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Let G be a �nite group and let g ∈ G be an element. The conjugacy map

cg is the automorphism of G de�ned as:

cg : G→ G x 7→ xg := g−1xg

The set Inn(G):= {cg : G→ G | g ∈ G} is a group with composition,

called the group of Inner Automorphisms of G.

De�nition

Two subgroups P,Q ≤ G are fused in G if there exists an element g ∈ G
such that P g = Q (recall P g = {xg|x ∈ P}).

De�nition

Let p be a prime and let S be a Sylow p-subgroup of G. The fusion

category of G on S is the category FS(G) whose objects are the subgroups

of S and whose morphism sets are:

MorFS(G)(P,Q) = {cg|P : P → Q|g ∈ G,P g ≤ Q},

for every P,Q ≤ S.
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Pick a p-group S.

Pick a �nite group G such that S ∈ Sylp(G).

D8

a3x

ax
a2

x

a2x

a

a3

1

S = D8

D8 := 〈a, x | a4 = x2 = 1, ax = a3〉

Consider the conjugation maps

by elements g ∈ G, that fuse

some elements/subgroups of S.

fusion is determined by Inn(D8)

G = D8G = Sym(4)

a = (1234), x = (13).

b = (123)

(a2)b = ((13)(24))(123) = (12)(34) = ax

S4

b

E

fusion is determined by

Inn(D8) and Aut(E) ∼= SL2(2) ∼= S3

G = A6

a = (1234)(56), x = (13)(56).

c = (25)(46)

A6

c

(a2)c = ((13)(24))(25)(46)

= (13)(56) = x

fusion is determined by

Inn(D8), Aut(E) and Aut(P )

E P

How many ways to fuse elements of D8?

−FD8
(D8) (no essential subgroups)

−FD8
(S4) (E essential)

−FD8(A6) (E and P essential)
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Let p be a prime and let S be a p-group. Choose a collection of morphisms

between subgroups of S that "behave" as conjugation maps.

De�nition (Fusion System)

A Fusion System F on S is a category whose objects are the subgroups of

S as and with morphisms Mor(F) ⊆
⋃
P,Q≤S Inj(P,Q) such that

1 Inn(S) ⊆ Mor(F),
2 Mor(F) is closed with respect to restriction and inversion.

A Fusion System over the p-group S is Saturated if it satis�es certain extra
properties (Sylow and extension properties).

If S ∈ Sylp(G) then the fusion category FS(G) is a saturated fusion system on S.

If F is a saturated fusion system on S and there is no �nite group G such that
S ∈ Sylp(G) and F = FS(G), then F is called exotic.

Alperin-Goldschmidt Fusion Theorem

Let F be a Saturated Fusion System over the p-group S. Then F is completely
determined by the automorphism group of certain subgroups of S, called Essential
Subgroups.
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Let S = D8. E and P are the only subgroups of S that can be essential

and E ∼= P ∼= C2 × C2.

D8

a3x

ax
a2

x

a2x

a

a3

1

E P

Question

Suppose that F is a saturated fusion system on a p-group S and there

exists an essential subgroup E of S such that E ∼= Cp × Cp. What can we

say about F and S?
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Pearls

Let F be a saturated fusion system on the p-group S.

De�nition

A pearl is an essential subgroup E of S that is either elementary abelian of

order p2 (E ∼= Cp × Cp) or non-abelian of order p3 and exponent p.

Recall: A p-group P has exponent p if for every x ∈ P we have xp = 1.
A p-group P is elementary abelian if it is abelian and has exponent p
(P ∼= Cp × Cp × · · · × Cp).

Note that pearls are the smallest candidates for abelian and non-abelian

essential subgroups of a p-group.
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A pearl is an essential subgroup E of S that is either elementary abelian of

order p2 (E ∼= Cp × Cp) or non-abelian of order p3 and exponent p.

Fact: essential subgroups are self-centralizing

If E is an essential subgroup of S then

CS(E) = {x ∈ S|ex = xe for every e ∈ E} ≤ E.

Theorem (Suzuki): If a p-group S contains a subgroup E of order p2 such

that CS(E) = E then S has maximal nilpotency class.

Theorem

If a p-group S contains a pearl then S has maximal nilpotency class.
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p-groups having maximal nilpotency class

Let G be a �nite group.

Lower central series of G: G2 := [G,G], Gi := [Gi−1, G] for every i ≥ 3.

Upper central series of G: Z1(G) := Z(G), Zi(G) ≤ G is such that

Zi(G)/Zi−1(G) = Z(G/Zi−1(G)) for every i ≥ 2.

G is nilpotent if there exists t ∈ N such that Gt+1 = 1 (equivalently

Zt(G) = G), and the smallest t with this property is the nilpotency class of

G.

