Hierarchically hyperbolic groups, cubulating groups and RAAGs

Bruno Robbio joint work with Federico Berlai

Napoli, 23rd May 2017

Background

 In 1872 Felix Klein proposed group theory as a means of formulating and understanding geometrical constructions.

Background

- In 1872 Felix Klein proposed group theory as a means of formulating and understanding geometrical constructions.
- Geometric group theory deals with recovering algebraic properties from geometric ones of the space \mathcal{X} by letting a group act on \mathcal{X} in a 'nice' (geometric) way.

Background

- In 1872 Felix Klein proposed group theory as a means of formulating and understanding geometrical constructions.
- Geometric group theory deals with recovering algebraic properties from geometric ones of the space X by letting a group act on X in a 'nice' (geometric) way.

Example

Groups acting on simplicial trees (Bass-Serre theory).

Introduction

• Gromov introduced the notion of hyperbolicity in groups in 1987.

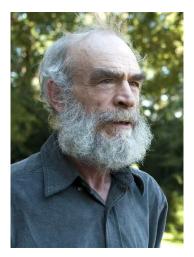


Figura: Mikhail Leonidovich Gromov

G is δ -hyperbolic if every geodesic triangle in its Cayley graph is δ -thin for some δ .

G is δ -hyperbolic if every geodesic triangle in its Cayley graph is δ -thin for some δ .

Definition

A triangle is δ -thin if it looks like the figure on the right.

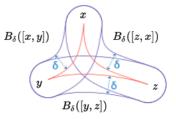


Figura: A δ -thin triangle

Problem

Given G_1 , G_2 hyperbolic groups, $G_1 \times G_2$ may not be a hyperbolic group (e.g. \mathbb{Z} is hyperbolic but \mathbb{Z}^2 is not).

Problem

Given G_1 , G_2 hyperbolic groups, $G_1 \times G_2$ may not be a hyperbolic group (e.g. \mathbb{Z} is hyperbolic but \mathbb{Z}^2 is not).

Attempts to generalize hyperbolic groups were made by Bridson; Gilman; Howie and many more:

- Relatively hyperbolic groups;
- CAT(0)-groups;
- acylindrically hyperbolic groups.

Introduced by Behrstock, Hagen and Sisto in 2015;

- Introduced by Behrstock, Hagen and Sisto in 2015;
- far-reaching generalization of hyperbolic spaces/groups;

- Introduced by Behrstock, Hagen and Sisto in 2015;
- far-reaching generalization of hyperbolic spaces/groups;
- **common framework** to work with right-angled Artin groups (RAAGS) and mapping class groups.

- Introduced by Behrstock, Hagen and Sisto in 2015;
- far-reaching generalization of hyperbolic spaces/groups;
- **common framework** to work with right-angled Artin groups (RAAGS) and mapping class groups.

Main examples

- Introduced by Behrstock, Hagen and Sisto in 2015;
- far-reaching generalization of hyperbolic spaces/groups;
- **common framework** to work with right-angled Artin groups (RAAGS) and mapping class groups.

Main examples

• Hyperbolic spaces and (direct) product of hyperbolic spaces;

- Introduced by Behrstock, Hagen and Sisto in 2015;
- far-reaching generalization of hyperbolic spaces/groups;
- **common framework** to work with right-angled Artin groups (RAAGS) and mapping class groups.

Main examples

- Hyperbolic spaces and (direct) product of hyperbolic spaces;
- hyperbolic groups; right-angled Artin groups and mapping class groups (and many more).

Let \mathcal{X} be a metric space.

Let \mathcal{X} be a metric space.

Reduce the study of the geometry of X to the study of the geometry on a family {CV}_{V∈☉} of hyperbolic spaces;

Let \mathcal{X} be a metric space.

- Reduce the study of the geometry of X to the study of the geometry on a family {CV}_{V∈☉} of hyperbolic spaces;
- do it in such a way that it is possible to recover the geometry of the space X from the geometry on each element of the family.

Let \mathcal{X} be a metric space.

