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Words on g letters

X={0,1,...,9—1} g-ary alphabet

X"={xx2...xn: xi € X} g-ary words of length n
X* =, X", with X° = {0}

X® ={xx......:xi € X} infinite g-ary words

Remark:

X™ can be identified with the vertex set of the infinite rooted regular tree T, of degree
g, where:

® empty word () <— root of T,
® X" <— vertices of the n-th level L, of T,
® X «— 9T = boundary of Tj.
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Restrictions of an element of Aut(Ty)

Aut(T4) = group of all automorphisms of T,. Let g € Aut(Tgy) and v € X™.

The restriction g|, : X* — X* of g at v is defined by

g(ww) = g(v)g|v(w), for each w € X™.

g
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Self-similar representation of an element of Aut(T,)

Aut(Tq) = Sym(q)tAut(Ty) = (Aut(Ty) x -+ x Aut(Tg)) x Sym(q),

q times

where Sym(q) is the symmetric group on q elements.

= self-similar representation of g € Aut(Ty):

g = (g|0,g|17---7g|q71)ﬂ-g7

where:
mg = permutation induced by g on the first level L; of Tq

g|i = restriction of g at the vertex i of Ly, for i =0,1,...,q— 1.
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Self-similar actions

The action of a group G < Aut(Ty) is self-similar if Vg € G and x € {0,1,...,q9 — 1}
there exist h € G and y € {0,1,...,q — 1} such that

g(bxw) = yh(w) Yw e {0,1,...,qg — 1} . (1)

By iterating, we get that Vg € G and v € {0,1,...,g — 1}" there exist h € G and
ve{0,1,...,g—1}*, with |u| = |v|, such that

g(lw) = uh(w)  VYwe{0,1,...,9—1}".
Eq. (1) can be interpreted as the work of a machine, which being in a state g and
receiving as input letter x, goes into state h and returns the output letter y

= Automaton groups
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An automaton A over X = {0,1,...,q9 — 1} is a quadruple (S, X, A, 1), where:
® Sis a set (states of A)
® X is an alphabet
® )\:S x X — S transition function
® 1 :S x X — X output function.

Example (g = 2)
O
0|1 00 @‘ 2||(i

10
X ={0,1} wu(a,0) =0 A(a,0)=b wu(b,1) =0 A(b,1) = id
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An automaton A over X = {0,1,...,q9 — 1} is a quadruple (S, X, A, 1), where:
® Sis a set (states of A)
® X is an alphabet
® )\:S x X — S transition function
® 1 :S x X — X output function.

Example (g = 2)
ONm
0[0
0|1 0/0
| NG
10
X =1{0,1} w(a,00=0  ANa,0)=b  u(b,1)=0 Ab1)=id

b(0010) =
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An automaton A over X = {0,1,...,q9 — 1} is a quadruple (S, X, A, 1), where:
® Sis a set (states of A)
® X is an alphabet
® )\:S x X — S transition function
® 1 :S x X — X output function.

Example (g = 2)
ONm
0[0
0|1 0/0
| NG
10
X ={0,1} 1(3,00=0 Aa,0)=b pu(b1)=0 Ab,1)=id

b(0010) = 1a(010) =
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An automaton A over X = {0,1,...,q9 — 1} is a quadruple (S, X, A, 1), where:
® Sis a set (states of A)
® X is an alphabet
® )\:S x X — S transition function
® 1 :S x X — X output function.

Example (g = 2)
ONm
0[0
0|1 0/0
| NG
10
X =1{0,1} w(a,00=0  ANa,0)=b  u(b,1)=0 Ab1)=id

b(0010) = 1a(010) = 10b(10) =
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An automaton A over X = {0,1,...,q9 — 1} is a quadruple (S, X, A, 1), where:
® Sis a set (states of A)
® X is an alphabet
® )\:S x X — S transition function
® 1 :S x X — X output function.

