Groups with a Frobenius group of automorphisms A bound for their nilpotency class

Valentina lusa

University of Lincoln

YRAC, Napoli - 23 May 2017

Introduction

- Brief refresher
- Basic Setup
- 2 Context and previous results Previous results

More about the nilpotency class Abelian Frobenius kernels

Frobenius group

A finite *Frobenius group FH*, with kernel *F* and complement *H*, is a semidirect product of a normal subgroup *F* and a subgroup *H* such that $C_F(h) = 1$, for all $1 \neq h \in H$;

- the kernel F is nilpotent (Thompson);
- its nilpotentcy class $c(F) \le h(p)$, where p is the least prime dividing |H| (Higman-Kreknin-Kostrikin);
- all Sylow subgroups of the complement *H* are cyclic or generalized quaternion;

etc.

Examples: S₃, D_n (for odd n), $\mathbb{F}_q \rtimes \mathbb{F}_q^*$ for every finite field \mathbb{F}_q , ...

Basic Setup

Frobenius group of automorphisms

Let G be a finite group admitting a Frobenius group of automorphisms $FH \leq Aut(G)$, with kernel F and complement H.

- *G* is soluble (Belyaev and Hartley);
- if |F| is a prime p, then G is nilpotent of nilpotency class

$$\frac{p^2 - 1}{4} \le h(p) < \frac{(p - 1)^{2^{p - 1} - 1}}{p - 2}$$

Basic Setup

Frobenius group of automorphisms

Let G be a finite group admitting a Frobenius group of automorphisms $FH \leq Aut(G)$, with kernel F and complement H.

The kernel acts *fixed-point-freely*:

$$C_G(F) = \left\{ g \in G : g^f = g, \ \forall f \in F \right\} = 1.$$

• G^{\downarrow} is soluble (Belyaev and Hartley);

• if |F| is a prime p, then G is nilpotent of nilpotency class c(G) < h(p) (Higman-Kreknin-Kostrikin)

$$\frac{p^2-1}{4} \le h(p) < \frac{(p-1)^{2^{p-1}-1}}{p-2}$$

Basic Setup

Frobenius group of automorphisms

Let G be a finite group admitting a Frobenius group of automorphisms $FH \leq Aut(G)$, with kernel F and complement H.

The kernel acts *fixed-point-freely*:

$$C_G(F) = \left\{ g \in G : g^f = g, \forall f \in F \right\} = 1.$$

• G^{\downarrow} is soluble (Belyaev and Hartley);

• if |F| is a prime p, then G is nilpotent of nilpotency class c(G) < h(p) (Higman-Kreknin-Kostrikin)

$$\frac{p^2-1}{4} \le h(p) < \frac{(p-1)^{2^{p-1}-1}}{p-2}$$

Lie ring Methods

Previous results

A bound for the nilpotency class in terms of $C_G(H)$

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with cyclic kernel F and complement H, such that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class c. Then G is nilpotent of class (c, |H|)-bounded.

- the bound is exponential in |*H*| and *c*;
- Lie ring method+combinatorial tools;
- similar result for a Lie ring under the same hypotheses;
- $C_G(H)$ nilpotent, $C_G(F) = 1$ $\implies G$ nilpotent.

Questions:

- 1) Is the condition on the cyclic Frobenius kernel necessary?
- Does the nilpotency class of the group really depend on the order of *H*?

Previous results

A bound for the nilpotency class in terms of $C_G(H)$

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with cyclic kernel F and complement H, such that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class c. Then G is nilpotent of class (c, |H|)-bounded.

- the bound is exponential in |*H*| and *c*;
- Lie ring method+combinatorial tools;
- similar result for a Lie ring under the same hypotheses;
- $C_G(H)$ nilpotent, $C_G(F) = 1$ $\implies G$ nilpotent.

Questions:

- 1) Is the condition on the cyclic Frobenius kernel necessary?
- Does the nilpotency class of the group really depend on the order of *H*?

Previous results

A bound for the nilpotency class in terms of $C_G(H)$

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with cyclic kernel F and complement H, such that $C_G(F) = 1$ and $C_G(H)$ is nilpotent of class c. Then G is nilpotent of class (c, |H|)-bounded.

- the bound is exponential in |*H*| and *c*;
- Lie ring method+combinatorial tools;
- similar result for a Lie ring under the same hypotheses;
- $C_G(H)$ nilpotent, $C_G(F) = 1$ $\implies G$ nilpotent.

