Marco Castelli

Young Researchers Algebra Conference

Naples, 23-24 May 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

> Marco Castelli

Definition (Rump, 2005)

Let X be a non-empty set and \cdot a binary operation on X. The pair (X, \cdot) is said a *left cycle set* if for all $x, y, z \in X$ it holds

 $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$

and left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, for every $x \in X$. We call (X, \cdot) non-degenerate if the squaring map

$$q: X \longrightarrow X, \ x \longmapsto x \cdot x$$

is bijective and it is said square-free if $q = id_X$.

> Marco Castelli

Definition (Rump, 2005)

Let X be a non-empty set and \cdot a binary operation on X. The pair (X, \cdot) is said a *left cycle set* if for all $x, y, z \in X$ it holds

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{1}$$

and left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, for every $x \in X$.

We call (X, \cdot) non-degenerate if the squaring map

$$q: X \longrightarrow X, \ x \longmapsto x \cdot x$$

is bijective and it is said square-free if $q = id_X$.

> Marco Castelli

Definition (Rump, 2005)

Let X be a non-empty set and \cdot a binary operation on X. The pair (X, \cdot) is said a *left cycle set* if for all $x, y, z \in X$ it holds

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \tag{1}$$

and left multiplication $\sigma_x : X \longrightarrow X, y \longmapsto x \cdot y$ is bijective, for every $x \in X$. We call (X, \cdot) non-degenerate if the squaring map

$$\mathfrak{q}: X \longrightarrow X, \ x \longmapsto x \cdot x$$

is bijective and it is said square-free if $q = id_X$.

> Marco Castelli

Example

If X is a non-empty set, then (X, \cdot) , where $m \cdot n := n$ for all $m, n \in X$, is a non-degenerate left cycle set.

Example

The left cycle set (\mathbb{Z}, \cdot) , where $m \cdot n := n - min\{m, 0\}$, is an example of degenerate left cycle set.

Theorem (Rump, 2005)

Every finite left cycle set is non-degenerate.

> Marco Castelli

Example

If X is a non-empty set, then (X, \cdot) , where $m \cdot n := n$ for all $m, n \in X$, is a non-degenerate left cycle set.

Example

The left cycle set (\mathbb{Z}, \cdot) , where $m \cdot n := n - min\{m, 0\}$, is an example of degenerate left cycle set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Rump, 2005)

Every finite left cycle set is non-degenerate.

> Marco Castelli

Example

If X is a non-empty set, then (X, \cdot) , where $m \cdot n := n$ for all $m, n \in X$, is a non-degenerate left cycle set.

Example

The left cycle set (\mathbb{Z}, \cdot) , where $m \cdot n := n - min\{m, 0\}$, is an example of degenerate left cycle set.

Theorem (Rump, 2005)

Every finite left cycle set is non-degenerate.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation on a set X is the pair (X, r), where the map $r : X \times X \to X \times X$ is such that

 $r_1r_2r_1 = r_2r_1r_2,$

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

Problem (Drinfield, 1992)

Find all set-theoretic solution of the Yang-Baxter equation.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation on a set X is the pair (X, r), where the map $r : X \times X \to X \times X$ is such that

 $r_1r_2r_1 = r_2r_1r_2,$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

Problem (Drinfield, 1992)

Find all set-theoretic solution of the Yang-Baxter equation.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called:

1) involutive if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

B) square-free if r(x,x) = (x,x) for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

B) square-free if r(x,x) = (x,x) for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

B) square-free if r(x,x) = (x,x) for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if
$$r(x,x) = (x,x)$$
 for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

> Marco Castelli

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if r(x, x) = (x, x) for every $x \in X$.

Convention: From now on, by a solution I mean a non-degenerate involutive set-theoretic solution.

> Marco Castelli

Theorem (Rump,2004)

Let (X, \cdot) be a non-degenerate left cycle set and $r : X \times X \longrightarrow X \times X$ given by $r(x, y) := (\lambda_x(y), \rho_y(x))$, where

$$\lambda_x(y) := \sigma_x^{-1}(y)$$
 and $\rho_y(x) := \sigma_x^{-1}(y) \cdot x$.

Then (X, r) is a solution of the Yang-Baxter equation and it is called **associated solution**.

Conversely, if (X, r) is a solution of the Yang-Baxter equation then the pair (X, \cdot) is a non-degenerate left cycle set, where the operation is given by $x \cdot y := \lambda_x^{-1}(y)$ for all $x, y \in X$.

