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The smallest example of a finite non-supersoluble 
group is the alternating group of order 4. 
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Generalizations
Theorem (M. Asaad and A. Shaalan, 1989) 

• Suppose that A and B are supersoluble subgroups of a 

finite group G, G’ is nilpotent and G=AB.  

• Suppose further that A and B are mutually permutable.  

Then G is supersoluble.
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Finite abelian section rank
Let G be an abelian group and let S be a non-empty 
subset of G.  

Then S is called linearly independent, if  and, 
given distinct elements  of  and integers 

, the relation  

 implies that  for all .

0 ∉ S
s1, …, sr S

m1, …, mr

m1s1 + … + mrsr = 0 misi = 0 i



Finite abelian section rank
If  is a prime and G an abelian group, the -rank 
of G,  is defined as the cardinality of a 
maximal independent subset of elements of -power 
order.  

Similarly the -rank  is the cardinality of a 
maximal independent subset of elements of infinite 
order. 

p p
rp(G)

p

0 r0(G)



Finite abelian section rank
A group has finite abelian subgroup rank if each 
abelian subgroup has finite -rank and finite -rank 
for all primes . 

A group G has finite abelian section rank if every 
abelian section of G has finite -rank and finite 
-rank for all primes .

0 p
p

0 p
p
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In the following,  denotes the class of minimax 

groups containing a soluble subgroup of finite index. 
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If G is a group, we denote by . 

If we have defined the subgroup  for some positive 

integer , then we put 

 

This defines the subgroups  for any integer .  

Clearly, .

ρ0,ℒ𝒩(G) = {1}

ρi,ℒ𝒩(G)

i

ρi+1,ℒ𝒩(G)/ρi,ℒ𝒩(G) = ρℒ𝒩(G/ρi,ℒ𝒩(G))

ρn,ℒ𝒩(G) n ≥ 0

ρℒ𝒩(G) = ρ1,ℒ𝒩(G)
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Let G = AB be a locally-  group which is factorized by two 

mutually permutable (non-trivial) soluble subgroups A and B.  

If the derived length of A is c and the derived length of B 

is d, then , where k denotes the maximum 

between c - 1 and d - 1.  
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A group G is said hyperabelian if it has an 

ascending normal series with abelian factor. 



Thank you for listening!                         

                                                       


