra. For any A ⊆ X, the set

rX(A) = {x ∈ X | a ∗ x = 1X ,∀a ∈ A}

is called the set induced by right ordering on A.

Let A and B be subsets of X. Then the following hold:

• rX(∅) = X.

• If A ⊆ B, then rX(B) ⊆ rX(A).

• rX(A) =
⋂
a∈A

rX({a}) and 1X ∈ rX(A).

• If 1X ∈ A, then rX(A) = {1X}.
• Let {Aα : α ∈ I} be a collection of subsets of X, then⋂

α∈I
rX(Aα) = rX

(⋃
α∈I

Aα

)
.
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A Basis Br(X) for a topology on X

Theorem

Let X be a BE-algebra. Then

Br(X) = {rX(A) : ∅ 6= A ⊆ X}

is a basis for some topology on X.

We denote by τr(X) the topology generated by Br(X).
Consider N0 = N ∪ {0} and ∗ defined by

x ∗ y =

{
0 if y ≤ x

y − x if x < y.

J.R. Albaracin



A Basis Br(X) for a topology on X

Let z ∈ N0. Then rN0(z) = {0, 1, 2, . . . , z}. It is easy to see
that B = {rN0(z) : z ∈ N0} ⊆ Br(N0). Suppose that
∅ 6= A ⊆ N0 and w = minA. Then rN0(A) =

⋂
a∈A

rN0({a}).

It follows that rN0(A) = {0, 1, 2, . . . , w} = rN0(w) ∈ B.
Hence, Br(N0) = B = {rN0(z) : z ∈ N0}. Let
∅ 6= G ∈ τr(N0). Then G =

⋃
x∈K

rN0(x) for some

∅ 6= K ⊆ N0. Clearly, K ⊆ G. Suppose first that |G| <∞
and let v = maxK. Then G = rN0(v).
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A Basis Br(X) for a topology on X

Next, suppose that G is an infinite set. Suppose further
that G 6= N0, say m ∈ N0 \G. Then m /∈ rN0(x) for all
x ∈ K. This implies that x < m for all x ∈ K. Hence,
G ⊆ rN0(m), contrary to the assumption that G is an
infinite set. Therefore, G = N0. Accordingly,
τr(N0) = {∅, N0} ∪ {rN0(z) : z ∈ N0} = {∅, N0} ∪ Br(N0).

Theorem

Let X be a BE-algebra. Then (X, τr(X)) is connected.
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A Basis Br(X) for a topology on X

Theorem

Let X be a BE-algebra. Then τr(X) is the discrete
topology on X if and only if X = {1X}.

Theorem

If X is a finite BE-algebra, then

Sr(X) = {rX({a}) : a ∈ X}

is a subbase of τr(X).
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A Basis Br(X) for a topology on X

Theorem

Let X be a BE-algebra with |X| ≥ 2. Then

Br(X) =
{{1X , a} : a ∈ A(X)}

⋃
{rX(A) : A ∩ A(X) = ∅}.

Corollary

Let X be a BE-algebra with |X| ≥ 2. If A(X) = {a}, then

Br(X) = {{1X , a}} ∪ {rX(A) : a /∈ A}.

Theorem

Let X be a BE-algebra with |X| ≥ 2. Then
Br(X) = {{1X}} ∪ {{1X , a} : a ∈ X \ {1X}} if and only if
X is dual atomistic.
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Characterizations Involving the Topology τr(X)

This section gives some characterizations of the elementary
concepts associated with the topological space (X, τr(X)).

Theorem

Let X be a BE-algebra with |X| ≥ 2. Then τr(X) is the
particular point 1X topology τ1X on X if and only if X is
dual atomistic.

Theorem

Let S be a subalgebra of a transitive BE-algebra X with
|S| ≥ 2. Then τr(S) coincides with the relative topology τS
on S.
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Characterizations Involving the Topology τr(X)

In a dual atomistic BE-algebra X with respect to τr(X),
every set that contains 1X is open and every set that does
not contain 1X is closed. Hence, the following corollary is
true.

Corollary

Let X be a dual atomistic BE-algebra with |X| ≥ 2 and let
O,C ⊆ X. Then with respect to τr(X), we have

(i)

Int(O) =

{
∅ if 1X /∈ O
O if 1X ∈ O, and

(ii)

C =

{
X if 1X ∈ C
C if 1X /∈ C.
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Characterizations Involving the Topology τr(X)

Theorem

Let X be a BE-algebra and let D ⊆ X. Then with respect
to τr(X), we have

(i) z ∈ Int(D) if and only if there exists ∅ 6= B ⊆ X such
that b ∗ z = 1X for all b ∈ B and for all x ∈ X, x ∈ D
whenever b ∗ x = 1X for all b ∈ B.

(ii) y ∈ D if and only if for each ∅ 6= A ⊆ X with
a ∗ y = 1X for all a ∈ A, there exists d ∈ D such that
a ∗ d = 1X for all a ∈ A.

(iii) D is dense in X if and only if 1X ∈ D. In particular,
{1X} is dense in X.
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Characterizations Involving the Topology τr(X)

Theorem

Let (X1, ∗X1 , 1X1) and (X2, ∗X2 , 1X2) be BE-algebras. Then
a function f : (X1, τr(X1))→ (X2, τr(X2)) is continuous on
X1 if and only if for each B ⊆ X2 and for each x ∈ X1 such
that b ≤ f(x) for all b ∈ B, there exists A ⊆ X1 satisfying
the following conditions:

(i) a ≤ x for all a ∈ A
(ii) b ≤ f(z) for all b ∈ B whenever a ≤ z for all a ∈ A.
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(b) there exists z ∈ X1 with a ≤ z for all a ∈ A and

f(z) = y whenever a ≤ f−1 (y) for all a ∈ A and
b ≤ y for all b ∈ B.

(ii) f is closed if and only if for each τr(X1)-closed set F
and for all y ∈ X2 with y 6= f(x) for all x ∈ F , there
exists Ay ⊆ X2 such that rX2(Ay) ∩ f(F ) = ∅ and
a ≤ y for all a ∈ Ay.
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Thank you for listening!!
(Proverbs 3:5) Trust in the Lord with all of your heart

and lean not on your own understanding.
God bless us all. :)

J.R. Albaracin
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