A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Young Researchers Algebra Conference

Naples, 23-24 May 2017

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1) $r^2 = id_{X^2}$; (*r* is involutive) (2) $\lambda_x, \rho_y \in Sym_X$ for all $x \in X$; (*r* is non d

(3) $r_1r_2r_1 = r_2r_1r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \rightarrow X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1) $r^2 = id_{X^2}$; (*r* is involutive) (2) $\lambda_x, \rho_y \in Sym_X$ for all $x \in X$; (*r* is non degenerate (3) $r_1r_2r_1 = r_2r_1r_2$ where $r_1 = r \times id_X$ and $r_2 = id_X \times r$

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \rightarrow X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1)
$$r^2 = id_{X^2}$$
; (*r* is involutive)
(2) $\lambda_x, \rho_y \in Sym_X$ for all $x \in X$; (*r* is non degenerate
(3) $r_1r_2r_1 = r_2r_1r_2$
where $r_1 = r \times id_X$ and $r_2 = id_X \times r_2$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \rightarrow X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1)
$$r^2 = id_{X^2}$$
; (*r* is involutive)
(2) $\lambda_x, \rho_y \in Sym_X$ for all $x \in X$; (*r* is non degenerate)
(3) $r_1r_2r_1 = r_2r_1r_2$
where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \rightarrow X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1)
$$r^2 = id_{X^2}$$
; (r is involutive)

(2)
$$\lambda_x, \rho_y \in Sym_X$$
 for all $x \in X$; (*r* is non degenerate)

$$(3) \ r_1r_2r_1 = r_2r_1r_2$$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \rightarrow X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1)
$$r^2 = id_{X^2}$$
; (*r* is involutive)
(2) $\lambda_x, \rho_y \in Sym_X$ for all $x \in X$; (*r* is non degenerate)
(3) $r_1r_2r_1 = r_2r_1r_2$
where $r_1 = r \times id_x$ and $r_2 = id_x \times r$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

(1)
$$r^2 = id_{X^2}$$
; (*r* is involutive)
(2) $\lambda_x, \rho_y \in Sym_X$ for all $x \in X$; (*r* is non degenerate)
(3) $r_1r_2r_1 = r_2r_1r_2$
where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Rump (2005) showed that there is a bijective correspondence between the solutions of the Yang-Baxter equation and a particular algebraic structure: **the left non-degenerate cycle sets**.

Definition (Rump, 2005)

A *left cycle set* is a set X with a binary operation \cdot such that the left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, and the equation

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{1}$$

holds for all $x, y, z \in X$. A left cycle sets is said *non-degenerate* if $q: X \to X, x \mapsto x \cdot x$ is bijective.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Rump (2005) showed that there is a bijective correspondence between the solutions of the Yang-Baxter equation and a particular algebraic structure: **the left non-degenerate cycle sets**.

Definition (Rump, 2005)

A *left cycle set* is a set X with a binary operation \cdot such that the left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, and the equation

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{1}$$

holds for all $x, y, z \in X$. A left cycle sets is said *non-degenerate* if $q: X \to X, x \mapsto x \cdot x$ is bijective.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Rump (2005) showed that there is a bijective correspondence between the solutions of the Yang-Baxter equation and a particular algebraic structure: **the left non-degenerate cycle sets**.

Definition (Rump, 2005)

A *left cycle set* is a set X with a binary operation \cdot such that the left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, and the equation

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{1}$$

holds for all $x, y, z \in X$.

A left cycle sets is said *non-degenerate* if $q: X \to X, x \mapsto x \cdot x$ is bijective.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Rump (2005) showed that there is a bijective correspondence between the solutions of the Yang-Baxter equation and a particular algebraic structure: **the left non-degenerate cycle sets**.

Definition (Rump, 2005)

A *left cycle set* is a set X with a binary operation \cdot such that the left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, and the equation

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{1}$$

holds for all $x, y, z \in X$. A left cycle sets is said *non-degenerate* if $q: X \to X$, $x \mapsto x \cdot x$ is bijective.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Therefore, if (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$ then (X, \cdot) is its **left cycle set associated** defined by

$$\sigma_x := \lambda_x^{-1}$$

for every $x \in X$.

Vice versa if (X, \cdot) is a left non-degenerate cycle set and σ_x its left multiplication then, for all $x, y \in X$

$$r(x,y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$$

is its associated solution.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Therefore, if (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$ then (X, \cdot) is its **left cycle set associated** defined by

$$\sigma_x := \lambda_x^{-1}$$

for every $x \in X$.

