Systems of Equations in Nilpotent Groups

Albert Garreta (joint results with Alexei Miasnikov and Denis Ovchinnikov)

University of the Basque Country

Napoli, May 2016

• $\mathcal{D}(A)$ denotes the *Diophantine problem* over a structure A (e.g. a group or a ring).

- $\mathcal{D}(A)$ denotes the *Diophantine problem* over a structure A (e.g. a group or a ring).
- $\mathcal{D}(A)$ is decidable or undecidable.

- $\mathcal{D}(A)$ denotes the *Diophantine problem* over a structure A (e.g. a group or a ring).
- $\mathcal{D}(A)$ is decidable or undecidable.
- Hilbert's 10th Problem: $\mathcal{D}(\mathbb{Z},+,\cdot)$ is undecidable (Davis, Matiyasevich, Putnam, Robinson, 1970).

- $\mathcal{D}(A)$ denotes the *Diophantine problem* over a structure A (e.g. a group or a ring).
- $\mathcal{D}(A)$ is decidable or undecidable.
- Hilbert's 10th Problem: $\mathcal{D}(\mathbb{Z},+,\cdot)$ is undecidable (Davis, Matiyasevich, Putnam, Robinson, 1970).
- $\mathcal{D}(F,\cdot)$ is decidable (Makanin, 1983).

- \$\mathcal{D}(A)\$ denotes the Diophantine problem over a structure A
 (e.g. a group or a ring).
- $\mathcal{D}(A)$ is decidable or undecidable.
- Hilbert's 10th Problem: $\mathcal{D}(\mathbb{Z},+,\cdot)$ is undecidable (Davis, Matiyasevich, Putnam, Robinson, 1970).
- $\mathcal{D}(F,\cdot)$ is decidable (Makanin, 1983).
- Decidability of $\mathcal{D}(\mathbb{Q},+,\cdot)$ is an open problem.

- $\mathcal{D}(A)$ denotes the *Diophantine problem* over a structure A (e.g. a group or a ring).
- $\mathcal{D}(A)$ is decidable or undecidable.
- Hilbert's 10th Problem: $\mathcal{D}(\mathbb{Z},+,\cdot)$ is undecidable (Davis, Matiyasevich, Putnam, Robinson, 1970).
- $\mathcal{D}(F,\cdot)$ is decidable (Makanin, 1983).
- Decidability of $\mathscr{D}(\mathbb{Q},+,\cdot)$ is an open problem.

Initial question

When is $\mathcal{D}(G)$ decidable, for G nilpotent?

• Let G be a group. Define $[x, y] = x^{-1}y^{-1}xy$.

- Let G be a group. Define $[x, y] = x^{-1}y^{-1}xy$.
- $G_1(G) = G$, $G_2 = [G, G]$, ..., $G_k = [G_{k-1}, G]$.

- Let G be a group. Define $[x, y] = x^{-1}y^{-1}xy$.
- $G_1(G) = G$, $G_2 = [G, G]$, ..., $G_k = [G_{k-1}, G]$.
- *G* is *nilpotent* if $G_k = 1$ for some k.

- Let G be a group. Define $[x, y] = x^{-1}y^{-1}xy$.
- $G_1(G) = G$, $G_2 = [G, G]$, ..., $G_k = [G_{k-1}, G]$.
- *G* is *nilpotent* if $G_k = 1$ for some k.
- That is, for some k, all commutators of length k, $[g_1, {}^k, \ldots, g_k] = [\ldots [[[g_1, g_2], g_3], g_4], \ldots, g_k]$ are trivial.

• There exists a 4-nilpotent group G such that $\mathcal{D}(G)$ is undecidable (Roman'kov, 1974).

- There exists a 4-nilpotent group G such that $\mathcal{D}(G)$ is undecidable (Roman'kov, 1974).
- $\mathcal{D}(G)$ is undecidable in any free nonabelian nilpotent group G. (Duchin, Liang, Shapiro, 2014).

- There exists a 4-nilpotent group G such that $\mathcal{D}(G)$ is undecidable (Roman'kov, 1974).
- $\mathcal{D}(G)$ is undecidable in any free nonabelian nilpotent group G. (Duchin, Liang, Shapiro, 2014).

Single equations:

 Single equations are decidable in any free 2-step nilpotent group. (Duchin, Liang, Shapiro, 2014).

- There exists a 4-nilpotent group G such that $\mathcal{D}(G)$ is undecidable (Roman'kov, 1974).
- $\mathcal{D}(G)$ is undecidable in any free nonabelian nilpotent group G. (Duchin, Liang, Shapiro, 2014).

Single equations:

- Single equations are decidable in any free 2-step nilpotent group. (Duchin, Liang, Shapiro, 2014).
- Hence single equations and systems of equations are 'essentially different' in nilpotent groups. This is not the case for $(\mathbb{Z},+,\cdot)$, for example.

• Let $x \in \mathbb{R}$. Then $x \in \mathbb{R}_{>0}$ iff $x = y^2$ for some $y \in \mathbb{R}$.

