

On Groups Factorized by Mutually Permutable Subgroups



AGTA Workshop-Reinhold Baer Prize 2022 September 21-23, Caserta

Maria Ferrara

# Introduction

If G=AB and A and B are two abelian subgroups of G G=AB= {ab : acA, beB} "Gis factorized by A and B"





### Introduction

If G=AB and A and B are two abelian subgroups of G

UN. 162 1955

G is metabelian!

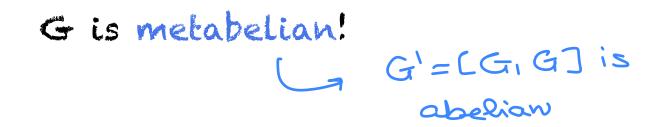




### Introduction

If G=AB and A and B are two abelian subgroups of G

UN. 16 1955







#### Introduction





#### Introduction





### Introduction

? =>GEX lf AEX BEX







### Introduction

A group G is said to be supersoluble if it has a normal series all of whose factors are cyclic.





### Introduction

A group G is said to be supersoluble if it has a normal series all of whose factors are cyclic.

GidG GilGi-1 is cyclic

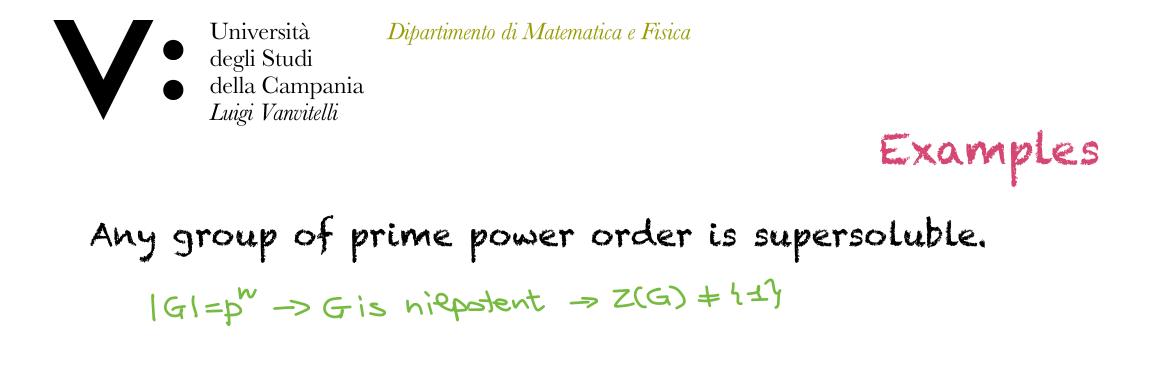




# Examples

Any group of prime power order is supersoluble.







Università  
degli Studi  
della Campania  
Luigi Vanvitelli  
Any group of prime power order is supersoluble.  

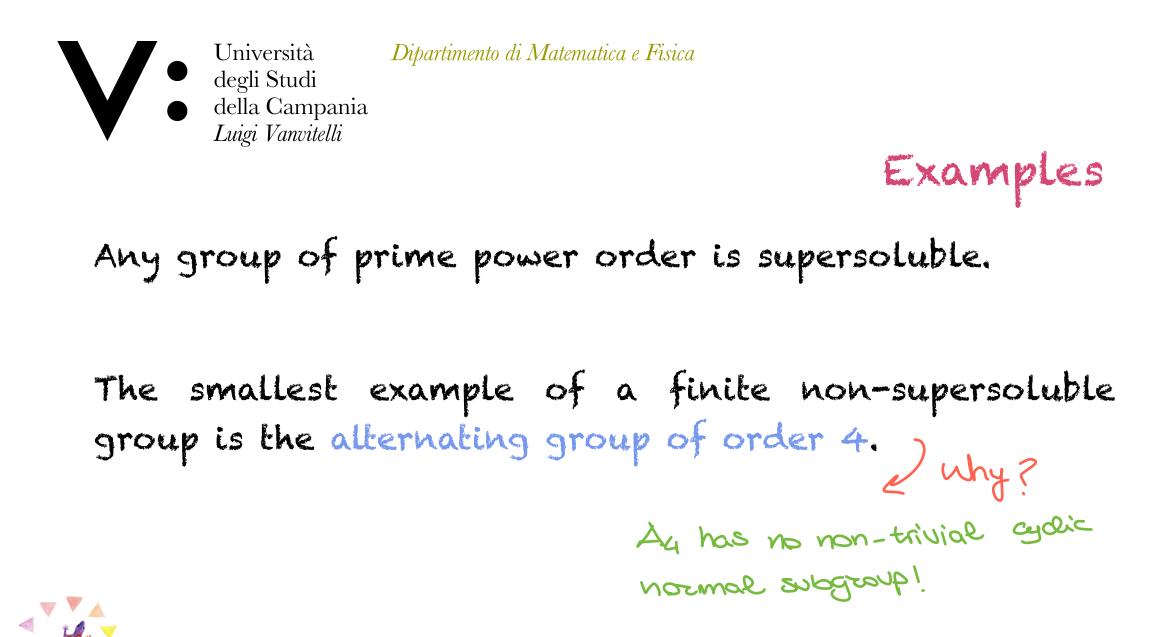
$$|G|=p^{W} \rightarrow G$$
 is nigotent  $\rightarrow Z(G) \neq \{\pm\}$   
 $\times \in Z(G), \times \neq \pm, d \times \} = P \rightarrow N = L \times 2 \leq G$ 