> Marco Castelli

Theorem (Rump,2004)

Let (X, \cdot) be a non-degenerate left cycle set and $r : X \times X \longrightarrow X \times X$ given by $r(x, y) := (\lambda_x(y), \rho_y(x))$, where

$$\lambda_x(y) := \sigma_x^{-1}(y)$$
 and $\rho_y(x) := \sigma_x^{-1}(y) \cdot x.$

Then (X, r) is a solution of the Yang-Baxter equation and it is called associated solution.

Conversely, if (X, r) is a solution of the Yang-Baxter equation then the pair (X, \cdot) is a non-degenerate left cycle set, where the operation is given by $x \cdot y := \lambda_x^{-1}(y)$ for all $x, y \in X$.

> Marco Castelli

Theorem (Rump,2004)

Let (X, \cdot) be a non-degenerate left cycle set and $r : X \times X \longrightarrow X \times X$ given by $r(x, y) := (\lambda_x(y), \rho_y(x))$, where

$$\lambda_x(y) := \sigma_x^{-1}(y)$$
 and $\rho_y(x) := \sigma_x^{-1}(y) \cdot x$.

Then (X, r) is a solution of the Yang-Baxter equation and it is called associated solution.

Conversely, if (X, r) is a solution of the Yang-Baxter equation then the pair (X, \cdot) is a non-degenerate left cycle set, where the operation is given by $x \cdot y := \lambda_x^{-1}(y)$ for all $x, y \in X$.

> Marco Castelli

Theorem (Rump,2004)

Let (X, \cdot) be a non-degenerate left cycle set and $r : X \times X \longrightarrow X \times X$ given by $r(x, y) := (\lambda_x(y), \rho_y(x))$, where

$$\lambda_x(y) := \sigma_x^{-1}(y)$$
 and $ho_y(x) := \sigma_x^{-1}(y) \cdot x.$

Then (X, r) is a solution of the Yang-Baxter equation and it is called associated solution.

Conversely, if (X, r) is a solution of the Yang-Baxter equation then the pair (X, \cdot) is a non-degenerate left cycle set, where the operation is given by $x \cdot y := \lambda_x^{-1}(y)$ for all $x, y \in X$.

> Marco Castelli

> > Let X be a non-degenerate left cycle set and \sim the relation on X given by

$$x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$$

Then \sim is a congruence of X and X/\sim is a left cycle set whenever X is non-degenerate.

Definition

A left cycle set (X, \cdot) is said *irretractable* if $X = X / \sim$, otherwise X is called *retractable*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> Marco Castelli

> > Let X be a non-degenerate left cycle set and \sim the relation on X given by

$$x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$$

Then \sim is a congruence of X and X/\sim is a left cycle set whenever X is non-degenerate.

Definition

A left cycle set (X, \cdot) is said *irretractable* if $X = X / \sim$, otherwise X is called *retractable*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> Marco Castelli

> > Let (X, r) be a solution of the Yang-Baxter equation and \sim' the relation on X given by

$$x \sim' y : \Leftrightarrow \lambda_x = \lambda_y.$$

Proposition

Let (X, r) be a non-degenerate involutive solution of the Yang-Baxter equation and (X, \cdot) the associated left cycle set. Then $\sim = \sim'$.

So a solution is called irretractable (resp. retractable) if and only if the associated left cycle set is irretractable (resp. retractable).

> Marco Castelli

> > Let (X, r) be a solution of the Yang-Baxter equation and \sim' the relation on X given by

$$x \sim' y :\Leftrightarrow \lambda_x = \lambda_y.$$

Proposition

Let (X, r) be a non-degenerate involutive solution of the Yang-Baxter equation and (X, \cdot) the associated left cycle set. Then $\sim = \sim'$.

So a solution is called irretractable (resp. retractable) if and only if the associated left cycle set is irretractable (resp. retractable).

> Marco Castelli

> > Let (X, r) be a solution of the Yang-Baxter equation and \sim' the relation on X given by

$$x \sim' y : \Leftrightarrow \lambda_x = \lambda_y.$$

Proposition

Let (X, r) be a non-degenerate involutive solution of the Yang-Baxter equation and (X, \cdot) the associated left cycle set. Then $\sim = \sim'$.

So a solution is called irretractable (resp. retractable) if and only if the associated left cycle set is irretractable (resp. retractable).