Example (g = 2)
ONm
0[0
0|1 0/0
| NG
10
X ={0,1} 1(3,00=0 Aa,0)=b pu(b1)=0 Ab,1)=id

b(0010) = 1a(010) = 105(10) = 100id(0) =
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An automaton A over X = {0,1,...,q9 — 1} is a quadruple (S, X, A, 1), where:
® Sis a set (states of A)
® X is an alphabet
® )\:S x X — S transition function
® 1 :S x X — X output function.

Example (g = 2)
ONm
0[0
0|1 0/0
| NG
10
X ={0,1} 1(3,00=0 Aa,0)=b pu(b1)=0 Ab,1)=id

b(0010) = 1a(010) = 10b(10) = 100id(0) = 1000
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The Basilica group

The Basilica group is the group of automorphisms of T, generated by the automaton
1)1

0/0
01 0/0
11

1/0
Self-similar representation of the generators:
a= (b, id) b= (a,id)e,
with € = (0 1) = nontrivial permutation of Sym(2).

[R. Grigorchuk, A. Zuk, On a torsion-free weakly branch group defined by a three state
automaton, Int. J. Algebra Comput. 12 (2002), 223-246]
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Branch properties

Let G < Aut(T,) be an automaton group transitive on each level of Tj.
® Stabg(v) ={g € G : g(v) = v} vertex stabilizer;
® Stabg(Ln) = (,cxn Stabg(v) level stabilizer.

Let ¢ : Stabg(L1) — G? such that:
g = (g|03g|13 tee 7g|Q*1)id = (g|0,g|17- . ag|(I*1)'

Then:

{ G is regular weakly branch over K if there exists a normal subgroup K # {1} in G,
with K < Stabg(L1), such that

O(K)>KXxKx---xK.
———— —

q times

{ G is regular branch over K if it is regular weakly branch over K and

[G: K] < 0.
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()

olo 11
a = (id, id)(01
" (id. id) (01)
01 1j0 b=(a,c)
11 c=(a,d)
d = (id, b)
11
0/0

0[0

[R. Grigorchuk. On Burnside's problem on periodic groups, Funktsional. Anal. i
Prilozhen. 14 (1980), no. 1, 53-54.]
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Some remarkable properties of the Grigorchuk group G

® G is a finitely generated, infinite, torsion group (Burnside Problem)

® (G is not finitely presented, but it admits the recursive presentation of L-type:
G ={a,b,c, d|aZ, b, %, d°, bed, ai(ad)4, ai(adacac)4, i>0)
where o is the substitution on {a, b, ¢, d}"* defined by
o(a) = aca, o(b) =d, o(c)=b, o(d) =c.

(Lysenok 1985)
® G is just-infinite
® G has solvable word problem and solvable conjugacy problem

® G was the first example of a group of intermediate growth (Milnor Problem)

a B8
e" <~(n)<e", 0<afB<l.

Grigorchuk (1984) : a = 0.5; B = logs, 31 ~ 0.991
Leonov (2001) : o = 0.504; Bartholdi (2001) : 8 ~ 0.7675
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Some remarkable properties of the Grigorchuk group G

® G is residually finite:
the approximating sequence of finite quotient groups is {G, = G/Stabg(L,)}, with
n—3
126G GEGIG GEGIGIG |G| =2 Pn>3
® G is regular branch over its normal subgroup K = ((ab)?)Y:
[G: K] =16 #(K) > K x K

Put K, = K x --- X K, where each factor acts on a subtree rooted at L,
————
2" times
= {Kn}n>1 is a descending sequence of normal subgroups of finite index in G with
trivial intersection
= branching subgroup structure

® G is amenable but not elementary amenable (Day Problem).
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Example: the Basilica Group as Iterated Monodromy Group

Consider the map f: € — C defined as
flz)=2"-1

Critical set: Cr = {0, oo} Post-critical set: Pr =] f"(Cr) = {—1,0,00}
Look at the restriction R R
f:C\Ffi(P)— C\ P

If t € C\ Pr, the set |Jf~"(t) can be identified with the tree To.

The action of 71(C \ {—1,0}) on such a tree coincides with the action of the Basilica
groupon T, = IMG(Z* —1)

Spectral computations Infinite Schreier graphs
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Let f : C — C be a rational map.

