On a family of groups generated by automata

Alfredo Donno

Università Niccolò Cusano, Roma, Dipartimento di Ingegneria

AGTA Workshop - Reinhold Baer Prize 2024

Università degli Studi Federico II di Napoli Dipartimento di Matematica e Applicazioni "Renato Caccioppoli"

October 7, 2024

Words on *q* letters

$$X = \{0, 1, \dots, q-1\}$$
 q-ary alphabet

$$X^n = \{x_1 x_2 \dots x_n : x_i \in X\}$$
 q-ary words of length n

$$X^* = \bigcup_{n>0} X^n$$
, with $X^0 = \{\emptyset\}$

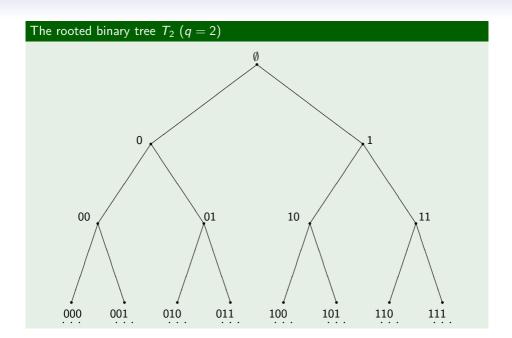
$$X^{\infty} = \{x_1 x_2 \dots x_i \in X\}$$
 infinite q-ary words

Remark:

Automaton groups 0000000000000

> X^* can be identified with the vertex set of the *infinite rooted regular tree* T_q of degree a. where:

- empty word $\emptyset \longleftrightarrow$ root of T_a
- $X^n \longleftrightarrow$ vertices of the *n*-th level L_n of T_a
- $X^{\infty} \longleftrightarrow \partial T_q = \text{boundary of } T_q$.



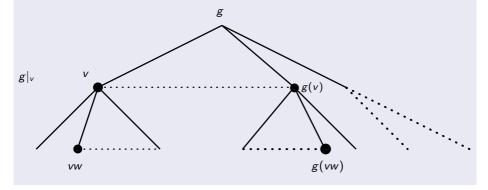
Restrictions of an element of $Aut(T_q)$

Automaton groups

 $Aut(T_q) = \text{group of all automorphisms of } T_q$. Let $g \in Aut(T_q)$ and $v \in X^*$.

The restriction $g|_v: X^* \to X^*$ of g at v is defined by

$$g(vw) = g(v)g|_v(w),$$
 for each $w \in X^*$.



Self-similar representation of an element of $Aut(T_a)$

$$Aut(T_q) \cong Sym(q) \wr Aut(T_q) \cong (\underbrace{Aut(T_q) \times \cdots \times Aut(T_q)}_{q \text{ times}}) \rtimes Sym(q),$$

where Sym(q) is the symmetric group on q elements.

 \Rightarrow self-similar representation of $g \in Aut(T_a)$:

$$g = (g|_0, g|_1, \dots, g|_{q-1})\pi_g,$$

where:

Automaton groups 00000000000000

> π_g = permutation induced by g on the first level L_1 of T_q $g|_i$ = restriction of g at the vertex i of L_1 , for $i = 0, 1, \dots, q-1$.

The action of a group $G \leq Aut(T_q)$ is self-similar if $\forall g \in G$ and $x \in \{0, 1, \dots, q-1\}$ there exist $h \in G$ and $y \in \{0, 1, \dots, q-1\}$ such that

$$g(xw) = yh(w) \qquad \forall w \in \{0, 1, \dots, q-1\}^*. \tag{1}$$

By iterating, we get that $\forall g \in G$ and $v \in \{0, 1, \dots, q-1\}^*$ there exist $h \in G$ and $u \in \{0, 1, \dots, q-1\}^*$, with |u| = |v|, such that

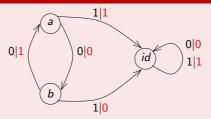
$$g(vw) = uh(w) \qquad \forall w \in \{0, 1, \ldots, q-1\}^*.$$

Eq. (1) can be interpreted as the work of a machine, which being in a state g and receiving as **input** letter x, goes into **state** h and returns the **output** letter y

 \Rightarrow Automaton groups

- *S* is a set (*states* of *A*)
- X is an alphabet
- $\lambda: S \times X \to S$ transition function
- $\mu: S \times X \to X$ output function.

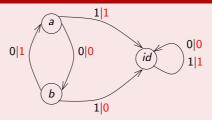
Example (q = 2)



$$X = \{0, 1\}$$
 $\mu(a, 0) = 0$ $\lambda(a, 0) = b$ $\mu(b, 1) = 0$ $\lambda(b, 1) = id$

- *S* is a set (*states* of *A*)
- X is an alphabet
- $\lambda: S \times X \to S$ transition function
- $\mu: S \times X \to X$ output function.

Example (q = 2)

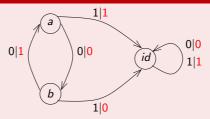


$$X = \{0, 1\}$$
 $\mu(a, 0) = 0$ $\lambda(a, 0) = b$ $\mu(b, 1) = 0$ $\lambda(b, 1) = id$

$$b(0010) =$$

- S is a set (states of A)
- X is an alphabet
- $\lambda: S \times X \to S$ transition function
- $\mu: S \times X \rightarrow X$ output function.