- Reduce the study of the geometry of X to the study of the geometry on a family {CV}_{V∈☉} of hyperbolic spaces;
- do it in such a way that it is possible to recover the geometry of the space X from the geometry on each element of the family.

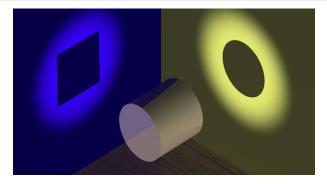


Figura: A space and its projections

 \mathcal{X} is a geodesic space

 ${\mathcal X}$ is a geodesic space

• $\{CV\}_{V\in\mathfrak{S}}$ collection of δ -hyperbolic spaces;

 ${\mathcal X}$ is a geodesic space

- $\{CV\}_{V\in\mathfrak{S}}$ collection of δ -hyperbolic spaces;
- $\{\pi_V : \mathcal{X} \to \mathcal{C}V\}_{V \in \mathfrak{S}}$ collection of (K, K)-coarsely Lipschitz maps.

 ${\mathcal X}$ is a geodesic space

- $\{CV\}_{V\in\mathfrak{S}}$ collection of δ -hyperbolic spaces;
- $\{\pi_V : \mathcal{X} \to \mathcal{C}V\}_{V \in \mathfrak{S}}$ collection of (K, K)-coarsely Lipschitz maps.

Relations on the index set \mathfrak{S} :

 ${\mathcal X}$ is a geodesic space

- $\{CV\}_{V\in\mathfrak{S}}$ collection of δ -hyperbolic spaces;
- $\{\pi_V : \mathcal{X} \to \mathcal{C}V\}_{V \in \mathfrak{S}}$ collection of (K, K)-coarsely Lipschitz maps. Relations on the index set \mathfrak{S} :
 - Nesting: (𝔅, □) is a partial order with a maximal element called S;

 ${\mathcal X}$ is a geodesic space

- $\{CV\}_{V\in\mathfrak{S}}$ collection of δ -hyperbolic spaces;
- $\{\pi_V : \mathcal{X} \to \mathcal{C}V\}_{V \in \mathfrak{S}}$ collection of (K, K)-coarsely Lipschitz maps.

Relations on the index set \mathfrak{S} :

- Nesting: (𝔅, □) is a partial order with a maximal element called S;
- Orthogonality: ⊥;

 ${\mathcal X}$ is a geodesic space

- $\{CV\}_{V\in\mathfrak{S}}$ collection of δ -hyperbolic spaces;
- $\{\pi_V : \mathcal{X} \to \mathcal{C}V\}_{V \in \mathfrak{S}}$ collection of (K, K)-coarsely Lipschitz maps.

Relations on the index set \mathfrak{S} :

- Nesting: (𝔅, □) is a partial order with a maximal element called S;
- Orthogonality: 1;
- Transversality: ...

${\mathcal X}$ is a geodesic space

- $\{CV\}_{V \in \mathfrak{S}}$ collection of δ -hyperbolic spaces;
- $\{\pi_V : \mathcal{X} \to \mathcal{C}V\}_{V \in \mathfrak{S}}$ collection of (K, K)-coarsely Lipschitz maps. Relations on the index set \mathfrak{S} :
 - Nesting: (𝔅, □) is a partial order with a maximal element called S;
 - Orthogonality: ⊥;
 - Transversality: ...

Additional axioms of HHS:

- Bounded geodesic image;
- partial realization;
- uniqueness;

- consistency;
- finite complexity;
- large links.

Distance Formula (J. Behrstock; M.Hagen; A. Sisto, 2015)

There exists $s_0 >> 0$ such that for every $s > s_0$ there exists K, C such that

$$\sum_{U\in\mathfrak{S}} \left[d_U(\pi_U(x),\pi_U(y)) \right]_{s} \asymp_{(K,C)} d(x,y)$$

for every $x, y \in \mathcal{X}$.

Notation

•
$$A \asymp_{(K,C)} B$$
 if $K^{-1}A - C \leq B \leq KA + C$;

• $[A]_B = 0$ if $A \le B$ and $[A]_B = A$ otherwise.

