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Model Theory
Model theory studies mathematical structures from the point of
view of their definable sets, i.e. the sets of realizations of some
first-order formula. These allow negation (complement), finite
conjunction (intersection) and disjunction (union), existential
quantification (projections) and universal quantification.

Examples
• CG(g) = {x ∈ G : xg = gx}, the centraliser of g ∈ G.
• Z (G) = {x ∈ G : ∀y xy = yx}, the centre of G.
• G[n] = {x ∈ G : x · · ·n x = 1}, the elements of order | n.

Non-examples
• 〈g〉, the subgroup generated by g.
• tor(G), the torsion part of G.
• ZG, the group ring over Z.
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Theories and Morphisms

Rather than analysing a single structure, model theory usually
studies classes of structures given by complete or incomplete
theories, i.e. sets of first order sentences. A particular case are
group varieties which are given by positive quantifier-free
sentences.
Similarly, substructures and morphisms are elementary, i.e.
they preserve not only the positive quantifier-free structure, but
all first-order sentences with parameters.

Examples
• (Q,+) ≺ (R,+).
• (Z,+) ≺ (Z⊕Q,+).
• (2Z,+) 6≺ (Z,+).
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Language
The available fist-order formulas depend, of course, on the
language L used. If L = {1,×,=} is reduced to the group
language, we are dealing with pure groups. However, one often
considers groups in expanded languages, for instance the ring
language L = {0,1,+,−,×,=}, or the R-module language
L = {0,+,=, λr : r ∈ R}, where R is a ring and λr is scalar
multiplication by r ∈ R.
One might also add a predicate for certain, otherwise
undefinable, subgroups, or for specific subsets.
Thus, the model theory of groups encompasses the model
theory of rings, fields, modules, algebras, etc.
Given a structure M, its theory Th(M) is the collection of all
L-sentences true in M.
Conversely, a structure M satisfying all sentences of a theory T
is a model of T .
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Ultraproducts

Recall that if I is an infinite index set, a collection F of subsets
of I is a filter if it is closed under intersection and superset and
does not contain ∅. It is an ultrafilter if it is maximal, i.e.
contains either X or I \ X for any X ⊆ I.
The axiom of choice implies that any filter can be completed to
an ultrafilter.

Examples
• A principal ultrafilter {X ⊆ I : i0 ∈ X} for some i0 ∈ I.
• The Fréchet filter {X ⊆ I : I \ X finite}.
• More generally, {X ⊆ I : |I \ X | < |I|}.
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Łos’ Theorem
Let U be an ultrafilter on I, and suppose for each i ∈ I we are
given an L-structure Mi . On the product

∏
I Mi define an

equivalence relation

(mi)I ∼ (ni)I ⇔ {i ∈ I : mi = ni} ∈ U .

Then the ultraproduct
∏
UMi =

∏
I Mi/∼ canonically carries an

L-structure, and for any formula ϕ(x̄) and parameters m̄ = (m̄i)I∏
U

Mi |= ϕ(m̄)⇔ {i ∈ I : Mi |= ϕ(m̄i)} ∈ U .

If Mi = M for all i ∈ I, the canonical diagonal embedding
M ↪→

∏
UM is elementary.

If Th(Mi) = T for all i ∈ I, then Th(
∏
UMi) = T .

Ultraproducts are a good tool to study asymptotic behaviour.
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Compactness

The Compactness Theorem is the most fundamental tool in
model theory.

Theorem
Suppose Φ is a collection of sentences such that any finite part
has a model. Then Φ has a model.

Proof.
Let I be the set of finite parts of Φ, and for i ∈ I let Mi be a
model of i . For i ∈ I put

Ii = {j ∈ I : i ⊆ j} and F = {X ⊆ I : ∃i ∈ I Ii ⊆ X}.

Then F is a filter; let U be a completion to an ultrafilter.
Then by Łos’ Theorem

∏
UMi is a model of Φ.
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Consequences

Corollary (Automatic uniformity)
• Any object proven to be finite for all models of a theory is

uniformly finite.
• Any object proven to be definable for all models of a theory

is uniformly definable.

In particular:

• There is no axiomatisation of all finite groups.
• There is no axiomatisation of all torsion groups.
• There is no axiomatisation of all nilpotent or all soluble

groups.
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Quantifier Elimination
Definition
Let C be a class of formulas (quantifier-free, existential, ∀∃,. . . ).
A theory T has C-elimination of quantifiers if every formula is
equivalent modulo T to a formula in C.
If we understand well sets defined by a formula in C, then
C-elimination of quantifiers yields a good comprehension of all
definable sets.