Example (q = 2)



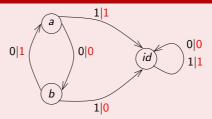
$$X=\{0,1\}$$

$$\mu(a,0)={\color{red}0} \qquad \lambda(a,0)=b \qquad \mu(b,1)={\color{red}0} \qquad \lambda(b,1)=id$$

$$b(0010) = 1a(010) =$$

- *S* is a set (*states* of *A*)
- X is an alphabet
- $\lambda: S \times X \to S$ transition function
- $\mu: S \times X \to X$ output function.

Example (q = 2)

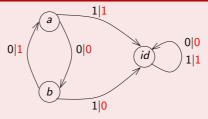


$$X = \{0, 1\}$$
 $\mu(a, 0) = 0$ $\lambda(a, 0) = b$ $\mu(b, 1) = 0$ $\lambda(b, 1) = id$

$$b(0010) = 1a(010) = 10b(10) =$$

- *S* is a set (*states* of *A*)
- X is an alphabet
- $\lambda: S \times X \to S$ transition function
- $\mu: S \times X \to X$ output function.

Example (q = 2)

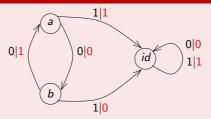


$$X = \{0, 1\}$$
 $\mu(a, 0) = 0$ $\lambda(a, 0) = b$ $\mu(b, 1) = 0$ $\lambda(b, 1) = id$

$$b(0010) = 1a(010) = 10b(10) = 100id(0) =$$

- *S* is a set (*states* of *A*)
- X is an alphabet
- $\lambda: S \times X \to S$ transition function
- $\mu: S \times X \to X$ output function.

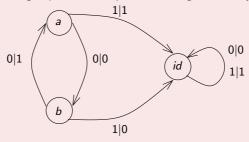
Example (q = 2)



$$X = \{0, 1\}$$
 $\mu(a, 0) = 0$ $\lambda(a, 0) = b$ $\mu(b, 1) = 0$ $\lambda(b, 1) = id$

$$b(0010) = 1a(010) = 10b(10) = 100id(0) = 1000$$

The Basilica group is the group of automorphisms of T_2 generated by the automaton



Self-similar representation of the generators:

$$a = (b, id)$$
 $b = (a, id)\varepsilon$,

with $\varepsilon = (0 \ 1) = \text{nontrivial permutation of } Sym(2)$.

[R. Grigorchuk, A. Żuk, On a torsion-free weakly branch group defined by a three state automaton, *Int. J. Algebra Comput.* **12** (2002), 223–246]

Let $G \leq Aut(T_q)$ be an automaton group transitive on each level of T_q .

- $Stab_G(v) = \{g \in G : g(v) = v\}$ vertex stabilizer;
- $Stab_G(L_n) = \bigcap_{v \in X^n} Stab_G(v)$ level stabilizer.

Let $\phi: Stab_G(L_1) \to G^q$ such that:

$$g = (g|_0, g|_1, \dots, g|_{q-1})id \longmapsto (g|_0, g|_1, \dots, g|_{q-1}).$$

Then:

Automaton groups

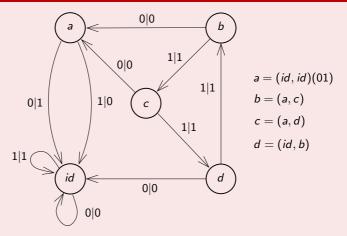
 \Diamond G is regular weakly branch over K if there exists a normal subgroup $K \neq \{1\}$ in G, with $K \leq Stab_G(L_1)$, such that

$$\phi(K) > \underbrace{K \times K \times \cdots \times K}_{a \text{ times}}.$$

 \Diamond G is regular branch over K if it is regular weakly branch over K and

$$[G:K]<\infty.$$

The automaton generating the Grigorchuk group ${\cal G}$



[R. Grigorchuk. On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 53-54.]

Some remarkable properties of the Grigorchuk group ${\mathcal G}$

- ullet ${\cal G}$ is a finitely generated, infinite, torsion group (Burnside Problem)
- ullet ${\cal G}$ is not finitely presented, but it admits the recursive presentation of ${\it L}$ -type:

$$\mathcal{G} = \langle a, b, c, d | a^2, b^2, c^2, d^2, bcd, \sigma^i(ad)^4, \sigma^i(adacac)^4, i \geq 0 \rangle$$

where σ is the substitution on $\{a, b, c, d\}^*$ defined by

$$\sigma(a) = aca, \ \sigma(b) = d, \ \sigma(c) = b, \ \sigma(d) = c.$$

(Lysenok 1985)

- G is just-infinite
- ullet ${\mathcal G}$ has solvable word problem and solvable conjugacy problem
- ullet g was the first example of a group of intermediate growth (Milnor Problem)

$$e^{n^{\alpha}} \leq \gamma(n) \leq e^{n^{\beta}}, \qquad 0 < \alpha, \beta < 1.$$

Grigorchuk (1984) :
$$\alpha = 0.5$$
; $\beta = \log_{32} 31 \approx 0.991$

Leonov (2001) : $\alpha \approx 0.504$; Bartholdi (2001) : $\beta \approx 0.7675$

• \mathcal{G} is residually finite: the approximating sequence of finite quotient groups is $\{\mathcal{G}_n = \mathcal{G}/Stab_{\mathcal{G}}(L_n)\}$, with

$$\mathcal{G}_1 \cong \mathcal{C}_2; \quad \mathcal{G}_2 \cong \mathcal{C}_2 \wr \mathcal{C}_2; \quad \mathcal{G}_3 \cong \mathcal{C}_2 \wr \mathcal{C}_2 \wr \mathcal{C}_2; \qquad |\mathcal{G}_n| = 2^{5 \cdot 2^{n-3} + 2}, n \geq 3.$$

• \mathcal{G} is regular branch over its normal subgroup $K = \langle (ab)^2 \rangle^{\mathcal{G}}$:

$$[\mathcal{G}:K]=16$$
 $\phi(K)\geq K\times K$

Put $K_n = \underbrace{K \times \cdots \times K}_{2^n \text{ times}}$, where each factor acts on a subtree rooted at L_n

- $\Rightarrow \{K_n\}_{n\geq 1}$ is a descending sequence of normal subgroups of finite index in $\mathcal G$ with trivial intersection
- \Rightarrow branching subgroup structure
- \mathcal{G} is amenable but not elementary amenable (Day Problem).