- Let $x \in \mathbb{R}$. Then $x \in \mathbb{R}_{>0}$ iff $x = y^2$ for some $y \in \mathbb{R}$.
- Let $x \in \mathbb{Z}$. Then $x \in \mathbb{N}$ iff $x = y_1^2 + \cdots + y_4^2$ for some $y_i \in \mathbb{Z}$.

- Let $x \in \mathbb{R}$. Then $x \in \mathbb{R}_{>0}$ iff $x = y^2$ for some $y \in \mathbb{R}$.
- Let $x \in \mathbb{Z}$. Then $x \in \mathbb{N}$ iff $x = y_1^2 + \cdots + y_4^2$ for some $y_i \in \mathbb{Z}$.

Definition

• $R \subseteq G$ (or $\subseteq G^n$) is *e*-definable in G if " $g \in R$ " can be expressed as a system over G:

$$g \in R \Leftrightarrow \exists \vec{y} \ S(g, \vec{y}) = 1.$$

- Let $x \in \mathbb{R}$. Then $x \in \mathbb{R}_{>0}$ iff $x = y^2$ for some $y \in \mathbb{R}$.
- Let $x \in \mathbb{Z}$. Then $x \in \mathbb{N}$ iff $x = y_1^2 + \cdots + y_4^2$ for some $y_i \in \mathbb{Z}$.

Definition

• $R \subseteq G$ (or $\subseteq G^n$) is *e*-definable in G if " $g \in R$ " can be expressed as a system over G:

$$g \in R \Leftrightarrow \exists \vec{y} \ S(g, \vec{y}) = 1.$$

• An operation \odot in R is *e-definable* in G if " $\vec{z} = \vec{x} \odot \vec{y}$," can be expressed as a system over G.

Definition

• A ring $(R, +, \cdot)$ (or a structure) is *e-definable in G* if $R \subseteq G^n$, and $R, +, \cdot$ are *e-definable* in G.

Definition

- A ring $(R, +, \cdot)$ (or a structure) is *e-definable in G* if $R \subseteq G^n$, and $R, +, \cdot$ are *e-definable* in G.
- If $(R, +, \cdot)$ is e-definable in G up to an e-definable equivalence relation, then $(R, +, \cdot)$ is e-interpretable in G.

Definition

- A ring $(R, +, \cdot)$ (or a structure) is *e-definable in G* if $R \subseteq G^n$, and $R, +, \cdot$ are *e-definable* in G.
- If $(R, +, \cdot)$ is e-definable in G up to an e-definable equivalence relation, then $(R, +, \cdot)$ is e-interpretable in G.

In both cases:

• $\mathcal{D}(R,+,\cdot)$ is reducible to $\mathcal{D}(G)$.

Definition

- A ring $(R, +, \cdot)$ (or a structure) is *e-definable in G* if $R \subseteq G^n$, and $R, +, \cdot$ are *e-definable* in G.
- If $(R, +, \cdot)$ is e-definable in G up to an e-definable equivalence relation, then $(R, +, \cdot)$ is e-interpretable in G.

In both cases:

- $\mathcal{D}(R,+,\cdot)$ is reducible to $\mathcal{D}(G)$.
- If $R = \mathbb{Z}$, then $\mathscr{D}(G)$ is undecidable, by the negative answer to Hilbert's 10th problem.

Rings of algebraic integers

Theorem (G., Miasnikov, Ovchinnikov)

Let G be a f.g. non-virtually abelian nilpotent group. Then there exists a ring of algebraic integers O that is e-interpretable in G.

Rings of algebraic integers

Theorem (G., Miasnikov, Ovchinnikov)

Let G be a f.g. non-virtually abelian nilpotent group. Then there exists a ring of algebraic integers O that is e-interpretable in G.

• Generalized Hilbert's 10th problem: Determine whether $\mathcal{D}(O)$ is decidable. It is conjectured it is not. Open problem in number theory.

Rings of algebraic integers

Theorem (G., Miasnikov, Ovchinnikov)

Let G be a f.g. non-virtually abelian nilpotent group. Then there exists a ring of algebraic integers O that is e-interpretable in G.

• Generalized Hilbert's 10th problem: Determine whether $\mathcal{D}(O)$ is decidable. It is conjectured it is not. Open problem in number theory.

Conjecture

 $\mathcal{D}(G)$ is undecidable for any f.g. non-virtually abelian nilpotent group G.

• The following is a bilinear map between abelian groups:

$$[\cdot,\cdot]: G/G' \times G/G' \to G'/G_3$$
$$[gG',hG'] \mapsto [g,h]G_3$$

• The following is a bilinear map between abelian groups:

$$[\cdot,\cdot]: G/G' \times G/G' \to G'/G_3$$
$$[gG',hG'] \mapsto [g,h]G_3$$

• The set of endomorphisms End(A) of an abelian group A, with the operations + and \circ , forms a non-commutative ring.