Every �nite p-group is nilpotent. A p-group S of order pn having

nilpotency class n− 1 is said to have maximal nilpotency class.
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p-groups having maximal nilpotency class

1 = Sn

Z1 = Sn−1

Z2 = Sn−2

Zn−3 = S3

Zn−2 = S2

S = Zn−1

Zn−4 = S4

Let S be a p-group having order pn and max-

imal nilpotency class. Then

Zi(S) = Sn−i for every 1 ≤ i ≤ n− 2,
Zn−1(S) = S and Sn = 1;

|Z1(S)| = p, [Zi(S) : Zi−1(S)] = p for

every 1 ≤ i ≤ n− 2 and

S/Zn−2 ∼= Cp × Cp;

for every i ≥ 2, the group Si is the only

normal subgroup of S of order pn−i.
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p-groups having maximal nilpotency class

1 = Sn

Z1 = Sn−1

Z2 = Sn−2

Zn−3 = S3

Zn−2 = S2

S = Zn−1

S1

Zn−4 = S4

M CS(Z2(S))

Set S1 := CS(S2/S4) =
= {x ∈ S | [x, g] ∈ S4 for every g ∈ S2}.

Properties of S1:

S2 ≤ S1;
[S : S1] = [S1 : S2] = p;

S1 is characteristic in S; and

S1 = CS(Si/Si+2) for every
2 ≤ i ≤ n− 3.

Another maximal subgroup of S is the

group CS(Sn−2) = CS(Z2(S)), that

might coincide with S1.

Every other maximal subgroup of S has

maximal nilpotency class.
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Let p be a prime and let F be a saturated fusion system on the p-group S.

De�nition

A pearl is an essential subgroup E of S that is either elementary abelian of

order p2 (E ∼= Cp × Cp) or non-abelian of order p3 and exponent p.

Theorem

If a p-group S contains a pearl then S has maximal nilpotency class.

(Using the fact that essential subgroups are self-centralizing)

If p = 2 then S is either dihedral or semi-dihedral or generalized quaternion

and F is known. (Harada, Oliver).

From now on we assume that p is odd. In particular, if E is a pearl then

either E ∼= Cp × Cp or

E ∼= p1+2
+ =


1 0 0
a 1 0
b c 1

 |a, b, c ∈ GF(p)

 ≤ SL3(p)
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Structure of a p-group containing an abelian pearl

1 = Sn

Z1

Z2

S3

S2

S

S1

Z3

M

CS(E) = E

NS(E)

NS(NS(E))

λ−1

λ

λ2

λ3

λn−2

λn−1

Suppose E ∼= Cp×Cp is an essential subgroup
of the p-group S. Then:

CS(E) = E;

there exists an automorphism ϕ of S
(ϕ ∈ AutF (S))) normalizing E such

that

ϕ|E =

(
λ−1 0
0 λ

)
,

for some λ ∈ GF(p) having order p− 1.

So if E = 〈e〉 × 〈z〉, with z ∈ Z1, then

eϕ = eλ
−1

and zϕ = zλ.

Note that ϕ acts on every Si as
described by the picture.
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Let p be an odd prime and let F be a saturated fusion system on the

p-group S containing a pearl.

Theorem 1

Suppose that S has sectional rank

k (every subgroup of S can be

generated by at most k elements).

Then p ≥ k ≥ 2 and one of the

following holds:

|S| = pk+1, S1 is elementary

abelian and F is known

(Craven, Oliver, Semeraro);

p = k + 1;

k ≥ 3, k + 3 ≤ p ≤ 2k + 1
and S has exponent p and

|S| ≤ pp−1.

Theorem 2

Suppose that S has sectional rank

k = 3 (every subgroup of S can be

generated by at most 3 elements).

Then p ≥ 3 and one of the

following holds:

|S| = p4, S ∈ Sylp(Sp4(p))
and F is known (Craven,

Oliver, Semeraro);

p = 3 + 1 (impossible);

p = 7, S ∼= SmallGroup(75, 37)
(has order 75 and exponent 7)
and F is simple and exotic.
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generated by at most k elements).
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Theorem 2

Let p be an odd prime and let F be

a saturated fusion system on the

p-group S containing a pearl E.

Suppose that S has sectional rank

k = 3 (every subgroup of S can be

generated by at most 3 elements).

Then p ≥ 3 and one of the

following holds:

|S| = p4, S ∈ Sylp(Sp4(p))
and F is known (Craven,

Oliver, Semeraro);

p = 7, S ∼= SmallGroup(75, 37)
(has order 75 and exponent 7),
E ∼= C7 × C7 and F is simple

and exotic.

E

S = SmallGroup(75, 37)

Z(S)
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Theorem 2

Let p be an odd prime and let F be

a saturated fusion system on the

p-group S containing a pearl.

Suppose that S has sectional rank

k = 3 (every subgroup of S can be

generated by at most 3 elements).

Then p ≥ 3 and one of the

following holds:

|S| = p4, S ∈ Sylp(Sp4(p))
and F is known (Craven,

Oliver, Semeraro);

p = 7, S ∼= SmallGroup(75, 37)
(has order 75 and exponent 7),
E ∼= C7 × C7 and F is simple

and exotic.

Theorem 3

Let p be an odd prime, p ≥ 5, let F
be a simple fusion system on the

p-group S and suppose that S has

sectional rank k = 3.
Then F contains a pearl (and so F
and S are as described in Theorem

2).

Valentina Grazian Fusion and Pearls YRAC 2017 15 / 16



Grazie.
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