Questions:

- 1) Is the condition on the cyclic Frobenius kernel necessary?
- Does the nilpotency class of the group really depend on the order of *H*?

Two examples

$$L = \frac{\mathbb{Z}}{p^m \mathbb{Z}} \oplus \frac{\mathbb{Z}}{p^m \mathbb{Z}} \oplus \frac{\mathbb{Z}}{p^m \mathbb{Z}}$$

generated respectively by e_1 , e_2 , e_3 .

$$\begin{split} [e_1,e_2] &= p e_3, \, [e_2,e_3] = p e_1, \\ [e_3,e_1] &= p e_2. \end{split}$$

$$F = \{1, f_1, f_2, f_3\} \qquad \begin{array}{l} H = ,\\ o(h) = 3. \end{array}$$

$$f_i(e_j) = \begin{cases} e_i, i = j & h(e_j) = e_{j+1(mod 3)} \\ -e_j, i \neq j \end{cases}$$

 $C_L(F) = 0,$ $C_L(H)$ is abelian.

c(L) = m

L = 3-dimensional Lie algebra over \mathbb{K} $(ch(\mathbb{K}) \neq 2)$, generated by e_1 , e_2 , e_3 .

$$[e_1,e_2]=e_3,\, [e_2,e_3]=e_1,\, [e_3,e_1]=e_2.$$

$$F = \{1, f_1, f_2, f_3\} \qquad \begin{array}{l} H = ,\\ o(h) = 3. \end{array}$$

$$f_i(e_j) = \begin{cases} e_i, i = j \\ -e_j, i \neq j \end{cases} \quad h(e_j) = e_{j+1 \pmod{3}} \end{cases}$$

 $C_L(F) = 0,$ $C_L(H)$ is abelian.

Valentina lusa (University of Lincoln) Groups with a Frobenius group of automorphi YRAC, Napoli - 23 May 2017 6 / 9

Two examples

$$L = \frac{\mathbb{Z}}{p^m \mathbb{Z}} \oplus \frac{\mathbb{Z}}{p^m \mathbb{Z}} \oplus \frac{\mathbb{Z}}{p^m \mathbb{Z}}$$

generated respectively by e_1 , e_2 , e_3 .

$$[e_1, e_2] = pe_3, [e_2, e_3] = pe_1,$$

 $[e_3, e_1] = pe_2.$

$$F = \{1, f_1, f_2, f_3\} \qquad \begin{array}{l} H = ,\\ o(h) = 3. \end{array}$$

$$f_i(e_j) = egin{cases} e_i, \ i=j & h(e_j) = e_{j+1(mod \ 3)} \ -e_j, i
eq j \end{cases}$$

 $C_L(F) = 0,$ $C_L(H)$ is abelian.

c(L) = m

L = 3-dimensional Lie algebra over \mathbb{K} ($ch(\mathbb{K}) \neq 2$), generated by e_1 , e_2 , e_3 .

$$[e_1,e_2]=e_3,\,[e_2,e_3]=e_1,\,[e_3,e_1]=e_2.$$

$$F = \{1, f_1, f_2, f_3\} \qquad \begin{array}{l} H = , \\ o(h) = 3. \end{array}$$

$$f_i(e_j) = \begin{cases} e_i, i = j \\ -e_j, i \neq j \end{cases} \quad h(e_j) = e_{j+1 \pmod{3}}$$

 $C_L(F) = 0,$ $C_L(H)$ is abelian.

Valentina lusa (University of Lincoln) Groups with a Frobenius group of automorphi YRAC, Napoli - 23 May 2017 6 / 9

A preliminary result for graded Lie rings

Proposition

Let A be a finite abelian group. Let $L = \bigoplus_{a \in A} L_a$ be an A-graded Lie ring which satisfies the following properties:

1
$$L_0 = 0;$$

② there exists a natural number *m* such that $| \{N_a\} | = | \{b \in A : [L_b, L_a] \neq 0\} | \le m$ for all $a \in A$ (*m*-condition);

• the number m < p, where p is the least prime divisor of |A|.

Then L is nilpotent of (m, |A|)-bouded class.

