On the Zassenhaus conjecture for direct products

Mariano Serrano

with Andreas Bächle and Wolfgang Kimmerle

Departament of Mathematics University of Murcia

YRAC 2017. Naples May 24, 2017

An introduction Direct products Camina groups

Index

1 The Zassenhaus conjecture

An introduction

- Direct products
- Camina groups

An introduction Direct products Camina groups

Integral group rings

G a finite group.

The Integral group ring

$$\mathbb{Z}G = \left\{ \sum_{g \in G} u_g g : u_g \in \mathbb{Z} \text{ for every } g \in G \right\}$$
$$U(\mathbb{Z}G) = \{ \text{Units of } \mathbb{Z}G \}$$

The elements $\pm g$ with $g \in G$ are called **trivial units**.

G. Higman. *The units of group-rings*. Pro. London Math. Soc. (2), 46:231-248, 1940.

イロト イポト イヨト イヨト

Notation

The Augmentation map

$$\begin{array}{rcl} \varepsilon : & \mathbb{Z}G & \to & \mathbb{Z} \\ & \sum_{g \in G} u_g g & \to & \sum_{g \in G} u_g \end{array}$$

Units with augmentation one

- $V(\mathbb{Z}G) = \{ u \in U(\mathbb{Z}G) : \varepsilon(u) = 1 \}.$
- $U(\mathbb{Z}G) = \pm V(\mathbb{Z}G).$

イロト イポト イヨト イヨト

3

Torsion units with augmentation one

General problem

How are the torsion elements of $V(\mathbb{Z}G)$?

- (Berman-Higman) If G is an abelian finite group then every torsion element of $V(\mathbb{Z}G)$ is an element of G.
- Obvious torsion units: Conjugates of elements of G.

Example

- There is a torsion unit in $V(\mathbb{Z}S_3)$ which is not conjugate in $\mathbb{Z}S_3$ to any element of S_3 .
- But it is conjugate in $U(\mathbb{Q}S_3)$.

4 日 2 4 周 2 4 月 2 4 月

An introduction Direct products Camina groups

The Zassenhaus Conjecture

The Zassenhaus Conjecture (1974)

Every torsion unit of $V(\mathbb{Z}G)$ is conjugate in $U(\mathbb{Q}G)$ to an element of G.

The Zassenhaus Conjecture has been proved for:

- Nilpotent groups. (Weiss 1991)
- Metacyclics groups. (Hertweck 2008)
- Cyclic-by-abelian groups. (Caicedo, Margolis and del Río 2013)
- A₆. (Hertweck 2006)
- PSL(2, p) for p a Fermat or Mersenne prime. (Margolis, del Río and S. 2016)
- Groups till order 143. (Bächle, Herman, Konovalov, Margolis and Singh 2016)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Notation

Denote by g^{G} the conjugacy class of g in G.

Partial augmentations in $\mathbb{Z}G$ • $u = \sum_{g \in G} u_g g \in \mathbb{Z}G$ and $h \in G$. • $\varepsilon_h(u) = \sum_{g \in h^G} u_g$ the partial augmentation of u with respect to h.

イロト イポト イヨト イヨト

A result to deal with the Zassenhaus conjecture

Marciniak, Ritter, Sehgal and Weiss.

G a finite group. The following conditions are equivalent:

- The Zassenhaus Conjecture holds for G.
- ② For every torsion element $u \in V(\mathbb{Z}G)$, every $d \mid |u|$ and every $g \in G$ we have $\varepsilon_g(u^d) \ge 0$.

An introduction Direct products Camina groups

Index

1 The Zassenhaus conjecture

An introduction

Direct products

• Camina groups

An introduction Direct products Camina groups

General problem for direct products

Problem

G and *H* finite groups satisfying the Zassenhaus conjecture. Does the Zassenhaus conjecture hold for $G \times H$?

- B- 6

Known results

Höfert 2004

G finite group for which the Zassenhaus conjecture holds. Then it also holds for $G \times C_2.$

Hertweck 2008

G finite group for which the Zassenhaus conjecture holds. *H* nilpotent group with gcd(|G|, |H|) = 1. Then the Zassenhaus conjecture holds for $G \times H$.

・ 同 ト ・ 三 ト ・

Motivation

Proposition

G finite group for which the Zassenhaus conjecture holds. *A* abelian finite group. If all the conjugacy classes of *G* has at most size 3 then the Zassenhaus conjecture holds for $G \times A$.

Corollary

The Zassenhaus conjecture holds for $S_3 \times A$, where A is any abelian finite group.

(1日) (1日) (1日)

An introduction Direct products Camina groups

Index

1 The Zassenhaus conjecture

- An introduction
- Direct products
- Camina groups

Camina groups

Denote by G' the derived subgroup of the finite group G.

Definitions (1978)

- G is called a Camina group if $gG' = g^G$ for every $g \in G \setminus G'$.
- For a positive integer *n*, a Camina group *G* is called an *n*-Camina group if *G'* is the union of *n G*-conjugacy classes.

The Zassenhaus conjecture holds for Camina groups.

Examples

- 1-Camina groups are precisely the abelian finite groups.
- S_3 , A_4 and D_8 are 2-Camina groups.
- $C_2^4 \rtimes C_3$ is a 6-Camina group.

An introduction Direct products Camina groups

Classifying Camina groups

The general classification by Dark and Scoppola 1996

A finite non-abelian group is a Camina group if and only if it is a Camina p-group or a Frobenius group whose complement is either cyclic or Q_8 .

Cangelmi and Muktibodh 2010

- 2-Camina group if and only if it is either an extraspecial 2-group or isomorphic to C^r_p ⋊ C_{p^r-1} for a prime p.
- 3-Camina group if and only if it is either an extraspecial 3-group, or isomorphic to C^r_p ⋊ C^{pr-1}_{p-1} for a prime p, or isomorphic to Q₈.

イロト イポト イヨト イヨト

The result

Theorem (Bächle, Kimmerle and S. 2017)

G Camina group. A abelian finite group. Then the Zassenhaus conjecture holds for $G \times A$.

3 N

An introduction Direct products Camina groups

Thanks for your attention.

Mariano Serrano On the Zassenhaus conjecture for direct products

э