Consider the map $f: \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}}$ defined as

$$f(z)=z^2-1$$

Critical set: $C_f = \{0, \infty\}$

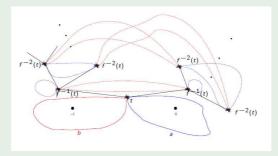
Post-critical set: $P_f = \bigcup f^n(C_f) = \{-1, 0, \infty\}$

Look at the restriction

Automaton groups 00000000000000

$$f: \hat{\mathbb{C}} \setminus f^{-1}(P_f) \longrightarrow \hat{\mathbb{C}} \setminus P_f$$

If $t \in \hat{\mathbb{C}} \setminus P_f$, the set $\bigcup f^{-n}(t)$ can be identified with the tree T_2 .



The action of $\pi_1(\mathbb{C}\setminus\{-1,0\})$ on such a tree coincides with the action of the Basilica group on $T_2 \implies IMG(z^2-1)$

Let $f: \mathbb{C} \to \mathbb{C}$ be a rational map.

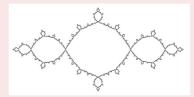
Automaton groups

The Julia set J(f) of f is the set of limit points of the full backwards orbit $\bigcup_n f^{-n}(z)$.

It often has a fractal structure!

Example: The Julia set of the map $f(z) = z^2 - 1$

The Julia set of $f(z) = z^2 - 1$ is the so-called *Basilica* fractal!



This explains the reason for the name of the Basilica group $IMG(z^2-1)!$

Graph automaton groups

Schreier graphs

Spectral computations

Infinite Schreier graphs

Advances in Group Theory and Applications

© 2021 AGTA - www.advgrouptheory.com/journal

11 (2021), pp. 75-112

ISSN: 2499-1287 DOI: 10.32037/agta-2021-005

Graph Automaton Groups*

Matteo Cavaleri — Daniele D'Angeli — Alfredo Donno Emanuele Rodaro

(Received July 24, 2020; Accepted Sept. 19, 2020 — Communicated by F. de Giovanni)

Let $\Gamma = (V, E)$ be a finite graph, with $V = \{x_1, \dots, x_q\}$.

Let E' be the set of edges, where an orientation of each edge has been chosen, so that an element of E' is an ordered pair of type (x_i, x_i) .

Define an automaton $A_{\Gamma} = (E' \cup \{id\}, V, \lambda, \mu)$ s.t.:

- $E' \cup \{id\}$ is the set of states;
- *V* is the alphabet;
- $\lambda: E' \times V \to E'$ is such that, for each $e = (x, y) \in E'$:

$$\lambda(e,z) = \begin{cases} e & \text{if } z = x \\ id & \text{if } z \neq x; \end{cases}$$
 (transition function)

• $\mu: E' \times V \to V$ is such that, for each $e = (x, y) \in E'$:

$$\mu(e,z) = \begin{cases} y & \text{if } z = x \\ x & \text{if } z = y \\ z & \text{if } z \neq x, y. \end{cases}$$
 (output function)

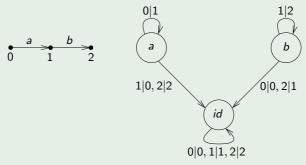
In words: the state e = (x, y) has one transition to itself (given by $\lambda(e, x) = e$) and all other transitions to the sink id.

It acts nontrivially only on x and y, which are switched as $\mu(e, x) = y$ and $\mu(e, y) = x$.

 \Rightarrow The graph automaton group \mathcal{G}_{Γ} is the automaton group generated by \mathcal{A}_{Γ} .

Example: the Tangled odometer

The path graph P_3 on 3 vertices and the associated automaton A_{P_3} .



The group \mathcal{G}_{P_3} is the so-called *Tangled odometer*.

Its generators have the self-similar representation:

$$a = (a, id, id)(0 1)$$
 $b = (id, b, id)(1 2).$

Some basic properties of graph automaton groups

- Any loop in Γ gives rise to the trivial element of \mathcal{G}_{Γ} .
- Any multiedge produces a set of equal generators (up to consider the inverse) \implies The graph $\Gamma = (V, E)$ can be supposed to be simple.
- The group \mathcal{G}_{Γ} does not depend on the choice of the edge orientation, since changing the orientation of an edge corresponds to invert a generator.
- If $e, f \in E$ do not share any vertex, then

$$[e, f] = e^{-1}f^{-1}ef = id,$$

since their action are nontrivial on disjoint subsets of V.

- A rearrangement of the vertex set of $\Gamma = (V, E)$ produces groups that are isomorphic.
- If $\widetilde{\Gamma} = (\widetilde{V}, \widetilde{E})$ is a graph isomorphic to a subgraph of $\Gamma = (V, E)$, then

$$\mathcal{G}_{\widetilde{\Gamma}} \leq \mathcal{G}_{\Gamma}$$

• If $\Gamma = (V, E)$ is the disjoint union of the graphs $\Gamma_1 = (V_1, E_1), \ldots, \Gamma_t = (V_t, E_t),$ then

$$\mathcal{G}_{\Gamma} = \mathcal{G}_{\Gamma_1} \times \cdots \times \mathcal{G}_{\Gamma_t}$$

 \implies The graph $\Gamma = (V, E)$ can be supposed to be connected.