> Marco Castelli

Example

Let X be a non-empty set and $\alpha \in Sym(X)$. Let \cdot be the binary operation on X given by

$$x \cdot y := \alpha(y)$$

for all $x, y \in X$. Then (X, \cdot) is a retractable left cycle set: indeed, $\sigma_x = \alpha$ for every $x \in X$.

Example

Let $X := \{1, 2, 3, 4\}$ and \cdot be the operation on X given by

$$i \cdot j := \sigma_i(j)$$

for all $i, j \in X$, where $\sigma_i \in Sym(X)$ for all $i \in X$ and they are given by:

$$\sigma_1 := (34) \quad \sigma_2 := (1423) \quad \sigma_3 := (1324) \quad \sigma_4 := (12)$$

Then (X, \cdot) is an irretractable left cycle set.

> Marco Castelli

Example

Let X be a non-empty set and $\alpha \in Sym(X)$. Let \cdot be the binary operation on X given by

$$x \cdot y := \alpha(y)$$

for all $x, y \in X$. Then (X, \cdot) is a retractable left cycle set: indeed, $\sigma_x = \alpha$ for every $x \in X$.

Example

Let $X := \{1, 2, 3, 4\}$ and \cdot be the operation on X given by

$$i \cdot j := \sigma_i(j)$$

for all $i, j \in X$, where $\sigma_i \in Sym(X)$ for all $i \in X$ and they are given by:

$$\sigma_1 := (34) \quad \sigma_2 := (1423) \quad \sigma_3 := (1324) \quad \sigma_4 := (12)$$

Then (X, \cdot) is an irretractable left cycle set.

・ロト・西ト・ボルト・ボー もくら

> Marco Castelli

> > In 2004 Gateva-Ivanova posed the following conjecture:

Conjecture (Gateva-Ivanova, 2004)

```
Every square-free left cycle set X such that 2 \le |X| < \infty is retractable.
```

where

Definition

A left cycle set (X, \cdot) is said *square-free* if q(x) = x for all $x \in X$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Marco Castell

> > In 2004 Gateva-Ivanova posed the following conjecture:

Conjecture (Gateva-Ivanova, 2004)

```
Every square-free left cycle set X such that 2 \leq |X| < \infty is retractable.
```

where

Definition

A left cycle set (X, \cdot) is said square-free if q(x) = x for all $x \in X$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Marco Castelli

In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{1, ..., 8\}$ and put

 $\sigma_1 := (57); \quad \sigma_2 := (68); \quad \sigma_3 := (26)(48)(57); \quad \sigma_4 := (15)(37)(68);$

 $\sigma_5 := (13); \quad \sigma_6 := (24); \quad \sigma_7 := (13)(26)(48); \quad \sigma_8 := (15)(24)(37);$

then (X, \cdot) is a square-free irretractable left cycle set.

> Marco Castelli

In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{1, ..., 8\}$ and put

 $\sigma_1 := (57); \quad \sigma_2 := (68); \quad \sigma_3 := (26)(48)(57); \quad \sigma_4 := (15)(37)(68);$

 $\sigma_5 := (13); \quad \sigma_6 := (24); \quad \sigma_7 := (13)(26)(48); \quad \sigma_8 := (15)(24)(37);$

then (X, \cdot) is a square-free irretractable left cycle set.

> Marco Castelli

In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{1, ..., 8\}$ and put

 $\sigma_1 := (57); \quad \sigma_2 := (68); \quad \sigma_3 := (26)(48)(57); \quad \sigma_4 := (15)(37)(68);$

 $\sigma_5 := (13); \quad \sigma_6 := (24); \quad \sigma_7 := (13)(26)(48); \quad \sigma_8 := (15)(24)(37);$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

then (X, \cdot) is a square-free irretractable left cycle set.

> Marco Castelli

In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{1, ..., 8\}$ and put

 $\sigma_1 := (57); \quad \sigma_2 := (68); \quad \sigma_3 := (26)(48)(57); \quad \sigma_4 := (15)(37)(68);$

 $\sigma_5 := (13); \quad \sigma_6 := (24); \quad \sigma_7 := (13)(26)(48); \quad \sigma_8 := (15)(24)(37);$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

then (X, \cdot) is a square-free irretractable left cycle set.

> Marco Castelli

In 2015 Vendramin found a counterexample to the Gateva-Ivanova Strong Conjecture.

