Groups containing a large subgroup which satisfies a central-like embedding property

Maria De Falco

Department of Mathematics and Applications University of Napoli Federico II

Caserta, September 2022

Schur's Theorem

Theorem (I. Schur, 1904)

Let G be a group. If G/Z(G) is finite, then G' is finite.

Note that $H \leq Z(G) \Leftrightarrow \forall g \in G, \langle H, g \rangle$ is abelian.

Schur's Theorem

Theorem (I. Schur, 1904)

Let G be a group. If G/Z(G) is finite, then G' is finite.

Note that $H \leq Z(G) \Leftrightarrow \forall g \in G, \langle H, g \rangle$ is abelian.

Quasihamiltonian groups

Definition. A group G is said to be *quasihamiltonian* if XY = YX for all its subgroups X and Y.

Quasihamiltonian groups

Definition. A group G is said to be *quasihamiltonian* if XY = YX for all its subgroups X and Y.

Theorem (K. Iwasawa 1943)

Let G be a nonperiodic group. Then G is quasihamiltonian if and only if the following conditions hold:

- The set T of all elements of finite order is a locally finite subgroup containing G';
- (2) all subgroups of T are normal in G and all elements of order prime or of order 4 are central in G;
- (3) if G is not abelian, then G/T has rank 1.

Theorem (K. Iwasawa 1943)

Let G be a nonperiodic group. Then G is quasihamiltonian if and only if the following conditions hold:

- The set T of all elements of finite order is a locally finite subgroup containing G';
- (2) all subgroups of T are normal in G and all elements of order prime or of order 4 are central in G;
- (3) if G is not abelian, then G/T has rank 1.

The structure of periodic quasihamiltonian groups

Theorem (K. Iwasawa 1943)

Let G be a periodic group. Then G is quasihamiltonian if and only if $G = Dr_{i \in I}G_i$ where the subgroups $\{G_i \mid i \in I\}$ are primary groups pairwise coprime and each G_i satisfies one of the following conditions:

- (i) all subgroups of G_i are normal in G_i ;
- (ii) G_i has finite exponent and contains an abelian normal subgroup A such that G_i/A is cyclic; meoreover if p^k is the exponent of A and p^m is the order of $G_i/A = \langle bA \rangle$, then there exists a positive integer s such that $s < k \leq s + m$ and $a^b = a^{1+p^s} \ \forall a \in A$.

The structure of periodic quasihamiltonian groups

Theorem (K. Iwasawa 1943)

Let G be a periodic group. Then G is quasihamiltonian if and only if $G = Dr_{i \in I}G_i$ where the subgroups $\{G_i \mid i \in I\}$ are primary groups pairwise coprime and each G_i satisfies one of the following conditions:

- (i) all subgroups of G_i are normal in G_i ;
- (ii) G_i has finite exponent and contains an abelian normal subgroup A such that G_i/A is cyclic; meoreover if p^k is the exponent of A and p^m is the order of $G_i/A = \langle bA \rangle$, then there exists a positive integer s such that $s < k \leq s + m$ and $a^b = a^{1+p^s} \ \forall a \in A$.

A theorem of Schur's type

Definition. A subgroup H of a group G is said to be *permutably embedded* in G if $\langle H, g \rangle$ is quasihamiltonian for every $g \in G$.

Theorem (MDF, F. de Giovanni, C. Musella, 2008)

Let G be a group. If G contains a permutably embedded subgroup of finite index, then there exists a finite normal subgroup N such that G/N is quasihamiltonian.

A theorem of Schur's type

Definition. A subgroup H of a group G is said to be *permutably embedded* in G if $\langle H, g \rangle$ is quasihamiltonian for every $g \in G$.

Theorem (MDF, F. de Giovanni, C. Musella, 2008)

Let G be a group. If G contains a permutably embedded subgroup of finite index, then there exists a finite normal subgroup N such that G/N is quasihamiltonian.

A theorem of Schur's type

Definition. A subgroup H of a group G is said to be *permutably embedded* in G if $\langle H, g \rangle$ is quasihamiltonian for every $g \in G$.

Theorem (MDF, F. de Giovanni, C. Musella, 2008)

Let G be a group. If G contains a permutably embedded subgroup of finite index, then there exists a finite normal subgroup N such that G/N is quasihamiltonian.

Let G be a quasihamiltonian group. Let H, K, L be subgroups of G such that $H \leq L$. Then $\langle H, K \rangle \cap L = \langle H, K \cap L \rangle$.

Definition. Let L be a modular lattice. L is called *permodular* if for all elements a and b such that $b \leq a$ and the interval [a/b] has finite length, we have that [a/b] is finite.