Theorem [Cavaleri, D'Angeli, Donno, Rodaro, Adv. Group Theory Appl. (2021)]

Let $\Gamma = (V, E)$ be a graph, with |E| > 2, and let \mathcal{G}_{Γ} be the associated graph automaton group. Then:

- 1. \mathcal{G}_{Γ} is weakly regular branch over its commutator subgroup;
- 2. \mathcal{G}_{Γ} contains an element of finite order;
- 3. \mathcal{G}_{Γ} has trivial center:
- 4. \mathcal{G}_{Γ} is amenable:
- 5. If |V| > 5, then \mathcal{G}_{Γ} is not solvable;
- 6. If the graph Γ contains a cycle e_1, \ldots, e_t , then $(e_1^{\varepsilon_1} \cdots e_t^{\varepsilon_t})^{t-1}$, with $\varepsilon_i \in \{\pm 1\}$, is a relation in \mathcal{G}_{Γ} whenever $e_1^{\varepsilon_1}, \ldots, e_t^{\varepsilon_t}$ is an oriented cycle in Γ ;
- 7. If e, f are two edges sharing a vertex in the graph Γ , then the semigroup generated by e and f is free
 - $\Rightarrow \mathcal{G}_{\Gamma}$ has exponential growth.

Schreier graphs

Automaton groups

Schreier graphs

Given an automaton group \mathcal{G} acting on the rooted tree T_q , the n-th Schreier graph Γ_n of G w.r.t. the symmetric generating set S is defined as:

Schreier graphs

- 1. $V(\Gamma_n) = \{0, 1, \dots, q-1\}^n$
- 2. $u \sim v$ in Γ_n if $\exists s \in S$ such that s(u) = v. In this case, we have

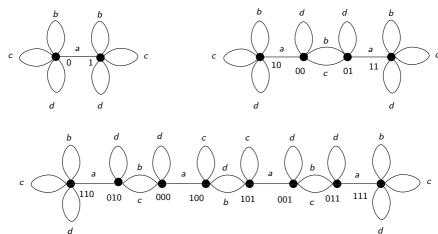
Remarks:

- $\Diamond \Gamma_n$ is regular of degree |S| on q^n vertices
- Γ_n is connected if the action of \mathcal{G} on L_n is transitive
- ♦ The map

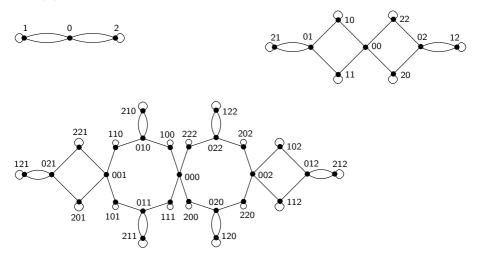
$$\pi_{n+1}: \Gamma_{n+1} \longrightarrow \Gamma_n$$
 $x_1 \dots x_n x_{n+1} \longmapsto x_1 \dots x_n$
 $\forall x_1 \dots x_{n+1} \in \{0, 1, \dots, q-1\}^{n+1}$

induces a graph covering of order q.

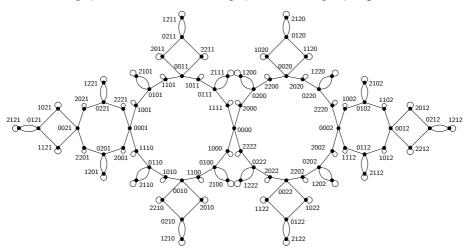
The Schreier graph Γ_n of the action of the Grigorchuk group on T_2 , for n=1,2,3.



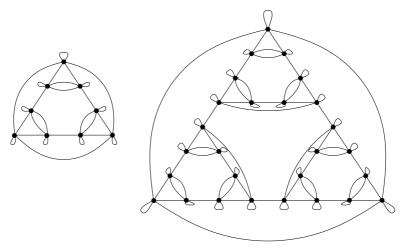
The Schreier graph Γ_n of the action of the graph automaton group \mathcal{G}_{P_3} on \mathcal{T}_3 , for n=1,2,3.



The Schreier graph Γ_4 of the action of the graph automaton group \mathcal{G}_{P_3} on \mathcal{T}_3 .

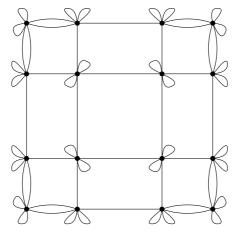


The Schreier graphs Γ_2 and Γ_3 of the graph automaton group \mathcal{G}_{Γ} acting on \mathcal{T}_3 , when Γ is a cycle of length 3.

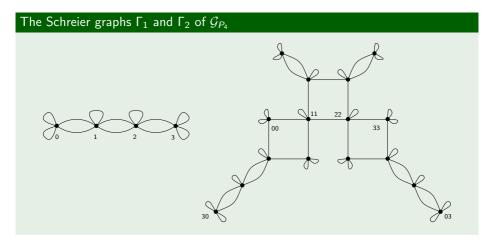


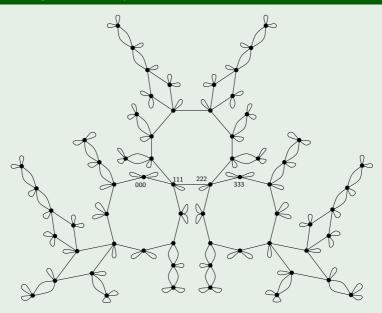
The Schreier graph Γ_2 of the graph automaton group \mathcal{G}_{Γ} acting on \mathcal{T}_4 , when Γ is a cycle of length 4.