Example (Vendramin, 2015)

Let $X := \{1, ..., 8\}$ and put

 $\sigma_1 := (57); \quad \sigma_2 := (68); \quad \sigma_3 := (26)(48)(57); \quad \sigma_4 := (15)(37)(68);$

 $\sigma_5 := (13); \quad \sigma_6 := (24); \quad \sigma_7 := (13)(26)(48); \quad \sigma_8 := (15)(24)(37);$ then (X, \cdot) is a square-free irretractable left cycle set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is the square-free irretractable left cycle set of minimal

cardinality.

> Marco Castelli

The multiplication table of the previous example is the following:

•	1	2	3	4	5	6	7	8
1	1	2	3	4	7	6	5	8
2	1	2	3	4	5	8	7	6
3	1	6	3	8	7	2	5	4
4	5	2	7	4	1	8	3	6
5	3	2	1	4	5	6	7	8
6	1	4	3	2	5	6	7	8
7	3	6	1	8	5	2	7	4
8	5	4	7	2	1	6	3	8

In 2016 Bachiller, Cedó, Jespers and Okniński found a new family of irretractable left cycle sets which are new counterexamples of Gateva-Ivanova Strong Conjecture.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> Marco Castelli

The multiplication table of the previous example is the following:

•	1	2	3	4	5	6	7	8
1	1	2	3	4	7	6	5	8
2	1	2	3	4	5	8	7	6
3	1	6	3	8	7	2	5	4
4	5	2	7	4	1	8	3	6
5	3	2	1	4	5	6	7	8
6	1	4	3	2	5	6	7	8
7	3	6	1	8	5	2	7	4
8	5	4	7	2	1	6	3	8

In 2016 Bachiller, Cedó, Jespers and Okniński found a new family of irretractable left cycle sets which are new counterexamples of Gateva-Ivanova Strong Conjecture.

> Marco Castelli

Theorem (Bachiller, Cedó, Jespers and Okniński, 2016)

Let A and B be non-trivial abelian groups and let I be a set with |I| > 1. Let $\varphi_1 : A \longrightarrow B$ be a function such that $\varphi_1(-a) = \varphi_1(a)$ for every $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be a homomorphism. On $X(A, B, I) := A \times B \times I$ we define the following operation

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, d - \varphi_1(a - c), j), & \text{if } i = j \\ (c - \varphi_2(b), d, j), & \text{if } i \neq j \end{cases}$$

for all $a, c \in A$, $b, d \in B$ and $i, j \in I$. Then $(X(A, B, I), \cdot)$ is a non-degenerate left cycle set and it is irretractable and square-free if $\varphi_1^{-1}(\{0\}) = \{0\}$ and φ_2 is injective.

> Marco Castelli

Theorem (Bachiller, Cedó, Jespers and Okniński, 2016)

Let A and B be non-trivial abelian groups and let I be a set with |I| > 1. Let $\varphi_1 : A \longrightarrow B$ be a function such that $\varphi_1(-a) = \varphi_1(a)$ for every $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be a homomorphism. On $X(A, B, I) := A \times B \times I$ we define the following operation

$$(a,b,i) \cdot (c,d,j) := \begin{cases} (c,d-\varphi_1(a-c),j), & \text{if } i=j\\ (c-\varphi_2(b),d,j), & \text{if } i\neq j \end{cases}$$

for all $a, c \in A$, $b, d \in B$ and $i, j \in I$.

Then $(X(A, B, I), \cdot)$ is a non-degenerate left cycle set and it is irretractable and square-free if $\varphi_1^{-1}(\{0\}) = \{0\}$ and φ_2 is injective.

> Marco Castelli

Theorem (Bachiller, Cedó, Jespers and Okniński, 2016)

Let A and B be non-trivial abelian groups and let I be a set with |I| > 1. Let $\varphi_1 : A \longrightarrow B$ be a function such that $\varphi_1(-a) = \varphi_1(a)$ for every $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be a homomorphism. On $X(A, B, I) := A \times B \times I$ we define the following operation

$$(a,b,i) \cdot (c,d,j) := \begin{cases} (c,d-\varphi_1(a-c),j), & \text{if } i=j\\ (c-\varphi_2(b),d,j), & \text{if } i\neq j \end{cases}$$

for all $a, c \in A, b, d \in B$ and $i, j \in I$. Then $(X(A, B, I), \cdot)$ is a non-degenerate left cycle set and it is irretractable and square-free if $\varphi_1^{-1}(\{0\}) = \{0\}$ and φ_2 is injective.

> Marco Castelli

A larger family of irretractable left cycle set is obtained by M. C., Francesco Catino and Giuseppina Pinto.

Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i), \ \gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

> Marco Castelli

> > A larger family of irretractable left cycle set is obtained by M. C., Francesco Catino and Giuseppina Pinto. Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i), \gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j\\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

> Marco Castelli

> > A larger family of irretractable left cycle set is obtained by M. C., Francesco Catino and Giuseppina Pinto. Let A, B be non trivial sets and I a left cycle set, $\beta : A \times A \times I \longrightarrow Sym(B)$ and $\gamma : B \longrightarrow Sym(A)$. Put $\beta_{(a,b,i)} := \beta(a, b, i), \gamma_a := \gamma(a)$ and let \cdot be the operation on $A \times B \times I$ given by

$$(a, b, i) \cdot (c, d, j) := \begin{cases} (c, \beta_{(a,c,i)}(d), i \cdot j), & \text{if } i = j \\ (\gamma_b(c), d, i \cdot j), & \text{if } i \neq j \end{cases}.$$
(2)

Then we write $X(A, B, I, \beta, \gamma)$ to indicate $(A \times B \times I, \cdot)$

> Marco Castelli

Theorem (M. C., F. Catino, G. Pinto, 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1) $\gamma_a \gamma_b = \gamma_b \gamma_a$, 2) $\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$, 3) $\gamma_{\beta_{(a,c,i)}(d)} \gamma_b = \gamma_{\beta_{(c,a,i)}(b)} \gamma_d$, 4) $\beta_{(a,c,i\cdot)} \beta_{(b,c,i)} = \beta_{(b,c,i\cdot)} \beta_{(a,c,i)}$. hold for all $a \in A$, $b, c \in B$, $i, j \in I$, $i \neq j$. Then $X(A, I, \beta, \gamma)$ is a non-degenerate left cycle set.

> Marco Castelli

Theorem (M. C., F. Catino, G. Pinto, 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_{d,b}$$

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

hold for all $a \in A$, $b, c \in B$, $i, j \in I$, $i \neq j$. Then $X(A, I, \beta, \gamma)$ is a non-degenerate left cycle set.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Marco Castelli

Theorem (M. C., F. Catino, G. Pinto, 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

hold for all $a \in A$, $b, c \in B$, $i, j \in I$, $i \neq j$. Then $X(A, I, \beta, \gamma)$ is a non-degenerate left cycle set.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Marco Castelli

Theorem (M. C., F. Catino, G. Pinto, 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

hold for all $a \in A$, $b, c \in B$, $i, j \in I$, $i \neq j$. Then $X(A, I, \beta, \gamma)$ is a non-degenerate left cycle set.

> Marco Castelli

Theorem (M. C., F. Catino, G. Pinto, 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,

2)
$$\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$$

3)
$$\gamma_{\beta_{(a,c,i)}(d)}\gamma_b = \gamma_{\beta_{(c,a,i)}(b)}\gamma_d$$

4)
$$\beta_{(a,c,i\cdot i)}\beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)}\beta_{(a,c,i)}$$
.

hold for all $a \in A$, $b, c \in B$, $i, j \in I$, $i \neq j$. Then $X(A, I, \beta, \gamma)$ is a non-degenerate left cycle set.

> Marco Castelli

Theorem (M. C., F. Catino, G. Pinto, 2017)

Assume that for $X(A, B, I, \beta, \gamma)$

1)
$$\gamma_a \gamma_b = \gamma_b \gamma_a$$
,
2) $\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$,
3) $\gamma_{\beta_{(a,c,i)}(d)} \gamma_b = \gamma_{\beta_{(c,a,i)}(b)} \gamma_d$,
4) $\beta_{(a,c,i\cdot i)} \beta_{(b,c,i)} = \beta_{(b,c,i\cdot i)} \beta_{(a,c,i)}$.
mold for all $a \in A$, $b, c \in B$, $i, j \in I$, $i \neq j$. Then $X(A, I, \beta, \gamma)$ is a non-degenerate left cycle set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

> Marco Castelli

Observation

Let *I* be the left cycle set given by $x \cdot y = y$ for all $x, y \in I$, $\varphi_1 : A \longrightarrow B$ a function such that $\varphi_1(-a) = \varphi_1(a)$ for every $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be an homomorphism. Put

$$\beta_{(a,c,i)} := t_{-\varphi_1(a-c)}$$
 and $\gamma_b := t_{-\varphi_2(b)}$

for all $a, c \in A, b \in B$ and $i \in I$, where t_v is the translation by v. Then $X(A, B, I, \beta, \gamma)$ is the non-degenerate left cycle set X(A, B, I) obtained by Bachiller, Cedó, Jespers and Okniński.

