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Definition
Let S be a semigroup. Then:

An element e ∈ S is said to be idempotent if e2 = e.
E(S) := {e ∈ S idempotent}.
Let e ∈ S idempotent. Se denotes the maximal subgroup in S
which has e as an identity element.
For every subset X ⊆ S, X 0 = X ∪ {0} and X 1 = X ∪ {1}.
x ∈ S is regular (in the sense of von Neumann), if x ∈ xSx . A
semigroup S is said to be regular if every element s ∈ S is
regular.
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Green Relations
The following equivalence relations introduced by Green are
fundamental:

sR t if and only if sS1 = tS1

s L t if and only if S1s = S1t
s J t if and only if S1sS1 = S1tS1

Given an element u ∈ S, we denote by Ru (Lu, Ju) the
corresponding R-class of u (L,J -class). Moreover, a K-class
(K = J ,L,R), K , is said to be regular if it contains an
idempotent, i.e. K = Ke for e ∈ E(S).
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Proposition

Let S be a semigroup (not necessarily finite). Then:
1 If S is regular, then 〈E(S)〉 is a regular subsemigroup of S.
2 If T is a regular subsemigroup of S. Then,
KT = KS ∩ (T × T ), where K = L or R.

W. Eberhart, C. Williams and L. Kinch, Idempotent-generated
regular semigroups, J. Austral. Math. Soc. Ser. A, 15 (1973),
27–34.
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D. Rees, On semigroups, Math. Proc. Cambridge Philos. Soc.,
36 (1940), 387–400.

Definition
A semigroup S with zero is called 0-simple if SxS = S for all
0 6= x ∈ S.

Note that every 0-simple semigroup S has a unique non-zero
J -class, S \ {0}, i.e. s J t for all non-zero s 6= t ∈ S.

Proposition

Let S be a 0-simple semigroup. Then
1 S is regular.
2 Se is isomorphic to Sf for all e, f ∈ E(S) \ {0}.
3 Se = (eSe) \ {0}, for all 0 6= e ∈ E(S).
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Let A,B be non-empty sets and let G be a group. A Rees matrix
C is a map C : B × A −→ G0. We say that the Rees matrix is
regular if every row and every column has a non-zero entry.

Rees matrix semigroup
The Rees matrix semigroup with sandwich matrix C is the
semigroupM0(G ,A,B,C) with underlying set (A× G × B) ∪ {0}
and the operation: 0 · (a, g , b) = (a, g , b) · 0 = 0, and

(a, g , b) · (a′, g ′, b′) =
{

(a, gC(b, a′)g ′, b′) if C(b, a′) ∈ G ,
0, if C(b, a′) = 0,

for all a, a′ ∈ A, b, b′ ∈ B, g ∈ G .

The Rees matrix semigroupM0(G ,A,B,C) is regular if, and only
if, the matric C is regular.
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Rees’ Theorem [Rees40]

Every regular Rees matrix semigroup is a 0-simple semigroup.
Conversely, every 0-simple semigroup S is isomorphic to a regular
Rees matrix semigroupM0(G ,A,B,C), where G is isomorphic to
the maximal subgroups Se , for all e 6= 0.

Given a regular J -class J of a semigroup S, set J0 = J ∪ {0} and
the operation:

for all a, b ∈ J a · b =
{

ab, if ab ∈ J ,
0, if ab /∈ J

, a · 0 = 0 · a = 0

Then, J0 forms a 0-simple semigroup and:

J0 ∼=M0(G ,A,B,C)

where G ∼= Se = (J0)e , for all e ∈ J .
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Graham’s Theorem
Let S be a 0-simple semigroup. Then there exists an isomorphism
ψ : S −→M0(G ,A,B,C) such that:

C =

A1 A2 · · · An


B1 C1 0 · · · 0
B2 0 C2 · · · 0
...

...
... . . . ...

Bn 0 0 · · · Cn

where each matrix Ci : Bi × Ai → G0 is regular and:

〈E(S)〉 =
n⋃

i=1
M0(Gi ,Ai ,Bi ,Ci )

where Gi is the subgroup of G generated by all non-zero entries of
Ci , for i = 1, . . . , n.
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In the sequel, S will denote a 0-simple semigroup and
T := 〈E(S)〉. We use:

Key Lemma 1, [Rees40, Lemmas 2.61, 2.62, 2.63]
For each pair of non-zero idempotents e and f of S, eSf is
non-zero. Moreover, if 0 6= x ∈ eSf and 0 6= y ∈ fSg , then
0 6= xy ∈ (eSf )(fSg) = eSg .

Key Lemma 2, [Rees40, Lemma 2.7]
Let e, f ∈ E(S) \ {0}. The sets eS and fS have either no non-zero
elements in common or are identical. Similarly for the sets Se and
Sf and, consequently, for the sets eSf and e′Sf ′.
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From wich we prove:

Corollary 1

Let 0 6= ef ∈ T with e, f ∈ E(S). Then eRT ef LT f . In
particular, e J T f J T (ef ).

Corollary 2

Assume that 0 6= e1 · · · er ∈ T for some ei ∈ E(S), 1 ≤ i ≤ r .
Then e1 J T . . .J T er J T (e1 · · · er ).
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We split the proof into the following steps.
1 Let (JT )e1 , . . . , (JT )en be the non-zero J -classes in T , with

e1, . . . , en ∈ E(S). For each k ∈ {1, . . . , n}, we write:

T (k) = (JT )0
ek ⊆ T

Corollary 1 ensures us that T (k) is a 0-simple subsemigroup of
T .

2 Since S is regular and using Key Lemma 2, we can write:

S =
m1,m2⋃

i=1,j=1
riSlj where ri , lj ∈ E(S) \ {0},

with ri , lj such that riSlj ∩ ri ′Slj′ = 0 if i 6= i ′ and j 6= j ′. Let
r1 = l1 = e1.

3 Set A := {1, . . . ,m1} and B := {1, . . . ,m2}. For each
1 ≤ k ≤ n, we define: Ak := {i ∈ A : ri J T ek},
Bk := {j ∈ B : lj J T ek}.
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4 Let k ∈ {1, . . . , n}. Applying Key Lemma 1 we have:
There exist non-zero elements x1k ∈ e1Sek , xk1 ∈ ekSe1, such
that for all i ∈ Ak , j ∈ Bk , we can take non-zero elements
p̄ik ∈ riT (k)ek , q̄kj ∈ ekT (k)lj , with

0 6= x1k q̄kj ∈ e1Slj , 0 6= p̄ikxk1 ∈ riSe1

5 Then, for all i ∈ A and j ∈ B, we define:

0 6= pi1 := p̄ikxk1 ∈ riSe1 if i ∈ Ak ,
0 6= q1j := x1k q̄kj ∈ e1Slj if j ∈ Bk ,
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6 We have seen that the maximal subgroups Se , for all
0 6= e ∈ E(S), are all isomorphic. Let G0 := e1Se1 = (Se1)0

and consider the Rees (B × A)-matrix given by:

C(j , i) :=
{

q1jpi1 if q1jpi1 6= 0
0 otherwise

j ∈ B, i ∈ A

7 The proof of Rees’ Theorem in [Rees40] gives us an
isomorphism

ψ : S −→M0(G ,A,B,C)
8 By Corollary 1, if j ∈ Bk and i ∈ Ak′ and k 6= k ′, it follows

that lj ri = 0. Therefore C(j , i) = 0 and then:

C =

A1 A2 · · · An


B1 C1 0 · · · 0
B2 0 C2 · · · 0
...

...
... . . . ...

Bn 0 0 · · · Cn
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