Schreier graphs



Schreier graphs





How to construct Γ_n from Γ_{n-1} for the group \mathcal{G}_{P_n}

Consider the path graph P_q on q vertices

Schreier graphs

- 1. Take q copies of Γ_{n-1} and append to the end of the vertices of the i-th copy the letter i, for $i = 0, \ldots, q - 1$.
- 2. For each $i = 1, \ldots, q 2$, remove the edges

$$\{i^n, (i-1)^{n-1}i\}$$
 and $\{i^n, (i+1)^{n-1}i\}$

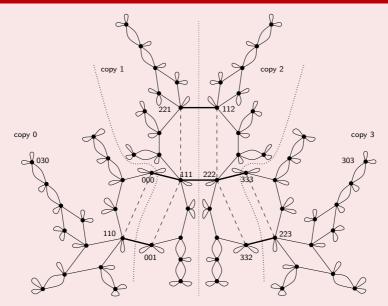
together with the edges

$$\{0^n, 1^{n-1}0\}$$
 and $\{(q-1)^n, (q-2)^{n-1}(q-1)\}.$

3. For $i = 0, \dots, q - 2$, join the *i*-th and (i + 1)-th copies by adding the edges

$$\{i^n, (i+1)^n\}$$
 and $\{(i+1)^{n-1}i, i^{n-1}(i+1)\}.$

The last operation gives rise to new cycles of doubled length with respect to the level n-1.



The copies are separated by dotted lines; the deleted edges are represented by dashed lines; the new edges producing cycles of length 8 are in bold lines.

Using this recursive construction of the Schreier graphs $\{\Gamma_n\}_{n\geq 1}$ of the graph automaton group \mathcal{G}_{P_q} , for $q \geq 3$, it is possible:

- to determine the number and the length of the cycles in Γ_n ;
- \Diamond to determine the *diameter* of Γ_n , via the recursion

$$\left\{ \begin{array}{l} \text{diam}(\Gamma_n) = \text{diam}(\Gamma_{n-1}) + 2(q-3) + 2^n \\ \text{diam}(\Gamma_1) = q-1, \end{array} \right.$$

obtaining
$$diam(\Gamma_n) = 2^{n+1} + (q-1)(2n-1) - 4n$$
;

 \Diamond to establish that the automorphism group of Γ_n is isomorphic to the group $\mathbb{Z}_2^{\phi_q(n)+1}$, where

$$\phi_q(n) = \frac{2(q^{n-1} - 2q^{n-2} + 1)}{q - 1}$$

is the number of cycles of length greater or equal to 4 in Γ_n generated by the action of the generators e_1 and e_{q-1} .

Let $\Gamma = (V, E)$ be a connected graph.

 $d_{\Gamma}(u,v) = geodesic\ distance\ of\ the\ vertices\ u,v\in V\ in\ \Gamma$ = length of a shortest path in Γ connecting u and v.

Wiener index $W(\Gamma)$ of Γ :

$$W(\Gamma) = \frac{1}{2} \sum_{u,v \in V} d_{\Gamma}(u,v).$$

Schreier graphs 0000000000000000

[H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

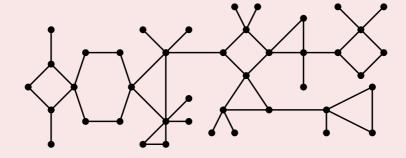
Applications

- Chemical graph theory
- Centrality measures in graphs
- ♦ Social networks and Game theory

A connected graph $\Gamma = (V, E)$ is a *cactus* if it satisfies one of the following equivalent conditions:

Schreier graphs 000000000000000

- any two cycles have no edge in common;
- A any two cycles have at most one vertex in common.



Theorem [D'Angeli, Hammer, Rodaro (2024)]

Let $T = (V_T, E_T)$ be a tree, with $|V_T| = k$, and let \mathcal{G}_T be the associated graph automaton group.

Schreier graphs

For each $n \ge 1$, let Γ_n be the Schreier graph of \mathcal{G}_T . Then Γ_n is a cactus. Moreover:

$$W(\Gamma_n) = \frac{(k-1)^2(2k^2-2k-1)}{k^3(2k-1)} \cdot 2^n k^{2n} - \frac{2(k-1)^2}{k^2} \cdot nk^{2n}$$

$$+ \frac{2(k+1)(k-1)}{k^3} \cdot k^{2n} - \frac{2(k+1)(k-1)}{k(2k-1)} \cdot k^n$$

$$+ \left(\frac{2}{k^2} \cdot nk^{2n} - \frac{(k^2+2)}{k^3(k-1)} \cdot k^{2n} + \frac{(k+2)}{k^2(k-1)} \cdot k^n\right) W(T).$$

Remark

Extremal bounds are obtained for $T = S_{k-1}$ and $T = P_k$, since it is known that:

$$(k-1)^2 = W(S_{k-1}) \le W(T) \le W(P_k) = {k+1 \choose 3} = \frac{1}{6}k(k^2-1)$$

Automaton groups

Automaton groups

Graph automaton groups

Schreier graphs

Spectral computations

Infinite Schreier graphs

The spectrum of a graph $\Gamma = (V, E)$

The adjacency matrix A_{Γ} of Γ is the matrix defined by $(A_{\Gamma})_{i,j} = \begin{cases} 1 & \text{if } v_i \sim v_j \\ 0 & \text{otherwise} \end{cases}$ and its (real) spectrum is called the adjacency spectrum (or spectrum) of Γ .