> Marco Castelli

Observation

Let *I* be the left cycle set given by $x \cdot y = y$ for all $x, y \in I$, $\varphi_1 : A \longrightarrow B$ a function such that $\varphi_1(-a) = \varphi_1(a)$ for every $a \in A$ and let $\varphi_2 : B \longrightarrow A$ be an homomorphism. Put

$$eta_{(a,c,i)} := t_{-arphi_1(a-c)}$$
 and $\gamma_b := t_{-arphi_2(b)}$

for all $a, c \in A, b \in B$ and $i \in I$, where t_v is the translation by v. Then $X(A, B, I, \beta, \gamma)$ is the non-degenerate left cycle set X(A, B, I) obtained by Bachiller, Cedó, Jespers and Okniński.

> Marco Castelli

Proposition (M.C., F. Catino, G. Pinto, 2017)

Let A, B, I, β, γ defined as previous Theorem and assume

1) $A \times A \times \{i\} \cap \beta^{-1}(\beta_{(a,a,i)}) \subseteq \{(k,k,i) | k \in A\};$

2) γ is injective;

for all $i \in I$ and $a \in A$. Then the left non-degenerate cycle set $X(A, B, I, \beta, \gamma)$ is irretractable.

> Marco Castelli

Proposition (M.C., F. Catino, G. Pinto, 2017)

Let A, B, I, β, γ defined as previous Theorem and assume 1) $A \times A \times \{i\} \cap \beta^{-1}(\beta_{(a,a,i)}) \subseteq \{(k,k,i) | k \in A\};$

2) γ is injective;

for all $i \in I$ and $a \in A$. Then the left non-degenerate cycle set $X(A, B, I, \beta, \gamma)$ is irretractable.

> Marco Castelli

Proposition (M.C., F. Catino, G. Pinto, 2017)

Let A, B, I, β, γ defined as previous Theorem and assume 1) $A \times A \times \{i\} \cap \beta^{-1}(\beta_{(a,a,i)}) \subseteq \{(k, k, i) | k \in A\};$

2) γ is injective;

for all $i \in I$ and $a \in A$.

Then the left non-degenerate cycle set $X(A,B,I,eta,\gamma)$ is irretractable.

> Marco Castelli

Proposition (M.C., F. Catino, G. Pinto, 2017)

Let A, B, I, β, γ defined as previous Theorem and assume 1) $A \times A \times \{i\} \cap \beta^{-1}(\beta_{(a,a,i)}) \subseteq \{(k, k, i) | k \in A\};$

2) γ is injective;

for all $i \in I$ and $a \in A$.

Then the left non-degenerate cycle set $X(A, B, I, \beta, \gamma)$ is irretractable.

> Marco Castelli

The following left cycle set is an example of irretrattabile square-free left cycle set different from those obtained last year by Bachiller, Cedó, Jespers e Okniński.

Example

Let
$$I := \{1, 2\}$$
, $A = B := \mathbb{Z}/4\mathbb{Z}$ and $\alpha := (1 \ 2 \ 3 \ 4)$. Put
$$\beta_{(a,a,i)} := id_A \qquad \beta_{(a,b,1)} := \alpha$$

for all $i \in I$ and $a \in A$, $b \in B$, $a \neq b$ where $t_a : A \to A$, $t_a(x) := x + a$ for all $a \in A$. Then $X(A, B, I, \beta, \gamma)$ is an irretractable square-free left cycle set of cardinality 32.

> Marco Castelli

The following left cycle set is an example of irretrattabile square-free left cycle set different from those obtained last year by Bachiller, Cedó, Jespers e Okniński.

Example

Let
$$I := \{1,2\}$$
, $A = B := \mathbb{Z}/4\mathbb{Z}$ and $\alpha := \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$. Put

$$\beta_{(a,a,i)} := id_A \qquad \beta_{(a,b,1)} := \alpha$$

$$\beta_{(a,b,2)} := \alpha^2 \qquad \gamma_a := t_{-a-1}$$

for all $i \in I$ and $a \in A$, $b \in B$, $a \neq b$ where $t_a : A \rightarrow A$, $t_a(x) := x + a$ for all $a \in A$. Then $X(A, B, I, \beta, \gamma)$ is an irretractable square-free left cycle set of cardinality 32.

> Marco Castelli

Thanks!