The Julia set J(f) of f is the set of limit points of the full backwards orbit |, f~"(2).

It often has a fractal structure!

This explains the reason for the name of the Basilica group IMG(z* — 1)!
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Graph automaton groups

Let I = (V, E) be a finite graph, with V = {x1,...,xq}.

Let E’ be the set of edges, where an orientation of each edge has been chosen, so that
an element of E’ is an ordered pair of type (xj, X;).

Define an automaton Ar = (E’ U {id}, V, A, p) s.t.:

e E'U{id} is the set of states;
® V is the alphabet;
® \:E' x V — E'is such that, for each e = (x,y) € E":

e ifz=x . .
e, z) = { id ifz4x (transition function)

® u:E' xV — Vissuch that, for each e = (x,y) € E":

y ifz=x
uwle,z)=¢ x ifz=y (output function)
z ifz#x,y.

In words: the state e = (x, y) has one transition to itself (given by (e, x) = e) and all
other transitions to the sink id.
It acts nontrivially only on x and y, which are switched as u(e, x) =y and u(e,y) = x.

= The graph automaton group Gr is the automaton group generated by Ar.
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Example: the Tangled odometer
The path graph Pz on 3 vertices and the associated automaton Ap,.
01
a

12
2

0[0, 1|1, 2|2

The group Gp, is the so-called Tangled odometer.
Its generators have the self-similar representation:
a=(a,id,id)(0 1)

b = (id, b, id)(1 2).
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Some basic properties of graph automaton groups

® Any loop in I gives rise to the trivial element of Gr.
® Any multiedge produces a set of equal generators (up to consider the inverse)

= The graph I' = (V/, E) can be supposed to be simple.

® The group Gr does not depend on the choice of the edge orientation, since
changing the orientation of an edge corresponds to invert a generator.

® If e,f € E do not share any vertex, then
le,f] = e 'ftef =id,

since their action are nontrivial on disjoint subsets of V.

® A rearrangement of the vertex set of I = (V/, E) produces groups that are

isomorphic.
° Ifl = (\~/7 E) is a graph isomorphic to a subgraph of ' = (V, E), then
Gr < Gr
e |f I = (V, E) is the disjoint union of the graphs ' = (V4, E1), ..., It = (W4, E),
then

Gr =0r, X xGr,
= The graph I' = (V, E) can be supposed to be connected.
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Theorem [Cavaleri, D'Angeli, Donno, Rodaro, Adv. Group Theory Appl. (2021)]

Let I = (V, E) be a graph, with |E| > 2, and let Gr be the associated graph automaton
group. Then:

1.

o @1 > @

Gr is weakly regular branch over its commutator subgroup;
Gr contains an element of finite order;

Gr has trivial center;

Gr is amenable;

If |V| > 5, then Gr is not solvable;

If the graph T contains a cycle ei,.. ., e, then (e ---ef*)'™!, with g; € {£1}, is a
relation in Gr whenever efl, ..., et is an oriented cycle in T;

If e, f are two edges sharing a vertex in the graph I', then the semigroup generated
by e and f is free

= Gr has exponential growth.
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Finite Schreier graphs

Given an automaton group G acting on the rooted tree Tg, the n-th Schreier graph I,

of G w.r.t. the symmetric generating set S is defined as:
1. v(r,)={0,1,...,q—1}"
2. u~vinTl,if3s € S such that s(u) = v. In this case, we have
=i
s s
@ L)

u v

Remarks:
{ T, is regular of degree |S| on q" vertices
{ T, is connected if the action of G on L, is transitive
{ The map

Tpt1: Tpyn — Ty
e Vxi...xom1 €40,1,...,g—1}""

X1 ... XnXnt1 —> X1 ... Xn

induces a graph covering of order q.
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The Schreier graph ', of the action of the Grigorchuk group on Ty, for n =1,2, 3.
b b b d d b
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The Schreier graph ', of the action of the graph automaton group Gp, on T3, for
n=1723.
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The Schreier graph 'y of the action of the graph automaton group Gp, on Ts.