Università  
degli Studi  
della Campania  
Laigi Vanvilelli  
Examples  
Any group of prime power order is supersoluble.  

$$|G|=p^{W} \rightarrow G$$
 is nigodent  $\rightarrow Z(G) \neq h \perp h$   
 $\times eZ(G), \times \neq \perp, d \times h = p \rightarrow N = \ell \times h \neq G$   
 $G$  by induction  
 $N = \ell \times h \neq d$   
 $M = \ell \times h \neq d$ 

Þ





# Supersoluble groups

The class of supersoluble groups is closed with respect to forming subgroups, images, and finite direct products.







# Supersoluble groups

The class of supersoluble groups is closed with respect to forming subgroups, images, and finite direct products.

The product of two normal supersoluble subgroups need not be supersoluble!





# Problem

Under which conditions, will the product of two (normal) supersoluble subgroups still be supersoluble?







# Problem

Under which conditions, will the product of two (normal) supersoluble subgroups still be supersoluble?

Theorem (R. Baer 1957)

If a finite group G is the product of two supersoluble normal subgroups





# Problem

Under which conditions, will the product of two (normal) supersoluble subgroups still be supersoluble?

Theorem (R. Baer 1957)

If a finite group G is the product of two supersoluble normal subgroups and G' is nilpotent, then G is supersoluble.





# Problem

Under which conditions, will the product of two (normal) supersoluble subgroups still be supersoluble?

Theorem (D. R. Friesen 1971)

If a finite group G is the product of two normal supersoluble subgroups of coprime indices, then G is supersoluble.





If G is the product of two nilpotent subgroups, then G is not necessarily supersoluble.

Theorem (O.H. Kegel 1965)

If G is a finite group such that G=HK=HL=KL where H and K are nilpotent subgroups and L is supersoluble, then G is supersoluble.





# Problem

Under which conditions, will the product of two (normal) supersoluble subgroups still be supersoluble?

Theorem (R. Baer 1957)

If a finite group G is the product of two supersoluble normal subgroups and G' is nilpotent, then G is supersoluble.





# Generalizations

Theorem (M. Asaad and A. Shaalan, 1989)

• Suppose that A and B are supersoluble subgroups of a finite group G, G' is nilpotent and G=AB.





# Generalizations

Theorem (M. Asaad and A. Shaalan, 1989)

• Suppose that A and B are supersoluble subgroups of a finite group G, G' is nilpotent and G=AB.

 $\cdot$  Suppose further that A is permutable with every subgroup of B





# Generalizations

Theorem (M. Asaad and A. Shaalan, 1989)

• Suppose that A and B are supersoluble subgroups of a finite group G, G' is nilpotent and G=AB.





#### Generalizations

Theorem (M. Asaad and A. Shaalan, 1989)

• Suppose that A and B are supersoluble subgroups of a finite group G, G' is nilpotent and G=AB.

• Suppose further that A is permutable with every subgroup of B and B is permutable with every subgroup of A.





### Generalizations

Theorem (M. Asaad and A. Shaalan, 1989)

- Suppose that A and B are supersoluble subgroups of a finite group G, G' is nilpotent and G=AB.
- Suppose further that A is permutable with every subgroup of B and B is permutable with every subgroup of A.

Then G is supersoluble.





#### Let G be a group.

# Two subgroups A and B of G are said to be mutually permutable if





#### Let G be a group.

# Two subgroups A and B of G are said to be mutually permutable if

AY = YA and XB = BX

for all subgroups Y of B and X of A.





#### Let G be a group.

# Two subgroups A and B of G are said to be mutually permutable if

AY = YA and XB = BX

for all subgroups Y of B and X of A.





Examples

#### Any two normal subgroups are mutually permutable.







# Generalizations

Theorem (M. Asaad and A. Shaalan, 1989)

- Suppose that A and B are supersoluble subgroups of a finite group G, G' is nilpotent and G=AB.
- Suppose further that A and B are mutually permutable.

Then G is supersoluble.





# Groups which are products of two mutually permutable subgroups have been recently investigated by several authors, especially in the finite case.





# Groups which are products of two mutually permutable subgroups have been recently investigated by several authors, especially in the finite case.