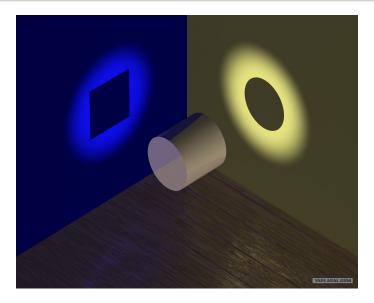


Figura: A space and its projections

G is a hierarchically hyperbolic group (HHG) if there exists a hierarchically hyperbolic space $(\mathcal{X}, \mathfrak{S})$ such that $G \curvearrowright \mathcal{X}$ in a 'nice' (geometrically) way.

G is a hierarchically hyperbolic group (HHG) if there exists a hierarchically hyperbolic space $(\mathcal{X}, \mathfrak{S})$ such that $G \curvearrowright \mathcal{X}$ in a 'nice' (geometrically) way.

Remark

If *G* is an HHG, then its Cayley graph is a hierarchically hyperbolic space.

G is a hierarchically hyperbolic group (HHG) if there exists a hierarchically hyperbolic space $(\mathcal{X}, \mathfrak{S})$ such that $G \curvearrowright \mathcal{X}$ in a 'nice' (geometrically) way.

Remark

If *G* is an HHG, then its Cayley graph is a hierarchically hyperbolic space.

Theorem

If G_1 and G_2 are HHG then $G_1 \times G_2$ is HHG.

Let $\Gamma = (V, E)$ be a finite simplicial graph. The right-angled Artin group (RAAG) wrt Γ is

$$A_{\Gamma} = \left\langle x_1, \ldots, x_{\nu} \mid [x_i, x_j] = 1 \quad \Leftrightarrow \quad \left\{ x_i, x_j \right\} \in E \right\rangle.$$

Let $\Gamma = (V, E)$ be a finite simplicial graph. The right-angled Artin group (RAAG) wrt Γ is

$$A_{\Gamma} = \left\langle x_1, \ldots, x_{\nu} \mid [x_i, x_j] = 1 \quad \Leftrightarrow \quad \left\{ x_i, x_j \right\} \in E \right\rangle.$$

Theorem

 A_{Γ} is HHG.

Let $\Gamma = (V, E)$ be a finite simplicial graph. The right-angled Artin group (RAAG) wrt Γ is

$$A_{\Gamma} = \left\langle x_1, \ldots, x_{\nu} \mid [x_i, x_j] = 1 \quad \Leftrightarrow \quad \left\{ x_i, x_j \right\} \in E \right\rangle.$$

Theorem

 A_{Γ} is HHG.

Example

 $\mathbb{Z}^2 = \langle a, b \mid [a, b] \rangle$ is HHG.

Definition (Graph of groups)

A graph $\mathcal{T} = (V, E)$ along with groups \mathcal{G}_V for each $v \in V$, \mathcal{G}_e for each $e \in E$ and $\phi_{e^-} : \mathcal{G}_e \to \mathcal{G}_{e^-}$, $\phi_{e^+} : \mathcal{G}_e \to \mathcal{G}_{e^+}$ hieromorphisms is a graph of groups.

Definition (Graph of groups)

A graph $\mathcal{T} = (V, E)$ along with groups \mathcal{G}_V for each $v \in V$, \mathcal{G}_e for each $e \in E$ and $\phi_{e^-} : \mathcal{G}_e \to \mathcal{G}_{e^-}$, $\phi_{e^+} : \mathcal{G}_e \to \mathcal{G}_{e^+}$ hieromorphisms is a graph of groups.

Combination theorem (J. Behrstock; M.Hagen; A. Sisto, 2015)

Let ${\mathcal T}$ be a finite graph of HHG satisfying 'strong' conditions on the edge groups, then the total group

 $G(\mathcal{T}) = \left\langle *_{v \in V} \mathcal{G}_{v}, E \mid e\phi_{e^{+}}(g)e^{-1} = \phi_{e^{-}}(g), e = 1 \text{ for a spanning tree } \right\rangle$

is a hierarchically hyperbolic group.

Build you own HHG!

Corollary

If G_1 and G_2 are HHG then $G_1 * G_2$ is HHG.