O
1021 & Q @ 2012
2121 0121 1212
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The Schreier graphs I'; and I'; of the graph automaton group Gr acting on T3, when
is a cycle of length 3.
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The Schreier graph I'; of the graph automaton group Gr acting on T4, when I is a cycle
of length 4.
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The self-similarity of the action reflects on the structure of the Schreier graphs!

The Schreier graphs 'y and 'z of Gp,

30 03
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The Schreier graph '3 of Gp,
J
(@
d
\
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How to construct I'; from I,y for the group Gp,

Consider the path graph P, on g vertices

1. Take g copies of [',_1 and append to the end of the vertices of the i-th copy the
letter i, for i =0,...,q — 1.

2. Foreachi=1,...,9g — 2, remove the edges
{"(i—=1)""} and  {i",(i+ 1)}
together with the edges
{0",1"70} and {(¢—-1)",(¢—2)" '(¢— D)}
3. Fori=0,...,q — 2, join the i-th and (i + 1)-th copies by adding the edges
{i",(i+1)"} and  {(i+1)""", "N (i + 1)}

The last operation gives rise to new cycles of doubled length with respect to the
level n — 1.
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The construction of I's from I, for the group Gp, (g = 4)

The copies are separated by dotted lines; the deleted edges are represented by dashed
lines; the new edges producing cycles of length 8 are in bold lines.
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Using this recursive construction of the Schreier graphs {I',},>1 of the graph automaton
group Gp,, for g > 3, it is possible:

{> to determine the number and the length of the cycles in I,;

{> to determine the diameter of I',, via the recursion

diam(T ) = diam(ln—1) +2(g — 3) + 2"
diam(T1) =q—1,

obtaining diam(I',) = 2" 4- (g — 1)(2n — 1) — 4n;
n)+1

{> to establish that the automorphism group of ', is isomorphic to the group Z;”q(

where ) )
2(¢" —29"" "+ 1
al) = AT 201

is the number of cycles of length greater or equal to 4 in ', generated by the
action of the generators e; and eq_1.
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The Wiener index of Schreier graphs of a tree automaton group

Let ' = (V, E) be a connected graph.

dr(u, v) = geodesic distance of the vertices u,v € V in T
= length of a shortest path in [ connecting u and v.

Wiener index W(I') of T:
1
w(r) = > ) vgevdr(u, v).

[H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69
(1947), 17-20]

Applications

¢ Chemical graph theory
¢ Centrality measures in graphs

{ Social networks and Game theory
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The Wiener index of Schreier graphs of a tree automaton group

A connected graph ' = (V, E) is a cactus if it satisfies one of the following equivalent
conditions:

& any two cycles have no edge in common;

& any two cycles have at most one vertex in common.
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Theorem [D'Angeli, Hammer, Rodaro (2024)]

Let T = (Vr, E7) be a tree, with |V7| = k, and let Gr be the associated graph
automaton group.

For each n > 1, let I, be the Schreier graph of Gr. Then I, is a cactus.
Moreover:

W(r.) = (k—1) ((22’;( __12)k — 1) pmen L‘kz DR
(k+1)(k—1) an_ 2k+1)(k=1) &
+ K k(2k —1) k

2 2n (k2 + 2) 2n (k + 2) n
4k <ﬁ~nk (k= 1) -k +7k2(k_1)~k)W(T).

Remark

Extremal bounds are obtained for T = Sx_; and T = P4, since it is known that:

(k— 1) = W(Si1) < W(T) < W(P) = <k§1> = Sk(K - 1)
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The spectrum of a graph ' = (V, E)

1 ifvi~y
0 otherwise
and its (real) spectrum is called the adjacency spectrum (or spectrum) of T

The adjacency matrix Ar of T is the matrix defined by (Ar)i; = {

Spectra of Schreier graphs of automaton groups have been largely studied in the last
decades, in connection with problems in Algebra, Operator algebras, Random walks,
Combinatorics, Fractal geometry.

In some cases, a recursive approach allowed to explicitly compute the spectrum of the
adjacency matrix (e.g., Grigorchuk group, Hanoi Towers group, Lamplighter group).