Examples
• R-modules eliminate down to boolean combinations of

positive-primitive formulas (particular existential formulas).
• Algebraically closed fields eliminate quantifiers.
• Real closed fields have existential elimination of

quantifiers.
• Non-abelian free groups eliminate down to boolean

combinations of ∀∃-formulas.



Model Theory Tameness

Tameness
Of course, it is impossible to prove anything meaningful about
the class of all groups.
One can study particular theories:

• Abelian groups, or more generally R-modules.
• Various theories of fields with operators (algebraically

closed, real closed, separably closed, differentially closed,
generic difference fields, Henselian valued fields), and
groups definable in those structures.

• Non-abelian free groups.

The aim usually is to prove some quantifier-elimination result in
a suitable language, and to deduce the properties of the class
of definable sets.
Alternatively, we can add some tameness condition on the
class of definable sets.
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Tameness conditions

• Minimality. An infinite structure is minimal if every
definable subset in one variable is finite or co-finite.
• Categoricity. A theory is κ-categorical if all its models of

cardinality κ are isomorphic.
• Pseudofiniteness. A structure is pseudofinite if it has the

same theory as some ultraproduct of finite structures.
• o-minimality. A totally ordered structure is o-minimal if

every definable subset in one variable is a finite union of
intervals and points.
• Combinatorial tameness. There are a variety of

conditions, each characterized by the exclusion of certain
configurations of definable sets.

All of the specific theories studied in the previous slide also
satisfy one of the above tameness conditions.
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Minimality
If G is minimal and H ≤ G infinite definable, then H = G.

Theorem (Reinecke)
A minimal group is abelian.

Proof.
The centralizer of any non-central element g must be finite by
minimality, so the conjugacy class gG is infinite, whence co-
finite. Thus all non-central elements are conjugate, and G/Z (G)
has just one non-trivial conjugacy class. G/Z (G) is not abelian,
so gZ (G) cannot have order two. Hence there is h with gh = g−1,
and CG(h2) > CG(h). But hZ (G) does not have order two, so h
and h2 are conjugate, contradicting finiteness of CG(h).

This theorem and its generalizations provide most of the
abelian subgroups in model-theoretic group theory.

Conjecture (Podewski)
A minimal field is algebraically closed.
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Theorem
A minimal field K of positive characteristic is algebraically
closed.

Proof.
The maps x 7→ xn and x 7→ xp − x have finite kernel, whence
infinite image. It follows that K has no cyclic extension, and the
subfield K alg of absolutely algebraic numbers is algebraically
closed. But it is easy to see that K alg ≺ K , so K is algebraically
closed.

Definition
A structure M is strongly minimal if all its elementary
extensions are minimal.

Theorem (Macintyre)
A strongly minimal field is algebraically closed.



Model Theory Tameness

ℵ0-categoricity
Theorem (Ryll-Nardzewski, Svenonius, Engeler)
A theory is ℵ0-categorical iff for every n there are only finitely
many inequivalent formulas in n free variables.

Thus an ℵ0-categorical group has a finite characteristic
definable series with characteristically simple quotients.

Theorem (Wilson)
An infinite countable ℵ0-categorical characteristically simple
group is

(i) an elementary abelian p-group, for some prime p, or
(ii) B(F ) or B−(F ) for some non-abelian finite simple group F,

where B(F ) = C0(C,F ) (C the Cantor space), and
B−(F ) = {f ∈ B(F ) : f (x0) = e} for a fixed x0 ∈ C, or

(iii) a perfect p-group for some prime number p.

Wilson conjectured that Case (iii) does not exist; this is open.
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Meta-Conjecture
• A tame ℵ0-categorical group or ring is virtually nilpotent.
• A supertame ℵ0-categorical group is virtually finite-by-abelian;

a supertame ℵ0-categorical ring is virtually finite-by-null.

Recall that a group/ring is virtually P if it has a finite index
subgroup/-ring which is P; it is finite-by-P if it has a finite
normal subgroup/ideal I such that it is P modulo I;
a ring is null if multiplication is trivial.
Of course, one has to specify the precise meaning of tame.
This has been shown for various notions of tame by Felgner,
Baldwin-Rose, Baur-Cherlin-Macintyre, Evans-W, Macpherson,
Krupiński, Kaplan-Levi-Simon and Dobrowolski-W.
Note that extraspecial p-groups yield an example showing that
the finite normal subgroup cannot be avoided in general.
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ℵ1-categoricity
Uncountable categoricity is very different from ℵ0-categoricity.
Strongly minimal structures are ℵ1-categorical.