Vice versa if (X, \cdot) is a left non-degenerate cycle set and σ_x its left multiplication then, for all $x, y \in X$

$$r(x,y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$$

is its associated solution.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let X be a set. If
$$\lambda_x = \rho_x = id_X$$
 for all $x \in X$ then

$$r(x,y) := (y,x)$$

for all $x, y \in X$ is a solutions of the Yang Baxter equation and it is called *the trivial solutions*.

Example

Let X be a set, the non-degenerate left cycle sets (X, \cdot) associated to the trivial solutions is defined by $\sigma_x = \lambda_x^{-1} = id_X$, i.e.

$$x \cdot y := \sigma_x(y) = y$$

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let X be a set. If
$$\lambda_x = \rho_x = id_X$$
 for all $x \in X$ then

$$r(x,y) := (y,x)$$

for all $x, y \in X$ is a solutions of the Yang Baxter equation and it is called *the trivial solutions*.

Example

Let X be a set, the non-degenerate left cycle sets (X, \cdot) associated to the trivial solutions is defined by $\sigma_x = \lambda_x^{-1} = id_X$, i.e.

$$x \cdot y := \sigma_x(y) = y$$

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A solution (X, r) is said to be *decomposable* if there exists a non trivial partition $X = Y \cup Z$ with $r(Y \times Y) \subseteq Y \times Y$ and $r(Z \times Z) \subseteq Z \times Z$, such that the restrictions of r to $Y \times Y$ and $Z \times Z$ are again non-degenerate.

Otherwise it is said *indecomposable*.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A solution (X, r) is said to be *decomposable* if there exists a non trivial partition $X = Y \cup Z$ with $r(Y \times Y) \subseteq Y \times Y$ and $r(Z \times Z) \subseteq Z \times Z$, such that the restrictions of r to $Y \times Y$ and $Z \times Z$ are again non-degenerate. Otherwise it is said *indecomposable*.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

What about cycle sets associated to indecomposable solutions?

The definition of the decomposable solutions corresponds to the definition of the decomposable non-degenerate left cycle sets and vice versa.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets What about cycle sets associated to indecomposable solutions?

The definition of the decomposable solutions corresponds to the definition of the decomposable non-degenerate left cycle sets and vice versa.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be *decomposable* if it is an union of two disjoint subset $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$.

Otherwise it is called *indecomposable*.

Studying indecomposable solutions means studying indecomposable non-degenerate left cycle sets.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be *decomposable* if it is an union of two disjoint subset $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$. Otherwise it is called *indecomposable*.

Studying indecomposable solutions means studying indecomposable non-degenerate left cycle sets.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be *decomposable* if it is an union of two disjoint subset $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$. Otherwise it is called *indecomposable*.

Studying indecomposable solutions means studying indecomposable non-degenerate left cycle sets.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Why is it important to study indecomposable non-degenerate left cycle sets and so the associated indecomposable solutions?

Because from indecomposable non-degenerate left cycle sets, by some constructions, you can obtain new non-degenerate left cycle sets.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Why is it important to study indecomposable non-degenerate left cycle sets and so the associated indecomposable solutions?

Because from indecomposable non-degenerate left cycle sets, by some constructions, you can obtain new non-degenerate left cycle sets.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let $Y = \{1, 2\}$ be the indecomposable left cycle sets defined by

$$\begin{array}{c|cc} \cdot & 1 & 2 \\ \hline 1 & 2 & 1 \\ 2 & 2 & 1 \end{array}$$

and let $Z = \{3\}$ be the trivial left cycle sets. Let's try to construct the left cycle set $X = Y \cup Z$.

Let's get togheter the two disjoint cycle sets and define a new operation on X such that X is a left cycle set. For example:

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let $Y = \{1, 2\}$ be the indecomposable left cycle sets defined by

$$\begin{array}{c|cc} \cdot & 1 & 2 \\ \hline 1 & 2 & 1 \\ 2 & 2 & 1 \end{array}$$

and let $Z = \{3\}$ be the trivial left cycle sets. Let's try to construct the left cycle set $X = Y \cup Z$. Let's get togheter the two disjoint cycle sets and define a new operation on X such that X is a left cycle set. For example: A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

·	1	2	3
1	2	1	3
2	2	1	
3	1	2	3

You can only construct another one

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

·	1	2	3
1	2	1	3
2	2	1	3
3	1	2	3

You can only construct another one

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

·	1	2	3
1	2	1	3
2	2	1	3
3	1	2	3

You can only construct another one

•	1	2	3
1	2	1	3
2	2	1	
3	2	1	3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

·	1	2	3
1	2	1	3
2	2	1	3
3	1	2	3

You can only construct another one

•	1	2	3
1	2	1	3
2	2	1	3
3	2	1	3

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Problem

How is it possible to construct indecomposable non-degenerate left cycle sets?