Let G be a quasihamiltonian group. Let H, K, L be subgroups of G such that $H \leq L$. Then $\langle H, K \rangle \cap L = \langle H, K \cap L \rangle$.

Definition. Let L be a modular lattice. L is called *permodular* if for all elements a and b such that $b \leq a$ and the interval [a/b] has finite length, we have that [a/b] is finite.

Let G be a quasihamiltonian group. Let H, K, L be subgroups of G such that $H \leq L$. Then $\langle H, K \rangle \cap L = \langle H, K \cap L \rangle$.

Definition. Let L be a modular lattice. L is called *permodular* if for all elements a and b such that $b \le a$ and the interval [a/b] has finite length, we have that [a/b] is finite.

Let G be a quasihamiltonian group. Let H, K, L be subgroups of G such that $H \leq L$. Then $\langle H, K \rangle \cap L = \langle H, K \cap L \rangle$.

Definition. Let L be a modular lattice. L is called *permodular* if for all elements a and b such that $b \le a$ and the interval [a/b] has finite length, we have that [a/b] is finite.

Let G be a quasihamiltonian group. Let H, K, L be subgroups of G such that $H \leq L$. Then $\langle H, K \rangle \cap L = \langle H, K \cap L \rangle$.

Definition. Let L be a modular lattice. L is called *permodular* if for all elements a and b such that $b \leq a$ and the interval [a/b] has finite length, we have that [a/b] is finite.

A lattice translation of Schur's Theorem

Definition. A subgroup H of a group G is said to be *permodularly embedded* in G if $\langle H, g \rangle$ has permodular subgroup lattice for every $g \in G$.

Theorem (MDF, F. de Giovanni, C. Musella, 2008)

Let G be a group.

If G contains a permodularly embedded subgroup of finite index, then there exists a finite normal subgroup N such that G/N has permodular subgroup lattice.

A lattice translation of Schur's Theorem

Definition. A subgroup H of a group G is said to be *permodularly embedded* in G if (H, g) has permodular subgroup lattice for every $g \in G$.

Theorem (MDF, F. de Giovanni, C. Musella, 2008)

Let G be a group.

If G contains a permodularly embedded subgroup of finite index, then there exists a finite normal subgroup N such that G/N has permodular subgroup lattice.

A lattice translation of Schur's Theorem

Definition. A subgroup H of a group G is said to be *permodularly embedded* in G if $\langle H, g \rangle$ has permodular subgroup lattice for every $g \in G$.

Theorem (MDF, F. de Giovanni, C. Musella, 2008)

Let G be a group.

If G contains a permodularly embedded subgroup of finite index, then there exists a finite normal subgroup N such that G/N has permodular subgroup lattice.

Theorem (S.N. Černikov, 1959)

Let G be a group. If G/Z(G) is a Černikov group, then G' is a Černikov group.

Theorem (A. Schlette, 1969)

Theorem (S.N. Černikov, 1959)

Let G be a group. If G/Z(G) is a Černikov group, then G' is a Černikov group.

Theorem (A. Schlette, 1969)

Theorem (S.N. Černikov, 1959)

Let G be a group. If G/Z(G) is a Černikov group, then G' is a Černikov group.

Theorem (A. Schlette, 1969)

Theorem (S.N. Černikov, 1959)

Let G be a group. If G/Z(G) is a Černikov group, then G' is a Černikov group.

Theorem (A. Schlette, 1969)

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a Černikov group, then G is quasihamiltonian-by-finite.

More precisely, if J/Q is the largest abelian divisible subgroup of G/Q, then J is quasihamiltonian.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a periodic group.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a Černikov group, then G is quasihamiltonian-by-finite.

More precisely, if J/Q is the largest abelian divisible subgroup of G/Q, then J is quasihamiltonian.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a periodic group.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a Černikov group, then G is quasihamiltonian-by-finite.

More precisely, if J/Q is the largest abelian divisible subgroup of G/Q, then J is quasihamiltonian.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a periodic group.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a Černikov group, then G is quasihamiltonian-by-finite.

More precisely, if J/Q is the largest abelian divisible subgroup of G/Q, then J is quasihamiltonian.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a periodic group.

Proposition

Let G be a group. If G contains a permutably embedded subgroup Q such that the interval [G/Q] is distributive, then G is quasihamiltonian.

Proposition

Let G be a group. If Q is a permutably embedded subgroup of G, then Q is hypercentrally embedded in G.

Proposition

Let G be a group. If G contains a permutably embedded subgroup Q such that the interval [G/Q] is distributive, then G is quasihamiltonian.