Spectra of Schreier graphs of automaton groups have been largely studied in the last decades, in connection with problems in Algebra, Operator algebras, Random walks, Combinatorics, Fractal geometry.

In some cases, a recursive approach allowed to explicitly compute the spectrum of the adjacency matrix (e.g., Grigorchuk group, Hanoi Towers group, Lamplighter group).

This approach failed for the Basilica group, and an explicit description of the spectrum of its Schreier graphs does not exist, even if some efforts have been made with this aim:

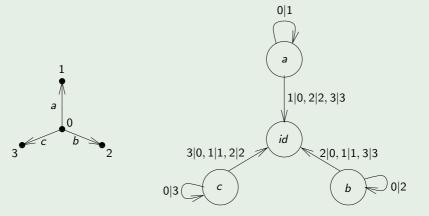
- Grigorchuk, Żuk (2002): two-dimensional dynamical system describing the spectrum.
- Rogers, Teplyaev (2010): Dirichlet forms and associated Laplace operators on the Basilica Julia set.
- Cavaleri, D'Angeli, Donno (2022): study of the characteristic polynomial using the Coefficient Theorem for signed graphs and the spectral theory of cover graphs.

Spectral computations 000000000

[Cavaleri, D'Angeli, Donno, Rodaro, Groups, Geometry, and Dynamics (2024)]: Explicit computation of the spectrum of the Schreier graphs of the graph automaton group \mathcal{G}_{S_p} , where S_p is the *star graph* on p+1 vertices.

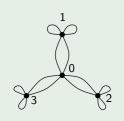
The case p = 3

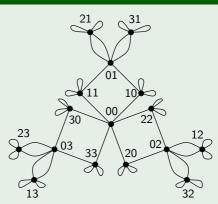
Consider the oriented star S_3 on the vertices $\{0, 1, 2, 3\}$ and the associated automaton.



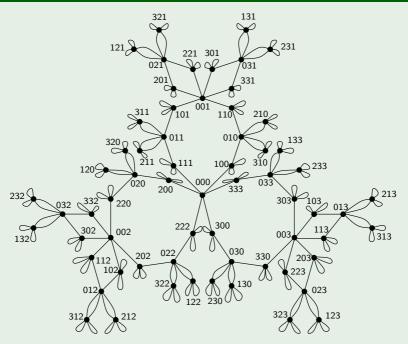
The Schreier graphs Γ_1 and Γ_2 of \mathcal{G}_{S_3}

Automaton groups





The Schreier graph Γ_3 of \mathcal{G}_{S_3}



The adjacency matrix of the Schreier graphs of \mathcal{G}_{S_3}

Using the self-similar representation of the generators of \mathcal{G}_{S_3}

$$a = (a, id, id, id)(0 1)$$
 $b = (b, id, id, id)(0 2)$ $c = (c, id, id, id)(0 3)$

we write by recursion the permutation matrices of size 4^{n+1}

$$a_{n+1} = \begin{pmatrix} 0 & a_n & 0 & 0 \\ \frac{I_n}{I_n} & 0 & 0 & 0 \\ \hline 0 & 0 & I_n & 0 \\ \hline 0 & 0 & 0 & I_n \end{pmatrix} b_{n+1} = \begin{pmatrix} 0 & 0 & b_n & 0 \\ \hline 0 & I_n & 0 & 0 \\ \hline I_n & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & I_n \end{pmatrix} c_{n+1} = \begin{pmatrix} 0 & 0 & 0 & c_n \\ \hline 0 & I_n & 0 & 0 \\ \hline 0 & 0 & I_n & 0 \\ \hline I_n & 0 & 0 & 0 \end{pmatrix}$$

together with

$$a_1 = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight) \ b_1 = \left(egin{array}{cccc} 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight) \ c_1 = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \end{array}
ight)$$

and similarly for a_{n+1}^{-1} , b_{n+1}^{-1} , c_{n+1}^{-1} , a_1^{-1} , b_1^{-1} , c_1^{-1} .

Then the adjacency matrix of the graph Γ_{n+1} is obtained as

$$A_{n+1} = a_{n+1} + a_{n+1}^{-1} + b_{n+1} + b_{n+1}^{-1} + c_{n+1} + c_{n+1}^{-1}$$

$$= \begin{pmatrix} 0 & |a_n + I_n| & |b_n + I_n| & |c_n + I_n| \\ \hline a_n^{-1} + I_n & |4I_n| & 0 & 0 \\ \hline b_n^{-1} + I_n & 0 & |4I_n| & 0 \\ \hline c_n^{-1} + I_n & 0 & 0 & |4I_n| \end{pmatrix}, \quad n \ge 1$$

with

$$A_1 = a_1 + a_1^{-1} + b_1 + b_1^{-1} + c_1 + c_1^{-1} = \left(egin{array}{cccc} 0 & 2 & 2 & 2 \ 2 & 4 & 0 & 0 \ 2 & 0 & 4 & 0 \ 2 & 0 & 0 & 4 \end{array}
ight).$$

Schur Complement technique

Let $M = \begin{pmatrix} A & B \\ \hline C & D \end{pmatrix}$ be a block matrix, where A has size $k \times k$, B has size $k \times (n-k)$,

C has size $(n-k) \times k$, and D has size $(n-k) \times (n-k)$. If D is nonsingular, one has

$$\det M = \det D \cdot \det(A - BD^{-1}C),$$

where the matrix $A - BD^{-1}C$ is called the *Schur complement* of D.