Theorem (Morley)
A countable theory is ℵ1-categorical iff it is κ-categorical for
some/any uncountable cardinal κ.

Moreover, there is a notion of dimension, called Morley rank.

Theorem (Macintyre, Cherlin, Shelah)
A division ring with Morley rank is an algebraically closed field.

Algebraicity Conjecture (Cherlin, Zilber)
An ℵ1-categorical simple group is (definably) an algebraic
group over an algebraically closed field.

This conjecture led to the development of the theory of groups
of finite Morley rank.
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Theorem (Borovik, Poizat)
In a group with Morley rank, maximal 2-subgroups are
nilpotent-by finite and conjugate.

Dependening on the Sylow-2-subgroups, there are four cases:
• degenerate They are finite.
• even They are infinite of bounded exponent.
• odd They are infinite without infinite subgroups of

exponent 2.
• mixed None of the above.

While initially the study of groups of finite Morley rank was
inspired by algebraic group theory, Borovik formulated a
programme to prove the Algebraicity Conjecture modelled on
the CFSG.
The biggest obstacle is the absence of the notion of a complete
variety (for the former), and of character theory (for the latter).
In particular, there is no finite Morley rank version of the
Feit-Thompson Theorem.
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Theorem (Altınel, Borovik, Cherlin)
The algebraicity conjecture holds in the even case. No mixed case.

Despite initial progress, the odd case is still open.
It is believed that (non-algebraic) degenerate groups exist.
Attention has shifted to permutation groups of finite Morley rank.

Theorem
A split strictly 2-transitive group of finite Morley rank of
characteristic 6= 2 is definably the group of affine
transformations of an algebraically closed field.

Theorem (Borovik, Cherlin)
If G acts faithfully and definably primitively on a set X , the
Morley rank of G is bounded in terms of the rank of X.

Conjecture (Borovik)
A connected group acting transitively and generically (n + 2)-
transitively on a set of Morley rank n is the projective group
acting on projective space over an algebraically closed field.
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Pseudofiniteness
Theorem (Ax)
A field F is pseudofinite if and only if all of the following hold:
• F is perfect;
• F has a unique extension of each finite degree (quasifinite);
• F is pseudo-algebraically closed (every absolutely

irreducible variety over F has an F-rational point).
Moreover, Th(F1) = Th(F2) (pseudofinite) iff F alg

1
∼= F alg

2 .

This is probably the first deep result in algebraic model theory.

Theorem (Wilson, Point)
A pseudofinite group is simple if and only if it is a simple group
of Lie type (possibly twisted) over a pseudofinite field. Moreover∏

U G(Fi) ∼= G(
∏
U Fi),

where G is a simple group of Lie type (possibly twisted) and the
Fi are increasing finite fields.
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In an ultraproduct of finite structures, the counting measure
gives us a way to compare the size of definable sets:

Definition
Let (Mi : i ∈ I) be finite structures, and M =

∏
UMi . For a

definable set X in M let Xi be the corresponding set in Mi
(defined by the same formula), similarly for Y . Put

|X | =
∏
U
|Xi | ∈

∏
U

N = N∗ and µX (Y ) = st
( |Y |
|X |

)
∈ R+,

the pseudofinite counting measure relative to X .
Hrushovski has realized that the logarithm gives a notion of
dimension:

dX (Y ) =
log |Y |
log |X |

+ Z̄ ∈ R∗/Z̄,

where Z̄ is the convex hull of Z in R∗.

This has in particular been used to prove a Lie Model Theorem
for approximate subgroups, leading to their asymptotic
classification by Breuillard, Green and Tao.
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Pseudofinite permutation groups of finite dimension
Theorem (Elwes, Jaligot, Macpherson, Ryten, Zou)
Let G be a pseudofinite definably primitive permutation group
on X with dim(X ) = 1 and dim(G) finite.
• If dim(G) = 1 then G has a definable normal abelian

subgroup A of dimension 1 acting regularly on X.
• If dim(G) = 2 and definable sections satisfy the chain

condition on centralizers up to finite index, then there is a
definable subgroup H E G of dimension 2 isomorphic to
Aff(F ) for some pseudofinite field F of dimension 1.
• If dim(G) ≥ 3, definable sections satisfy the chain condition

on centralizers up to finite index, and X contains no infinite
set of 1-dimensional equivalence classes, then dim(G) = 3
and there is a definable subgroup D ≤ G of dimension 3
isomorphic to PSL2(F ) for some pseudofinite field F of
dimension 1.
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o-minimality
o-minimality is an essentially 1-dimensional notion. We shall
hence consider groups definable in an o-minimal structure, i.e.
whose domain and graph of multiplication are definable sets.