Proposition

Let G be a group. If Q is a permutably embedded subgroup of G, then Q is hypercentrally embedded in G.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ.

Put $K = Z \cap E$. Then there exists a finitely generated subgroup F such that $K = F^E$; but then K = F

 \Rightarrow K is polycyclic \Rightarrow c is polycyclic. It follows that G' is polycyclic.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ. Put $K = Z \cap E$. Then there exists a finitely generated subgroup F such that $K = F^E$; but then $K = F \Rightarrow K$ is polycyclic \Rightarrow E is polycyclic. It follows that G' is polycyclic.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ.

Put $K = Z \cap E$. Then there exists a finitely generated subgroup F such that $K = F^E$; but then K = F $\Rightarrow K$ is polycyclic $\Rightarrow E$ is polycyclic. It follows that G' is polycyclic.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ.

Put $K = Z \cap E$. Then there exists a finitely generated subgroup F such that $K = F^E$; but then $K = F \Rightarrow K$ is polycyclic $\Rightarrow E$ is polycyclic.

It follows tnat G' is polycyclic.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ.

Put $K=Z\cap E.$ Then there exists a finitely generated subgroup F such that $K=F^E;$ but then K=F

 \Rightarrow K is polycyclic \Rightarrow E is polycyclic. It follows tnat G' is polycyclic.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ.

Put $K=Z\cap E.$ Then there exists a finitely generated subgroup F such that $K=F^E$; but then K=F

 \Rightarrow K is polycyclic \Rightarrow E is polycyclic. It follows that G' is polycyclic.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ. Put K = Z \cap E. Then there exists a finitely generated subgroup F such that K = F^E; but then K = F \Rightarrow K is polycyclic \Rightarrow E is polycyclic. It follows that G' is polycyclic.

Corollary Let G be a group. If G/Z(G) is supersoluble, then G' is supersoluble

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ. Put K = Z \cap E. Then there exists a finitely generated subgroup F such that K = F^E; but then K = F \Rightarrow K is polycyclic \Rightarrow E is polycyclic. It follows that G' is polycyclic.

Corollary Let G be a group. If G/Z(G) is supersoluble, then G' is supersoluble

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ. Put K = Z \cap E. Then there exists a finitely generated subgroup F such that K = F^E; but then K = F \Rightarrow K is polycyclic \Rightarrow E is polycyclic. It follows that G' is polycyclic.

Corollary

Let G be a group. If G/Z(G) is supersoluble, then G' is supersoluble.

Proposition

Let G be a group. If G/Z(G) is polycyclic, then G' is polycyclic.

Proof - Put Z=Z(G) and let E be a finitely generated subgroup of G such that G = EZ. Put K = Z \cap E. Then there exists a finitely generated subgroup F such that K = F^E; but then K = F \Rightarrow K is polycyclic \Rightarrow E is polycyclic. It follows that G' is polycyclic.

Corollary

Let G be a group. If G/Z(G) is supersoluble, then G' is supersoluble.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a non periodic permutably embedded normal subgroup Q such that G/Q is polycyclic, then G has a normal polycyclic subgroup N such that G/N is quasihamiltonian.

Corollary

Let G be a group.

If G contains a non periodic permutably embedded normal subgroup Q such that G/Q is supersoluble, then G has a normal supersoluble subgroup N such that G/N is quasihamiltonian.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a non periodic permutably embedded normal subgroup Q such that G/Q is polycyclic, then G has a normal polycyclic subgroup N such that G/N is quasihamiltonian.

Corollary

Let G be a group.

If G contains a non periodic permutably embedded normal subgroup Q such that G/Q is supersoluble, then G has a normal supersoluble subgroup N such that G/N is quasihamiltonian.

Theorem (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a non periodic permutably embedded normal subgroup Q such that G/Q is polycyclic, then G has a normal polycyclic subgroup N such that G/N is quasihamiltonian.

Corollary

Let G be a group.

If G contains a non periodic permutably embedded normal subgroup Q such that G/Q is supersoluble, then G has a normal supersoluble subgroup N such that G/N is quasihamiltonian. Maximal subgroups of groups which are polycyclic over a pemutably embedded normal subgroup

Proposition Let G be a group. If G/Z(G) is polycyclic, then every maximal subgroup of G has finite index.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group. If G contains a permutably embedded normal subgroup Q such that G/Q is polycyclic, then every maximal subgroup of G has finite index. Maximal subgroups of groups which are polycyclic over a pemutably embedded normal subgroup

Proposition

Let G be a group. If G/Z(G) is polycyclic, then every maximal subgroup of G has finite index.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group. If G contains a permutably embedded normal subgroup Q such that G/Q is polycyclic, then every maximal subgroup of G has finite index. Maximal subgroups of groups which are polycyclic over a pemutably embedded normal subgroup

Proposition

Let G be a group. If G/Z(G) is polycyclic, then every maximal subgroup of G has finite index.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group. If G contains a permutably embedded normal subgroup Q such that G/Q is polycyclic, then every maximal subgroup of G has finite index.