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Definition

Let X be a non-degenerate left cycle set, and $\sigma : X \to Sym_X$, $x \mapsto \sigma_x$. We denote by $\mathcal{G}(X)$ the subgroup of Sym_X generated by the image $\sigma(X)$ of σ .

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

In literature it is known that

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A non-degenerate left cycle set X is indecomposable if and only if the associated permutation group $\mathcal{G}(X)$ is transitive on X.

Theorem (Rump, 2005)

Every square-free non-degenerate left cycle set is decomposable.

Recall that a non-degenerate left cycle set is square-free if $q: X \to X, x \mapsto x \cdot x$ is such that $q = id_X$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

In literature it is known that

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A non-degenerate left cycle set X is indecomposable if and only if the associated permutation group $\mathcal{G}(X)$ is transitive on X.

Theorem (Rump, 2005)

Every square-free non-degenerate left cycle set is decomposable.

Recall that a non-degenerate left cycle set is square-free if $q: X \to X, x \mapsto x \cdot x$ is such that $q = id_X$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

In literature it is known that

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A non-degenerate left cycle set X is indecomposable if and only if the associated permutation group $\mathcal{G}(X)$ is transitive on X.

Theorem (Rump, 2005)

Every square-free non-degenerate left cycle set is decomposable.

Recall that a non-degenerate left cycle set is square-free if $q: X \to X, x \mapsto x \cdot x$ is such that $q = id_X$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

In literature it is known that

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A non-degenerate left cycle set X is indecomposable if and only if the associated permutation group $\mathcal{G}(X)$ is transitive on X.

Theorem (Rump, 2005)

Every square-free non-degenerate left cycle set is decomposable.

Recall that a non-degenerate left cycle set is square-free if $q: X \to X$, $x \mapsto x \cdot x$ is such that $q = id_X$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

If X is finite and |X| = p with p a prime number. Every indecomposable non-degenerate left cycle set, up to isomorphism, is defined by $x \cdot y := \alpha(y)$ where $\alpha := (12 \dots p) \in Sym_X$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let X be the cycle set defined by

•	1	2	3
1	2	3	1
2	2	3	1
3	2	3	1

Then X is indecomposable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Moreover if $|X| \le 8$, by calculation, all indecomposable cycle sets have been found.

Problem

What about cycle sets of cardinality greater then 8?

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

A large family of indecomposable non-degenerate left cycle sets is obtained by Marco Castelli, Francesco Catino and G.P.

Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i)$, $\gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets A large family of indecomposable non-degenerate left cycle sets is obtained by Marco Castelli, Francesco Catino and G.P. Let A, B be non trivial sets and I a left cycle set,

 $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a,b,i)$, $\gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

・ロト・日本・日本・日本・日本・日本

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets A large family of indecomposable non-degenerate left cycle sets is obtained by Marco Castelli, Francesco Catino and G.P. Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i), \gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets A large family of indecomposable non-degenerate left cycle sets is obtained by Marco Castelli, Francesco Catino and G.P. Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i), \gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets A large family of indecomposable non-degenerate left cycle sets is obtained by Marco Castelli, Francesco Catino and G.P. Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i), \gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a,b,i) \cdot (c,d,j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Theorem (M. Castelli, F. Catino, G.P., 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

 $1) \ \gamma_a \gamma_b = \gamma_b \gamma_a,$

)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$

- 3) $\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$,
- 4) $\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Theorem (M. Castelli, F. Catino, G.P., 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

) $\beta_{(a,c,i)}=\beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)},$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$
,

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Theorem (M. Castelli, F. Catino, G.P., 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1) $\gamma_a \gamma_b = \gamma_b \gamma_a$,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$
,

3) $\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$,

4) $\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$.

/

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Theorem (M. Castelli, F. Catino, G.P., 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)},$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$

4) $\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Theorem (M. Castelli, F. Catino, G.P., 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)},$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$
,

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Theorem (M. Castelli, F. Catino, G.P., 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$
,

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Now we give a characterization of the indecomposable non-degenerate left cycle sets $X := X(A, B, I, \beta, \gamma)$.