This approach failed for the Basilica group, and an explicit description of the spectrum
of its Schreier graphs does not exist, even if some efforts have been made with this aim:

® Grigorchuk, Zuk (2002): two-dimensional dynamical system describing the
spectrum.

® Rogers, Teplyaev (2010): Dirichlet forms and associated Laplace operators on the
Basilica Julia set.

® Cavaleri, D'Angeli, Donno (2022): study of the characteristic polynomial using the
Coefficient Theorem for signed graphs and the spectral theory of cover graphs.



aton groups Spectral computations Infinite Schreie

00®0000000

Graph

[Cavaleri, D'Angeli, Donno, Rodaro, Groups, Geometry, and Dynamics (2024)]:
Explicit computation of the spectrum of the Schreier graphs of the graph automaton
group Gs,, where S, is the star graph on p + 1 vertices.

The case p =3

Consider the oriented star S3 on the vertices {0, 1,2, 3} and the associated automaton.
01
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The Schreier graphs I'; and I'; of Gs,
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The Schreier graph I'3 of Gs,

321 131
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The adjacency matrix of the Schreier graphs of Gs,

Using the self-similar representation of the generators of Gs,

a=(a,id,id,id)(01) b= (b,id,id,id)(02) c=/c,id,id,id)(0 3)

we write by recursion the permutation matrices of size 4™
0|a |00 0[O0 |b,|O 0[0|0]cn
o Ih]0|O0|O vt — O(lL|O]|O P 0|/L|0]O
"l oo [h|Oo | T T | T R][o[o]o | T | 0]0]k]|O
0|0 [0]/ 0(0| O |/ ILh|0]0|O
together with
01 0 O 0 0 1 0 0 0 0 1
0 — 1 0 0 0 b — 01 0 0 o — 01 0 O
'l o010 '"l1 o000 | 0010
0 0 0 1 0 0 0 1 1 0 00

and similarly for anjrll, b,;ll, c,;ll, ayl, bt ot
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The adjacency matrix of the Schreier graphs of Gs,

Then the adjacency matrix of the graph I, is obtained as

Ansi = anyi+agh+ bays+ byl + o + 6h
0 an+hh | ba+1l | ca+ 1y
=1
al i, | 4l 0 0
f— >
b,'+ 1, | O 4l 0 o n21
11, 0 0 41,
with
02 2 2
_ _ _ 2 4 0 0
Av=aita tbitb tatai=[ 5 o .
2 0 0 4

Schur Complement technique
A

c| D
C has size (n — k) x k, and D has size (n — k) x (n— k). If D is nonsingular, one has

Let M = ( be a block matrix, where A has size k X k, B has size k x (n— k),

det M = det D - det(A — BD*C),

where the matrix A — BD~1C is called the Schur complement of D.
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Theorem

Let P,()\) be the characteristic polynomial of the adjacency matrix A, of the Schreier
graph ', of Gs,, for each n > 1. Then

Pra(A) = (A = 4)"*" Po(F(N),
with f(A) = A2 — 4\ — 6 and P1(A\) = (A — 6)(A +2)(\ — 4)%.

Proof

We use the Schur complement technique for the computation of

M | anth  bath  catlh

_ _ aal 1, | (4=N, 0 0
Pn+1()\) = det(A,,H = )\In+1) = det b;l + I,, 0 (4 - )\)I,-, 0
it 0 0 4 — ),

and we obtain

an AN —4X—6 1
_ 3.4 X _
det(Ant1 — A1) = (4—=)) det < T A - )\An)

= (4—X)*" - det(A, — (A2 — 4\ —6)1,).
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Theorem

For each n > 1, the following factorization of the characteristic polynomial P,(\) holds:

n—1 n—1

=00 Tl (o0+2)- T (-9

where f°'(X) = f(f(...f()\))). In particular, the spectrum of the graph T, is
————

i times

Z(rn) = {6} H <O f_i(—2)> H <O(f—i(4))2~4"f1> .

i=0

A more explicit description of the eigenvalues

Fi(=2) = 2i\/12i\/12i LLE2V2Y, i1

f(4) = 2i\/12i 12+4/... Li>1

:

where the double sign + occurs i times.
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In the general case of the star S, on p + 1 vertices:

Theorem

Let P,(\) be the characteristic polynomial of the adjacency matrix A, of the Schreier
graph I, of the group gsp, for each n > 1. Then

Par1(A) = (A = 2(p — 1))P=DPH P (£(N)),

with f,(A) = X2 —2(p — 1)A — 2p and P1(\) = (A — 2p)(A +2)(A — 2(p — 1))" .