Proposition Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022) Let G be a group. If G contains a permutably embedded normal subgroup Q such that G/Q is a locally polycyclic group, then G is locally polycyclic.

Proposition Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022) Let G be a group. If G contains a permutably embedded normal subgroup (that C/O is a legally polynyplic group, then C is legally

cyclic.

Proposition

Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a locally polycyclic group, then G is locally polycyclic.

Proposition

Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a locally polycyclic group, then G is locally polycyclic.

Proposition

Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a locally polycyclic group, then G is locally polycyclic.

Proposition

Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a locally polycyclic group, then G is locally polycyclic.

Proposition

Let G be a group. If G/Z(G) is locally polycyclic, then G is locally polycyclic.

Proposition (MDF, F. de Giovanni, C. Musella, 2022)

Let G be a group.

If G contains a permutably embedded normal subgroup Q such that G/Q is a locally polycyclic group, then G is locally polycyclic.

Assume that E/K is infinite \Rightarrow E/K contains a torsion-free nontrivial subgroup of finite index Y/K. There exists a finitely generated subgroup F such that K = F^E. Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y \Rightarrow K is contained in the FC-centre of E \Rightarrow K it is finitely generated and hence polycyclic \Rightarrow E is polycyclic.

There exists a finitely generated subgroup F such that $K = F^E$. Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y \Rightarrow K is contained in the FC-centre of E \Rightarrow K it is finitely generated and hence polycyclic \Rightarrow E is polycyclic. Assume that E/K is infinite \Rightarrow E/K contains a torsion-free nontrivial subgroup of finite index Y/K. There exists a finitely generated subgroup F such that K = F^E. Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y \Rightarrow K is contained in the FC-centre of F

 \rightarrow K is contained in the recentle of E \rightarrow K it is finitely generated and hence poly

 \Rightarrow E is polycyclic.

There exists a finitely generated subgroup F such that $K = F^E$. Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y

 \Rightarrow K is contained in the FC-centre of E

 \Rightarrow K it is finitely generated and hence polycyclic

 \Rightarrow E is polycyclic.

There exists a finitely generated subgroup F such that $K = F^E$.

Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y

 \Rightarrow K is contained in the FC-centre of E

 \Rightarrow K it is finitely generated and hence polycyclic \Rightarrow E is polycyclic.

There exists a finitely generated subgroup F such that $K = F^E$.

Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y

- \Rightarrow K is contained in the FC-centre of E
- \Rightarrow K it is finitely generated and hence polycyclic

 \Rightarrow E is polycyclic.

There exists a finitely generated subgroup F such that $K = F^E$. Using the structure of quasihamiltonian groups, we can prove that every subgroup of K is normalized by Y

Г

- \Rightarrow K is contained in the FC-centre of E
- \Rightarrow K it is finitely generated and hence polycyclic
- \Rightarrow E is polycyclic.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type $p^{\infty} \Rightarrow Aut(Q)$ is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type $p^{\infty} \Rightarrow Aut(Q)$ is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type p^∞ \Rightarrow Aut(Q) is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type p^∞ \Rightarrow Aut(Q) is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4.

Let G be the semidirect product of X and Q

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type $p^{\infty} \Rightarrow Aut(Q)$ is isomorphic to the multiplicative group of p-adic integers

 $\Rightarrow Aut(Q) \text{ contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q$

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type $p^{\infty} \Rightarrow Aut(Q)$ is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type $p^{\infty} \Rightarrow Aut(Q)$ is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

Example There exists a group G containing a permutably embedded subgroup Q such that G/Q is polycyclic, but G is not polycyclic-by-quasihamiltonian.

Let p be a prime number and let Q be a group of type $p^{\infty} \Rightarrow Aut(Q)$ is isomorphic to the multiplicative group of p-adic integers

 \Rightarrow Aut(Q) contains a free abelian subgroup X of rank 2 whose elements fix every element of Q of order p or of order 4. Let G be the semidirect product of X and Q

 \Rightarrow G/Q \simeq X is polycyclic.

It follows from the characterization of quasihamiltoninan groups that Q is permutably embedded in G.