• The following is a bilinear map between abelian groups:

$$[\cdot,\cdot]: G/G' \times G/G' \to G'/G_3$$
$$[gG',hG'] \mapsto [g,h]G_3$$

- The set of endomorphisms End(A) of an abelian group A, with the operations + and \circ , forms a non-commutative ring.
- \mathcal{O} is constructed using subrings of End(G/G') and $End(G'/G_3)$.

 $\bullet \ [\cdot,\cdot]: \textit{G}/\textit{G}' \times \textit{G}/\textit{G}' \rightarrow \textit{G}'/\textit{G}_{3}, \ [\textit{gG}',\textit{hG}'] \mapsto [\textit{g},\textit{h}]\textit{G}_{3}.$

- $[\cdot,\cdot]:G/G'\times G/G'\to G'/G_3$, $[gG',hG']\mapsto [g,h]G_3$.
- One finds a certain subring R of both End(G/G') and $End(G'/G_3)$. It is called the maximal ring of scalars of $[\cdot,\cdot]$.

- $[\cdot,\cdot]:G/G'\times G/G'\to G'/G_3$, $[gG',hG']\mapsto [g,h]G_3$.
- One finds a certain subring R of both End(G/G') and $End(G'/G_3)$. It is called the maximal ring of scalars of $[\cdot, \cdot]$.

Definition

- $[\cdot,\cdot]: G/G' \times G/G' \rightarrow G'/G_3$, $[gG',hG'] \mapsto [g,h]G_3$.
- One finds a certain subring R of both End(G/G') and $End(G'/G_3)$. It is called the maximal ring of scalars of $[\cdot, \cdot]$.

Definition

A ring of scalars of a bilinear map $f: N \times N \to M$ between abelian groups is an integral domain R such that:

• R embeds in End(N) and in End(M).

- $[\cdot,\cdot]: G/G' \times G/G' \rightarrow G'/G_3$, $[gG',hG'] \mapsto [g,h]G_3$.
- One finds a certain subring R of both End(G/G') and $End(G'/G_3)$. It is called the maximal ring of scalars of $[\cdot, \cdot]$.

Definition

- R embeds in End(N) and in End(M).
- $f(\alpha x, y) = f(x, \alpha y) = \alpha f(x, y)$ for all $x, y \in \mathbb{N}$, $\alpha \in \mathbb{R}$.

- $[\cdot,\cdot]: G/G' \times G/G' \rightarrow G'/G_3$, $[gG',hG'] \mapsto [g,h]G_3$.
- One finds a certain subring R of both End(G/G') and $End(G'/G_3)$. It is called the *maximal ring of scalars of* $[\cdot, \cdot]$.

Definition

- R embeds in End(N) and in End(M).
- $f(\alpha x, y) = f(x, \alpha y) = \alpha f(x, y)$ for all $x, y \in N$, $\alpha \in R$.
- \mathbb{Z} is always a ring of scalars of f.

- $[\cdot,\cdot]:G/G'\times G/G'\to G'/G_3$, $[gG',hG']\mapsto [g,h]G_3$.
- One finds a certain subring R of both End(G/G') and $End(G'/G_3)$. It is called the maximal ring of scalars of $[\cdot, \cdot]$.

Definition

- R embeds in End(N) and in End(M).
- $f(\alpha x, y) = f(x, \alpha y) = \alpha f(x, y)$ for all $x, y \in \mathbb{N}$, $\alpha \in \mathbb{R}$.
- \mathbb{Z} is always a ring of scalars of f.
- O is constructed using R.

• Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.
- Groups G that satisfy one of the following equivalent conditions:

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.
- Groups G that satisfy one of the following equivalent conditions:
 - Any set of nilpotent subgroups of class *c* has a maximal element.

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.
- Groups G that satisfy one of the following equivalent conditions:
 - Any set of nilpotent subgroups of class c has a maximal element.
 - All abelian subgroups are finitely generated.

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.
- Groups G that satisfy one of the following equivalent conditions:
 - Any set of nilpotent subgroups of class c has a maximal element.
 - All abelian subgroups are finitely generated.
 - All solvable subgroups are polycyclic.

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.
- Groups G that satisfy one of the following equivalent conditions:
 - Any set of nilpotent subgroups of class c has a maximal element.
 - All abelian subgroups are finitely generated.
 - All solvable subgroups are polycyclic.

Additionally, G must contain a f.g. non-virtually abelian nilpotent group,

- Groups where one can e-interpret a f.g. non-virtually abelian nilpotent group.
- Example: F.g. metabelian groups G such that G/G_3 is non-virtually abelian.
- Groups G that satisfy one of the following equivalent conditions:
 - Any set of nilpotent subgroups of class c has a maximal element.
 - All abelian subgroups are finitely generated.
 - All solvable subgroups are polycyclic.

Additionally, G must contain a f.g. non-virtually abelian nilpotent group,

• Examples: Subgroups of GL(n, K) for K a ring of algebraic integers. Discrete solvable subgroups of $GL(n, \mathbb{R})$.

Grazie per l'attenzione!

Mila esker!