Theorem

For each n > 1, the following factorization of the characteristic polynomial P,(\) holds:

n—1

P(3) = (A —2p)- H (F'N+2) TT(F'™ -2 -1)

)

)(P*l)'(PﬂLl)n_i_l

where £'(\) = fo(fo(. . . f(\))). In particular:
————

i times

() = {2p} H <O f;)_i(—2)> H <L_J(fp_"(2(p _ 1)))(p—1)~(p+1)"f1> .



Automaton groups
Graph automaton groups
Schreier graphs

Spectral computations

Infinite Schreier graphs



Automaton groups Graph automaton groups Schreier graphs Spectral computations Infinite Schreier graphs
0000000000000 0 000000 0000000000000 00 0000000000 0Oe000000

What about the action of an automaton group G on {0,1,...,q — 1}*° or, equivalently,
on the boundary 07,7

Boundary action

Fix w=xix0x3...... €{0,1,...,9 — 1}*.

The Schreier graph 'y, of G w.r.t. the generating set S is defined by:
1. V(fw)={ne{0,1,....,qg—1}>*:3g€G | gw) =n}
2. n~§&inT, if 3 s €S such that s(§) = 7.

Remark:

The action of G is not transitive on T4 and it factorizes into uncountably many orbits

= there exist uncountably many orbital Schreier graphs I',,, with w € 9T, which are
nonisomorphic a priori.

Question:
What is the relationship between finite and infinite Schreier graphs?
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Gromov-Hausdorff convergence

The sequence of rooted graphs (G, v») converges to the rooted graph (G, v) if
VR>03Nst Vn>None has Bg,(va, R) = Bs(v, R),

where B¢ (v, R) denotes the ball of radius R centered at v in G.

Theorem: Convergence of rooted Schreier graphs

Let w=x1x0...... €0T,={0,1,...,9g—1}*°. Put wp = x1...Xp. Then:
lim (Fp,wn) = (M, w)

n—

in the Gromov-Hausdorff sense.

= Finite Schreier graphs are approximations of infinite Schreier graphs.
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w =1001...

The sequence of rooted graphs
(F1,1),(I2,10), (I3, 100), (T4, 1001), ... ...

converges to the infinite rooted Schreier graph (I',,,w).
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What is the shape of infinite Schreier graphs?

An infinite graph I is said to be a k-ended graph if k is the supremum of the number of
connected infinite components of ', when a finite subgraph is removed from .

2 ends

| Tl
e | 4

infinitely many ends

1 end
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The case of the graph automaton group Gs,

Let Gs, be the graph automaton group associated with the star graph S, on p +1
vertices, acting on the rooted tree Tp11, so that X = {0,1,..., p}.

Put Ex = {w € X*°: T, is k-ended}.

< For each w € X°°, the elements in the orbit of w under Gs, can be described.

{ The graph 'y, is either 2p-ended, or 2-ended, or 1-ended.
The 1-ended case is generic w.r.t. the uniform measure on X°°.

{ The sets E;,, E>, E1 can be explicitly characterized.

Finally, we studied isomorphism classes of infinite Schreier (unrooted) graphs.

Theorem (Cavaleri, D'Angeli, Donno, Rodaro)

{ There is one isomorphism class of 2p-ended graphs, consisting of the only graph
rooo .

{> There are uncountably many isomorphism classes of 2-ended graphs, each
consisting of 2p graphs.

{ There are uncountably many isomorphism classes of 1-ended graphs, each
consisting of uncountably many graphs.
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Thank you for your attention!
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