Theorem

Let $P_n(\lambda)$ be the characteristic polynomial of the adjacency matrix A_n of the Schreier graph Γ_n of \mathcal{G}_{S_3} , for each $n \geq 1$. Then

$$P_{n+1}(\lambda) = (\lambda - 4)^{2 \cdot 4^n} P_n(f(\lambda)),$$

with
$$f(\lambda) = \lambda^2 - 4\lambda - 6$$
 and $P_1(\lambda) = (\lambda - 6)(\lambda + 2)(\lambda - 4)^2$.

Proof

We use the Schur complement technique for the computation of

$$P_{n+1}(\lambda) = \det(A_{n+1} - \lambda I_{n+1}) = \det\begin{pmatrix} \frac{-\lambda I_n}{a_n^{-1} + I_n} & a_n + I_n & b_n + I_n & c_n + I_n \\ \frac{a_n^{-1} + I_n}{a_n^{-1} + I_n} & (4 - \lambda)I_n & 0 & 0 \\ c_n^{-1} + I_n & 0 & (4 - \lambda)I_n & 0 \\ c_n^{-1} + I_n & 0 & 0 & (4 - \lambda)I_n \end{pmatrix}$$

and we obtain

$$\det(A_{n+1} - \lambda I_{n+1}) = (4 - \lambda)^{3 \cdot 4^n} \cdot \det\left(\frac{\lambda^2 - 4\lambda - 6}{4 - \lambda} I_n - \frac{1}{4 - \lambda} A_n\right)$$
$$= (4 - \lambda)^{2 \cdot 4^n} \cdot \det(A_n - (\lambda^2 - 4\lambda - 6) I_n).$$

Theorem

For each $n \ge 1$, the following factorization of the characteristic polynomial $P_n(\lambda)$ holds:

$$P_n(\lambda) = (\lambda - 6) \cdot \prod_{i=0}^{n-1} \left(f^{\circ i}(\lambda) + 2 \right) \cdot \prod_{i=0}^{n-1} \left(f^{\circ i}(\lambda) - 4 \right)^{2 \cdot 4^{n-i-1}},$$

where $f^{\circ i}(\lambda) = \underbrace{f(f(\dots f(\lambda)))}_{l}$. In particular, the spectrum of the graph Γ_n is

$$\Sigma(\Gamma_n) = \{6\} \coprod \left(\bigcup_{i=0}^{n-1} f^{-i}(-2) \right) \coprod \left(\bigcup_{i=0}^{n-1} (f^{-i}(4))^{2 \cdot 4^{n-i-1}} \right).$$

A more explicit description of the eigenvalues

$$f^{-i}(-2) = \left\{ 2 \pm \sqrt{12 \pm \sqrt{12 \pm \sqrt{\dots \pm 2\sqrt{2}}}} \right\}, \ i \ge 1$$
$$f^{-i}(4) = \left\{ 2 \pm \sqrt{12 \pm \sqrt{12 \pm \sqrt{\dots \pm \sqrt{14}}}} \right\}, \ i \ge 1$$

where the double sign \pm occurs *i* times.

In the general case of the star S_p on p+1 vertices:

Theorem

Let $P_n(\lambda)$ be the characteristic polynomial of the adjacency matrix A_n of the Schreier graph Γ_n of the group \mathcal{G}_{S_p} , for each $n \geq 1$. Then

$$P_{n+1}(\lambda) = (\lambda - 2(p-1))^{(p-1)\cdot(p+1)^n} P_n(f_p(\lambda)),$$

with
$$f_p(\lambda) = \lambda^2 - 2(p-1)\lambda - 2p$$
 and $P_1(\lambda) = (\lambda - 2p)(\lambda + 2)(\lambda - 2(p-1))^{p-1}$.

Theorem

For each $n \ge 1$, the following factorization of the characteristic polynomial $P_n(\lambda)$ holds:

$$P_n(\lambda) = (\lambda - 2p) \cdot \prod_{i=0}^{n-1} \left(f_p^{\circ i}(\lambda) + 2 \right) \cdot \prod_{i=0}^{n-1} \left(f_p^{\circ i}(\lambda) - 2(p-1) \right)^{(p-1) \cdot (p+1)^{n-i-1}}$$

where $f_p^{\circ i}(\lambda) = \underbrace{f_p(f_p(\dots f_p(\lambda)))}_{i \text{ times}}$. In particular:

$$\Sigma(\Gamma_n) = \{2p\} \coprod \left(\bigcup_{i=0}^{n-1} f_p^{-i}(-2) \right) \coprod \left(\bigcup_{i=0}^{n-1} (f_p^{-i}(2(p-1)))^{(p-1)\cdot(p+1)^{n-i-1}} \right).$$

Automaton groups

Graph automaton groups

Schreier graphs

Spectral computations

Infinite Schreier graphs

What about the action of an automaton group \mathcal{G} on $\{0,1,\ldots,q-1\}^{\infty}$ or, equivalently, on the boundary ∂T_a ?

Boundary action

Fix
$$\omega = x_1 x_2 x_3 \dots \in \{0, 1, \dots, q-1\}^{\infty}$$
.

The Schreier graph Γ_{ω} of \mathcal{G} w.r.t. the generating set S is defined by:

- **1.** $V(\Gamma_{\omega}) = \{ \eta \in \{0, 1, \dots, q-1\}^{\infty} : \exists \ g \in \mathcal{G} \mid g(\omega) = \eta \}$
- 2. $\eta \sim \xi$ in Γ_{ω} if $\exists s \in S$ such that $s(\xi) = \eta$.