$\forall g \in G, [Q, g]$ is a divisible subgroup of Q. If $x \in X \cap N, [Q, x] \leq N$, so that $[Q, x] = \{1\}$. $\Rightarrow X \cap N = \{1\} \Rightarrow G/N$ has torsion-free rank at least 2. \Rightarrow it follows from the structure of quasihamiltoninan groups that G/N is abelian $\Rightarrow G'$ is polycyclic

$\forall g \in G, [Q, g] \text{ is a divisible subgroup of } Q.$ If $x \in X \cap N, [Q, x] \leq N$, so that $[Q, x] = \{1\}.$

 $\Rightarrow X \cap N = \{1\} \Rightarrow G/N$ has torsion-free rank at least 2. \Rightarrow it follows from the structure of quasihamiltoninan groups that G/N is abelian

 \Rightarrow G' is polycyclic

 $\Rightarrow \forall g \in G, [Q, g] = \{1\}, a \text{ contradiction}.$

$\forall g \in G$, [Q, g] is a divisible subgroup of Q. If $x \in X \cap N$, $[Q, x] \leq N$, so that $[Q, x] = \{1\}$. $\Rightarrow X \cap N = \{1\} \Rightarrow G/N$ has torsion-free rank at least 2. \Rightarrow it follows from the structure of quasihamiltoninan groups that G/N is abelian $\Rightarrow G'$ is polycyclic \Rightarrow vg $\in G$, $[Q, g] = \{1\}$, a contradiction.

$$\begin{split} \forall g \in G, \ [Q,g] \text{ is a divisible subgroup of } Q. \\ \text{If } x \in X \cap N, \ [Q,x] \leqslant N, \text{ so that } [Q,x] = \{1\}. \\ \Rightarrow X \cap N = \{1\} \Rightarrow G/N \text{ has torsion-free rank at least } 2. \end{split}$$

 \Rightarrow it follows from the structure of quasihamiltoninan groups that G/N is abelian

 \Rightarrow G' is polycyclic

 $\Rightarrow \forall g \in G, [Q, g] = \{1\}, a \text{ contradiction}.$

$\begin{array}{l} \forall g \in G, \ [Q,g] \ is a \ divisible \ subgroup \ of \ Q. \\ If \ x \in X \cap N, \ [Q,x] \leqslant N, \ so \ that \ [Q,x] = \{1\}. \\ \Rightarrow X \cap N = \{1\} \Rightarrow G/N \ has \ torsion-free \ rank \ at \ least \ 2. \\ \Rightarrow \ it \ follows \ from \ the \ structure \ of \ quasihamiltoninan \ groups \ that \ G/N \ is \ abelian \end{array}$

⇒ G' is polycyclic ⇒ $\forall g \in G$, [Q, g] = {1}, a contradiction. $\begin{array}{l} \forall g \in G, \ [Q,g] \ is a \ divisible \ subgroup \ of \ Q. \\ \text{If } x \in X \cap N, \ [Q,x] \leqslant N, \ \text{so that} \ [Q,x] = \{1\}. \\ \Rightarrow X \cap N = \{1\} \Rightarrow G/N \ \text{has torsion-free rank at least } 2. \\ \Rightarrow \ it \ follows \ from \ the \ structure \ of \ quasihamiltoninan \ groups \ that \\ G/N \ is \ abelian \end{array}$

 \Rightarrow G' is polycyclic

 $\Rightarrow \forall g \in G, [Q, g] = \{1\}, a \text{ contradiction}.$

 $\forall g \in G, [Q, g] \text{ is a divisible subgroup of } Q.$ If $x \in X \cap N, [Q, x] \leq N$, so that $[Q, x] = \{1\}$. $\Rightarrow X \cap N = \{1\} \Rightarrow G/N$ has torsion-free rank at least 2. \Rightarrow it follows from the structure of quasihamiltoninan groups that G/N is abelian

- \Rightarrow G' is polycyclic
- $\Rightarrow \forall g \in G, [Q, g] = \{1\}, a \text{ contradiction}.$

 $\forall g \in G, [Q, g] \text{ is a divisible subgroup of } Q.$ If $x \in X \cap N, [Q, x] \leq N$, so that $[Q, x] = \{1\}$.

 \Rightarrow X \cap N = {1} \Rightarrow G/N has torsion-free rank at least 2.

 \Rightarrow it follows from the structure of quasihamiltoninan groups that G/N is abelian

 \Rightarrow G' is polycyclic

 $\Rightarrow \forall g \in G, [Q,g] = \{1\}, a \text{ contradiction}.$

Thank you!