Definition

For every $i \in I$ let H_i be the subgroup of $\mathcal{G}(X)$ given by

 $H_i := \{h \in \mathcal{G}(X) | h(a, b, i) \in A \times B \times \{i\} \forall a \in A, b \in B\}.$

Proposition (M. Castelli, F. Catino, G.P., in preparation)

X is indecomposable if and only if I is indecomposable and H_i is transitive on $A \times B \times \{i\}$ for every $i \in I$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Now we give a characterization of the indecomposable non-degenerate left cycle sets $X := X(A, B, I, \beta, \gamma)$.

Definition

For every $i \in I$ let H_i be the subgroup of $\mathcal{G}(X)$ given by

 $H_i := \{h \in \mathcal{G}(X) | h(a, b, i) \in A \times B \times \{i\} \forall a \in A, b \in B\}.$

Proposition (M. Castelli, F. Catino, G.P., in preparation)

X is indecomposable if and only if I is indecomposable and H_i is transitive on $A \times B \times \{i\}$ for every $i \in I$.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets Now we give a characterization of the indecomposable non-degenerate left cycle sets $X := X(A, B, I, \beta, \gamma)$.

Definition

For every $i \in I$ let H_i be the subgroup of $\mathcal{G}(X)$ given by

 $H_i := \{h \in \mathcal{G}(X) | h(a, b, i) \in A \times B \times \{i\} \forall a \in A, b \in B\}.$

Proposition (M. Castelli, F. Catino, G.P., in preparation)

X is indecomposable if and only if I is indecomposable and H_i is transitive on $A \times B \times \{i\}$ for every $i \in I$.

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let $A = B := \mathbb{Z}/2\mathbb{Z}$, $I := \{1, 2, 3\}$ be the indecomposable non-degenerate left cycle set defined by $\sigma_1 = \sigma_2 = \sigma_3 := (123)$, $\gamma_a := t_{-a-1}$ for every $a \in A$ and

$$\beta_{(a,a,i)} = id_A \qquad \beta_{(a,b,i)} := (12)$$

for all $a, b \in A$, $a \neq b$, $i \in I$.

 $H_{i} = <\{\sigma_{(a,b,j)}\sigma_{(c,d,k)}\sigma_{(e,f,t)}|a,c,e \in A, \ b,d,f \in B, \ j,k,t \in I\} >$

for every $i \in I$. Then X is an indecomposable non-degenerate left cycle set of cardinality 12.

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let $A = B := \mathbb{Z}/2\mathbb{Z}$, $I := \{1, 2, 3\}$ be the indecomposable non-degenerate left cycle set defined by $\sigma_1 = \sigma_2 = \sigma_3 := (123)$, $\gamma_a := t_{-a-1}$ for every $a \in A$ and

$$\beta_{(a,a,i)} = id_A \qquad \beta_{(a,b,i)} := (12)$$

for all $a, b \in A$, $a \neq b$, $i \in I$. $H_i = \langle \{\sigma_{(a,b,j)}\sigma_{(c,d,k)}\sigma_{(e,f,t)} | a, c, e \in A, b, d, f \in B, j, k, t \in I\} \rangle$ for every $i \in I$. Then X is an indecomposable non-degenerate left cycle set of cardinality 12.

A new construction of indecomposable solutions of the Yang-Baxter equation

Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

Example

Let $A = B := \mathbb{Z}/2\mathbb{Z}$, $I := \{1, 2, 3\}$ be the indecomposable non-degenerate left cycle set defined by $\sigma_1 = \sigma_2 = \sigma_3 := (123)$, $\gamma_a := t_{-a-1}$ for every $a \in A$ and

$$eta_{(a,a,i)} = i d_A \qquad eta_{(a,b,i)} := (12)$$

for all $a, b \in A$, $a \neq b$, $i \in I$.

 $H_i = <\{\sigma_{(a,b,j)}\sigma_{(c,d,k)}\sigma_{(e,f,t)}| a, c, e \in A, \ b, d, f \in B, \ j, k, t \in I\} >$

for every $i \in I$.

Then X is an indecomposable non-degenerate left cycle set of cardinality 12.

A new construction of indecomposable solutions of the Yang-Baxter equation

> Giuseppina Pinto

Indecomposable solutions of the Yang-Baxter equation

A caratterization of indecomposable cycle sets

THANKS FOR YOUR ATTENTION!