Corollary

If G_1 and G_2 are HHG then $G_1 * G_2$ is HHG.

Combination theorem (F.Berlai; R.)

Let \mathcal{T} be a finite graph of hierarchically hyperbolic groups satisfying 'mild' conditions on the edge groups, then the total group $G(\mathcal{T})$ is hierarchically hyperbolic group.

Corollary

If G_1 and G_2 are HHG then $G_1 * G_2$ is HHG.

Combination theorem (F.Berlai; R.)

Let \mathcal{T} be a finite graph of hierarchically hyperbolic groups satisfying 'mild' conditions on the edge groups, then the total group $G(\mathcal{T})$ is hierarchically hyperbolic group.

Remark

This theorem is a generalized version of the Bestvina-Feighn combination theorem for hyperbolic groups.

Recall

Given a finite simplicial graph Γ , the RAAG A_{Γ} associated to it is

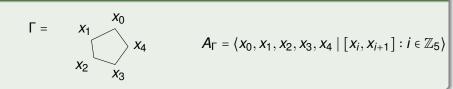
$$\boldsymbol{A}_{\Gamma} = \left\langle \boldsymbol{x}_1, \dots, \boldsymbol{x}_{\boldsymbol{v}} \mid [\boldsymbol{x}_i, \boldsymbol{x}_j] = \boldsymbol{e} \quad \Leftrightarrow \quad \left\{ \boldsymbol{x}_i, \boldsymbol{x}_j \right\} \in \boldsymbol{E} \right\rangle$$

Recall

Given a finite simplicial graph Γ , the RAAG A_{Γ} associated to it is

$$\boldsymbol{A}_{\Gamma} = \left\langle \boldsymbol{x}_1, \dots, \boldsymbol{x}_{\boldsymbol{v}} \mid [\boldsymbol{x}_i, \boldsymbol{x}_j] = \boldsymbol{e} \quad \Leftrightarrow \quad \left\{ \boldsymbol{x}_i, \boldsymbol{x}_j \right\} \in \boldsymbol{E} \right\rangle$$

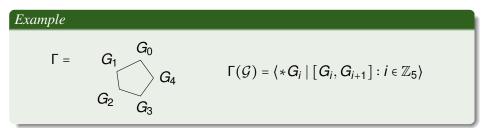
Example



Definition

Let $\Gamma = (V, E)$ be a graph and $\mathcal{G} = \{G_v\}_{v \in V}$ a collection of groups. The graph product $\Gamma \mathcal{G}$ wrt \mathcal{G} is

$$\Gamma \mathcal{G} = \left\langle *_{v \in V} G_v \mid [G_{v_i}, G_{v_j}] = e \quad \Leftrightarrow \quad \left\{ v_i, v_j \right\} \in E \right\rangle$$



Remark

For the particular cases of Γ in which

- $E = \emptyset$ (free product);
- Γ complete (direct product)

it is known that if G_v is HHG for each $v \in V$ then $\Gamma \mathcal{G}$ is HHG.

Remark

For the particular cases of Γ in which

- *E* = Ø (free product);
- Γ complete (direct product)

it is known that if G_v is HHG for each $v \in V$ then $\Gamma \mathcal{G}$ is HHG.

Question

Let Γ be a finite graph of HHG, is it true that the graph product $\Gamma(\mathcal{G})$ is a HHG?

Remark

For the particular cases of Γ in which

- *E* = Ø (free product);
- Γ complete (direct product)

it is known that if G_v is HHG for each $v \in V$ then $\Gamma \mathcal{G}$ is HHG.

Question

Let Γ be a finite graph of HHG, is it true that the graph product $\Gamma\left(\mathcal{G}\right)$ is a HHG?

Conjecture

Yes (work in progress).

Idea

- Any graph product of groups Γ(G) is isomorphic to a total group of a graph of groups G(T).
- Apply combination theorem.

Remark

The positive answer to the question would give a way of building new HHG by 'gluing' them over graph of groups.

Grazie mille!

CS ;)

Bruno Robbio Hierarchically hyperbolic groups, cubulating groups and RAAGs