M. Asaad, A. Ballester-Bolinches, R. Esteban-Romero, *Products of Finite Groups* de Gruyter, Berlin (2010)





#### For the case of infinite groups see

J.C. Beidleman, H. Heineken, *Totally permutable torsion groups* J.Group Theory 2 (1999), 377–392

J.C. Beidleman, H. Heineken, *Mutually permutable subgroups and groups classes* Arch. Math. (Basel) 85 (2005), 18–30





#### For the case of infinite groups see

M. De Falco, F. de Giovanni, C. Musella, *Locally finite products of totally permutable nilpotent groups* Algebra Colloq. 16 (2009), 535–540

F. de Giovanni, R. Ialenti, *Groups with finite abelian section rank factorized by mutually permutable subgroups* Comm. Algebra 44 (2016), 118-124





#### For the case of infinite groups see

J.C. Beidleman, H. Heineken, *Totally permutable torsion groups* J.Group Theory 2 (1999), 377–392

J.C. Beidleman, H. Heineken,

Mutually permutable subgroups and groups classes Arch. Math. (Basel) 85 (2005), 18–30





## Theorem (J.C. Beidleman and H. Heineken, 2005) If G=AB is a finite group which is factorized by two mutually permutable subgroups A and B, then



#### Theorem (J.C. Beidleman and H. Heineken, 2005)

If G=AB is a finite group which is factorized by two mutually permutable subgroups A and B, then A', B' are subnormal subgroups of G. In general, His subnormal in Gif there is a Series H=HodHa... a Hn = G





#### Theorem (J.C. Beidleman and H. Heineken, 2005)

If G=AB is a finite group which is factorized by two mutually permutable subgroups A and B, then A', B' are subnormal subgroups of G.  $I \notin A' \text{ and B' are}$ n'epstent $(A', B') \stackrel{G}{\rightarrow} is niepstent$ 





#### Theorem (F. de Giovanni and R. Ialenti, 2016)

# Let G = AB be a soluble-by-finite group G $\mathcal{G}$ $\mathcal{$





#### Theorem (F. de Giovanni and R. Ialenti, 2016)

## Let G = AB be a soluble-by-finite group with finite abelian section rank





#### Finite abelian section rank Let G be an abelian group and let S be a non-empty subset of G.





#### Finite abelian section rank Let G be an abelian group and let S be a non-empty subset of G.

Then S is called linearly independent, if  $0 \notin S$  and, given distinct elements  $s_1, \ldots, s_r$  of S and integers  $m_1, \ldots, m_r$ , the relation

$$m_1s_1 + \ldots + m_rs_r = 0$$
 implies that  $m_is_i = 0$  for all *i*.





Finite abelian section rank If p is a prime and G an abelian group, the p-rank of G,  $r_p(G)$  is defined as the cardinality of a maximal independent subset of elements of p-power order.

Similarly the 0-rank  $r_0(G)$  is the cardinality of a maximal independent subset of elements of infinite order.





Finite abelian section rank A group has finite abelian subgroup rank if each abelian subgroup has finite 0-rank and finite p-rank for all primes p.

A group G has finite abelian section rank if every abelian section of G has finite 0-rank and finite p-rank for all primes p.





#### Theorem (F. de Giovanni and R. Ialenti, 2016)

## Let G = AB be a soluble-by-finite group with finite abelian section rank which is factorized by two mutually permutable finite-by-nilpotent subgroups A and B.





#### Theorem (F. de Giovanni and R. Ialenti, 2016)

Let G = AB be a soluble-by-finite group with finite abelian section rank which is factorized by two mutually permutable finite-bynilpotent subgroups A and B.





Maria Ferrara and Marco Trombetti *On groups factorized by mutually permutable subgroups* 

Results in Mathematics, to appear





#### Theorem (F. de Giovanni and R. Ialenti, 2016)

Let G = AB be a soluble-by-finite group with finite abelian section rank which is factorized by two mutually permutable finite-bynilpotent subgroups A and B.





#### Theorem (F. de Giovanni and R. Ialenti, 2016)

Let G = AB be a soluble-by-finite group with finite abelian section rank which is factorized by two mutually permutable <del>finite-by-</del> nilpotent subgroups A and B.





#### Theorem (M. Ferrara and M. Trombetti, 2022)

Let G = AB be a soluble-by-finite group with finite abelian section rank which is factorized by two mutually permutable subgroups A and B.





## Theorem (M. Ferrara and M. Trombetti, 2022)

Let G = AB be a soluble-by-finite group with finite abelian section rank which is factorized by two mutually permutable subgroups A and B.







A group is called a minimax group if it has a series of finite length whose factors satisfy Max or Min.







A group is called a minimax group if it has a series of finite length whose factors satisfy Max or Min.