Theorem
An infinite field definable in an o-minimal structure is real
closed or algebraically closed of characteristic 0.

Theorem (Wilkie, Macintyre, van den Dries)
The real field R with exponentiation and all restricted analytic
functions is o-minimal.

There is much work on o-minimal expansions of the real field R,
with applications to diophantine geometry, in particular the
Zilber-Pink conjecture, which states roughly that atypical or
unlikely intersections of an algebraic variety with certain special
varieties are accounted for by finitely many special varieties.
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Groups in o-minimal structures

Theorem (Pillay)
A group G definable in an o-minimal structure carries a
definable manifold structure making it into a topological group.

Corollary
• If G is infinite, it has an infinite definable abelian sugbroup.
• The definably connected component of the identity, G0, is

the smallest subgroup of finite index and is normal.
• G has the descending chain condition on definable

subgroups.
• A definable subgroup H is closed; moreover H is open iff H

has finite index iff dim H = dim G.
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Groups of small dimension

Theorem (Razen)
Let G be definably connected 1-dimensional. Then G is
abelian, and either G is torsion-free, or G is definably compact
and the torsion subgroups G[m] are isomorphic to Z/mZ for
each m > 0.

Theorem (Nesin, Pillay, Razen)
Let G be definably connected 2-dimensional. Then either G is
abelian, or definably isomorphic to Aff(R) for some real closed
field R.

Theorem (Nesin, Pillay, Razen)
Let G be definably connected nonsolvable 3-dimensional. Then
G/Z (G) is definably isomorphic to either PSL2(R) or SO3(R)
for some definable real closed field R.
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o-minimal Algebraicity Conjecture

Theorem (Peterzil, Pillay, Starchenko)
Let G be an infinite definably simple (centreless) group. Then
there is a real closed field R such that one and only one of the
following holds:
• G and the field R(

√
−1) are bi-interpretable, and G is

definably isomorphic to H(R(
√
−1), where H is a linear

algebraic group defined over R(
√
−1).

• G and the field R are bi-interpretable, and G is definably
isomorphic to the semialgebraic connected component of
a group H(R), where H is an R-simple algebraic group
defined over R.
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Pillay’s conjectures

There is a close connection between groups definable in an
o-minimal structure and Lie groups.

Theorem (Hrushovski, Peterzil, Pillay)
Let G be definably connected. Then:
• G has a smallest type-definable subgroup of bounded

index, G00.
• G/G00 is a compact connected Lie group, when equipped

with the logic topology.
• If G is definably compact then the Lie dimension of G/G00

is equal to the (o-minimal) dimension of G.
• If G is definably compact and abelian, then G00 is divisible

and torsion-free.
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Combinatorial tameness (map by G. Conant)
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Combinatorial tameness
There are a plethora of combinatorial tameness conditions.
They are usually defined by prohibiting certain configurations.
For instance, a theory is NIP (not the independence property) if
there is a formula ϕ(x , y) such that for sufficiently large n no
subset A of size n of some model M has all of its subsets arise
in the form {a ∈ A : M |= ϕ(a,b)} for some b.
In the best of cases, this allows a notion of rank (Morley rank,
Lascar rank, SU-rank,. . . ), which may have finite or ordinal
values, and properties resembling that of a dimension
(supertameness).
In the second best case, this allows a (combinatorially defined)
notion of independence. If there is a rank, a and b are
independent over c if the rank of a over bc equals the rank of a
over c.
But there are weaker tameness conditions which still have
meaningful algebraic consequences.
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Algebraic consequences
• In a NIP theory, every type-definable group has a smallest

type-definable normal subgroup of bounded index, its
connected component.
• If there is an ordinal valued rank, we have the descending

chain condition on type-definable subgroups, up to
bounded index.
• If there is a finitely valued rank, we have the ascending

chain condition on type-definable subgroups, up to
bounded index.
• In a NIP theory, every finite intersection of uniformy

definable subgroups (defined by instances of the same
formula) is equal to a subintersection of size depending
only on the formula.

• Other consequences include the chain condition on
centralizers, possibly up to finite index.
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Aims

• Characterize definable fields.
• Characterize the ℵ0-categorical groups.
• Characterize the simple groups.
• Prove the existence of infinite abelian subgroups.
• Show that abelian/nilpotent/soluble subgroups are always

contained in definable ones.
• Show that type-definable groups/fields are intersections of

definable ones.
• Prove the existence and definability of certain radicals

(Fitting subgroup, soluble radical,. . . ).
• Characterize groups and permutation groups of small rank.
• Develop a Sylow theory.
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Thank you !
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