Remark:

The action of \mathcal{G} is not transitive on ∂T_q and it factorizes into uncountably many orbits \Rightarrow there exist uncountably many orbital Schreier graphs Γ_{ω} , with $\omega \in \partial T_q$, which are

nonisomorphic a priori.

Question:

What is the relationship between finite and infinite Schreier graphs?

The sequence of rooted graphs (G_n, v_n) converges to the rooted graph (G, v) if

$$\forall$$
 $R > 0 \exists$ N s.t. \forall $n > N$ one has $B_{G_n}(v_n, R) \cong B_G(v, R)$,

where $B_G(v, R)$ denotes the ball of radius R centered at v in G.

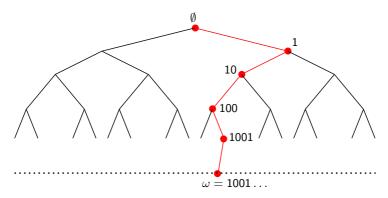
Theorem: Convergence of rooted Schreier graphs

Let
$$\omega = x_1 x_2 \dots \in \partial T_q = \{0, 1, \dots, q-1\}^{\infty}$$
. Put $\omega_n = x_1 \dots x_n$. Then:

$$\lim_{n\to\infty}(\Gamma_n,\omega_n)=(\Gamma_\omega,\omega)$$

in the Gromov-Hausdorff sense.

⇒ Finite Schreier graphs are approximations of infinite Schreier graphs.

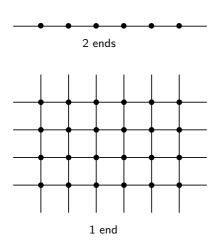


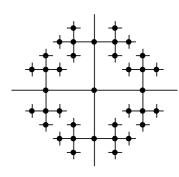
The sequence of rooted graphs

$$(\Gamma_1,1), (\Gamma_2,10), (\Gamma_3,100), (\Gamma_4,1001), \ldots \ldots$$

converges to the infinite rooted Schreier graph $(\Gamma_{\omega}, \omega)$.

An infinite graph Γ is said to be a *k*-ended graph if *k* is the supremum of the number of connected infinite components of Γ , when a finite subgraph is removed from Γ .





infinitely many ends

Let \mathcal{G}_{S_p} be the graph automaton group associated with the star graph S_p on p+1vertices, acting on the rooted tree T_{p+1} , so that $X = \{0, 1, \dots, p\}$.

Put $E_k = \{ \omega \in X^{\infty} : \Gamma_{\omega} \text{ is } k\text{-ended} \}.$

- \Diamond For each $\omega \in X^{\infty}$, the elements in the orbit of ω under \mathcal{G}_{S_n} can be described.
- \Diamond The graph Γ_{ω} is either 2*p*-ended, or 2-ended, or 1-ended. The 1-ended case is generic w.r.t. the uniform measure on X^{∞} .
- \Diamond The sets E_{2p} , E_2 , E_1 can be explicitly characterized.

Finally, we studied isomorphism classes of infinite Schreier (unrooted) graphs.

Theorem (Cavaleri, D'Angeli, Donno, Rodaro)

- ♦ There is one isomorphism class of 2*p*-ended graphs, consisting of the only graph Γ₀∞.
- ♦ There are uncountably many isomorphism classes of 2-ended graphs, each consisting of 2p graphs.
- ♦ There are uncountably many isomorphism classes of 1-ended graphs, each consisting of uncountably many graphs.

Bibliography:

L. Bartholdi, R. Grigorchuk, V. Nekrashevych, From fractal groups to fractal sets, Fractals in Graz, Trends in Mathematics, Birkäuser Verlag, Basel, 2003, 25–118.

M. Cavaleri, D. D'Angeli, A. Donno, E. Rodaro, Graph automaton groups, *Adv. Group Theory Appl.* 11 (2021), 75–112.

M. Cavaleri, D. D'Angeli, A. Donno, E. Rodaro, On a class of poly-context-free groups generated by automata, *J. Algebra* **626** (2023), 135–162.

M. Cavaleri, D. D'Angeli, A. Donno, E. Rodaro, On an uncountable family of graphs whose spectrum is a Cantor set, *Groups Geom. Dyn.* (2024), published online first.

R. Grigorchuk. On Burnside's problem on periodic groups, *Funktsional. Anal. i Prilozhen.* **14** (1980), no. 1, 53–54.

R. Grigorchuk, Some problems of the dynamics of group actions on rooted trees, *Proc. Steklov Inst. Math.* **273** (2011), no. 1, 64–175.

R. Grigorchuk, V. Nekrashevych, Z. Šunić, From self-similar groups to self-similar sets and spectra, Fractal geometry and stochastics V, 175–207, Progr. Probab., 70, Birkhäuser Springer, Cham, 2015.

R. Grigorchuk, Z. Šunić, Self-similarity and branching in group theory, *Groups St. Andrews 2005*, Vol. 1, 36–95, London Math. Soc. Lecture Note Ser., Cambr. Univ. Press, 2007.

R. Grigorchuk, A. Żuk, On a torsion-free weakly branch group defined by a three-state automaton, *International J. Algebra Comput.* **12** (2002), no. 1–2, 223–246.

V. Nekrashevych, *Self-similar Groups*, Mathematical Surveys and Monographs 117, AMS, Providence, RI, 2005.

Thank you for your attention!