In the following,  $\mathcal{M}$  denotes the class of minimax groups containing a soluble subgroup of finite index.







## For any group G, $\rho_{{\mathscr L}{\mathscr N}}(G)$ denotes the Hirsch-Plotkin radical of G.







For any group G,  $\rho_{{\mathcal L}{\mathcal N}}(G)$  denotes the Hirsch-Plotkin radical of G.

In a group G there is a unique maximal normal locally nilpotent subgroup  $\rho_{\mathcal{LN}}(G)$  (called the Hirsch-Plotkin radical) containing all normal locally nilpotent subgroups of G.





#### Theorem (M. Ferrara and M. Trombetti, 2022)

Let G = AB is a locally-11 group





### Theorem (M. Ferrara and M. Trombetti, 2022)

### Let G = AB is a locally- $\mathcal{M}$ group which is factorized by two mutually permutable subgroups A and B





## Theorem (M. Ferrara and M. Trombetti, 2022)

### Let G = AB is a locally- $\mathcal{M}$ group which is factorized by two mutually permutable subgroups A and B, then

$$\big<\rho_{\mathcal{LN}}(A'),\rho_{\mathcal{LN}}(B')\big>^G\leq\rho_{\mathcal{LN}}(G')$$





#### If G is a group, we denote by $\rho_{0,\mathcal{LN}}(G) = \{1\}$ .





If G is a group, we denote by  $\rho_{0,\mathcal{LN}}(G) = \{1\}$ . If we have defined the subgroup  $\rho_{i,\mathcal{LN}}(G)$  for some positive integer *i*, then we put

 $\rho_{i+1,\mathcal{LN}}(G)/\rho_{i,\mathcal{LN}}(G) = \rho_{\mathcal{LN}}(G/\rho_{i,\mathcal{LN}}(G))$ 





If G is a group, we denote by  $\rho_{0,\mathcal{LN}}(G) = \{1\}$ . If we have defined the subgroup  $\rho_{i,\mathcal{LN}}(G)$  for some positive integer *i*, then we put

 $\rho_{i+1,\mathcal{LN}}(G)/\rho_{i,\mathcal{LN}}(G) = \rho_{\mathcal{LN}}(G/\rho_{i,\mathcal{LN}}(G))$ 







If G is a group, we denote by 
$$\rho_{0,\mathcal{LN}}(G) = \{1\}$$
.  
If we have defined the subgroup  $\rho_{i,\mathcal{LN}}(G)$  for some positive integer *i*, then we put

$$\rho_{i+1,\mathcal{LN}}(G)/\rho_{i,\mathcal{LN}}(G) = \rho_{\mathcal{LN}}(G/\rho_{i,\mathcal{LN}}(G))$$

This defines the subgroups  $\rho_{n,\mathcal{LN}}(G)$  for any integer  $n \ge 0$ .

Clearly,  $\rho_{\mathscr{LN}}(G) = \rho_{1,\mathscr{LN}}(G)$ .





## Corollary 1 (M. Ferrara and M. Trombetti, 2022)

Let G = AB be a locally-*M* group





## Corollary 1 (M. Ferrara and M. Trombetti, 2022)

Let G = AB be a locally-M group which is factorized by two mutually permutable (non-trivial) soluble subgroups A and B.





## Corollary 1 (M. Ferrara and M. Trombetti, 2022)



Let G = AB be a locally-M group which is factorized by two mutually permutable (non-trivial) soluble subgroups A and B. If the derived length of A is c and the derived length of B is d, then  $\rho_{k.\mathscr{LN}}(G'') = G''$ ,





Corollary 1 (M. Ferrara and M. Trombetti, 2022)



Let G = AB be a locally-*M* group which is factorized by two mutually permutable (non-trivial) soluble subgroups A and B. If the derived length of A is c and the derived length of B is d, then  $\rho_{k,\mathcal{LN}}(G'') = G''$ , where k denotes the maximum between c - 1 and d - 1.



#### Theorem (J.C. Beidleman - H. Heineken, 2005)

## Let G = AB be a finite group which is factorized by two mutually permutable soluble subgroups A and B.



#### Theorem (J.C. Beidleman - H. Heineken, 2005)

## Let G = AB be a finite group which is factorized by two mutually permutable soluble subgroups A and B. Then G is soluble.





## Corollary 2 (M. Ferrara and M. Trombetti, 2022)

Let G = AB be a locally (soluble-by-finite) group of finite rank which is factorized by two mutually permutable soluble subgroups A and B.





## Corollary 2 (M. Ferrara and M. Trombetti, 2022)

Let G = AB be a locally (soluble-by-finite) group of finite rank which is factorized by two mutually permutable soluble subgroups A and B.

Then G is hyperabelian.







## A group G is said hyperabelian if it has an ascending normal series with abelian factor.





## Thank you for Listening!