• prove that *L* is soluble, the nilpotency class will be shown by induction on the derived length;

• solubility proved by induction on the rank of A;

A preliminary result for graded Lie rings

Proposition

Let A be a finite abelian group. Let $L = \bigoplus_{a \in A} L_a$ be an A-graded Lie ring which satisfies the following properties:

1
$$L_0 = 0;$$

② there exists a natural number *m* such that $| \{N_a\} | = | \{b \in A : [L_b, L_a] \neq 0\} | \le m$ for all $a \in A$ (*m*-condition);

• the number m < p, where p is the least prime divisor of |A|.

Then L is nilpotent of (m, |A|)-bouded class.

- prove that *L* is soluble, the nilpotency class will be shown by induction on the derived length;
- solubility proved by induction on the rank of A;

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with abelian kernel F and complement H. Suppose that F acts coprimely on G in such a manner that $C_G(F)$ is trivial and $C_G(H)$ is abelian. If $|H|^2$ is less than the least prime divisor of |F|, then G is nilpotent of (|F|, |H|)-bounded class.

Proof.

- I construction of the associated Lie ring L;
- (a) observe that $L = \bigoplus_{\chi \in \hat{F}} L_{\chi}$, and $L_0 = C_L(F) = 0$;
- the Frobenius group *FH* on *L*, the action of *H* on the homogeneous components;
- I satisfies the *m*-condition, where m = |H|(|H| 1).

... the result follows from the previous proposition.

Valentina Iusa (University of Lincoln) Groups with a Frobenius group of automorphi YRAC, Napoli - 23 May 2017 8 / 9

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with abelian kernel F and complement H. Suppose that F acts coprimely on G in such a manner that $C_G(F)$ is trivial and $C_G(H)$ is abelian. If $|H|^2$ is less than the least prime divisor of |F|, then G is nilpotent of (|F|, |H|)-bounded class.

Proof.

- construction of the associated Lie ring L;
- 3 observe that $L = \bigoplus_{\chi \in \hat{F}} L_{\chi}$, and $L_0 = C_L(F) = 0$;
- the Frobenius group *FH* on *L*, the action of *H* on the homogeneous components;
- L satisfies the *m*-condition, where m = |H|(|H| 1).

... the result follows from the previous proposition.

Valentina lusa (University of Lincoln) Groups with a Frobenius group of automorphi YRAC, Napoli - 23 May 2017 8 / 9

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with abelian kernel F and complement H. Suppose that F acts coprimely on G in such a manner that $C_G(F)$ is trivial and $C_G(H)$ is abelian. If $|H|^2$ is less than the least prime divisor of |F|, then G is nilpotent of (|F|, |H|)-bounded class.

Proof.

- construction of the associated Lie ring L;
- 3 observe that $L = \bigoplus_{\chi \in \hat{F}} L_{\chi}$, and $L_0 = C_L(F) = 0$;
- the Frobenius group FH on L, the action of H on the homogeneous components;
- L satisfies the *m*-condition, where m = |H|(|H| 1).

... the result follows from the previous proposition.

Valentina lusa (University of Lincoln) Groups with a Frobenius group of automorphi YRAC, Napoli - 23 May 2017 8 / 9

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with abelian kernel F and complement H. Suppose that F acts coprimely on G in such a manner that $C_G(F)$ is trivial and $C_G(H)$ is abelian. If $|H|^2$ is less than the least prime divisor of |F|, then G is nilpotent of (|F|, |H|)-bounded class.

Proof.

- construction of the associated Lie ring L;
- 3 observe that $L = \bigoplus_{\chi \in \hat{F}} L_{\chi}$, and $L_0 = C_L(F) = 0$;
- (a) the Frobenius group $\hat{F}H$ on L, the action of H on the homogeneous components;
- L satisfies the *m*-condition, where m = |H|(|H| 1).
- ...the result follows from the previous proposition.

Theorem

Let G be a finite group admitting a Frobenius group of automorphisms FH, with abelian kernel F and complement H. Suppose that F acts coprimely on G in such a manner that $C_G(F)$ is trivial and $C_G(H)$ is abelian. If $|H|^2$ is less than the least prime divisor of |F|, then G is nilpotent of (|F|, |H|)-bounded class.

Proof.

- construction of the associated Lie ring L;
- 3 observe that $L = \bigoplus_{\chi \in \hat{F}} L_{\chi}$, and $L_0 = C_L(F) = 0$;
- (a) the Frobenius group $\hat{F}H$ on L, the action of H on the homogeneous components;
- L satisfies the *m*-condition, where m = |H|(|H| 1).

...the result follows from the previous proposition.

Thank you