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Abstract
This is a survey on the theory of left braces, an algebraic structure introduced
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1 Introduction

In [48] Rump introduced braces as a generalization of Jacobson radi-
cal rings to study non-degenerate involutive set-theoretic solutions of
the Yang-Baxter equation. In his subsequent papers [47],[49],[50],[51],
[52], he initiated the development of the theory of this new structure.
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In [21], an equivalent definition of left brace was introduced and
used to solve some open problems proposed in [31] on set-theoretic
solutions of the Yang-Baxter equation and also to generalize impor-
tant results in [20],[24] related with the Yang-Baxter equation. Later
this definition was generalized to a non-commutative case, the skew
left braces [35]. Bachiller in his Ph.D. thesis [2] showed the power of
the theory of braces (and skew braces) solving difficult open prob-
lems. He also found interesting links with other algebraic structures
such as Hopf-Galois extensions. The results of this thesis can be also
found in [3],[4],[5],[6],[7]. After this the study and development of
the theory of left braces has increased quickly.

2 Basic definitions and properties

Definition 2.1 A left brace is a set B with two operations + and · such
that (B,+) is an abelian group, (B, ·) is a group and

a(b+ c) + a = ab+ ac, (2.1)

for all a,b, c ∈ B. We call (B,+) the additive group and (B, ·) the multi-
plicative group of the left brace.

A right brace is defined similarly, replacing condition (2.1) by

(a+ b)c+ c = ac+ bc. (2.2)

It is easy to check that in a left brace B, the multiplicative identity 1
of the multiplicative group of B is equal to the neutral element 0 of
the additive group of B.

Definition 2.2 Let B be a left brace. The opposite brace of B is the right
brace Bop with the same additive group as B and multiplicative group equal
to the opposite group of the multiplicative group of B. The opposite brace of
a right brace is defined similarly.

Thus there is a bijective correspondence between left braces and
right braces.

Definition 2.3 A two-sided brace is a left brace B that also is a right
brace, in other words, a left brace B such that

(a+ b)c+ c =ac+ bc,
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for all a,b, c ∈ B.

The next result is an easy consequence of the definition of brace,
it gives a characterization of two-sided braces and provides many
examples.

Proposition 2.4 (Rump) If (B,+, ·) is a two-sided brace then (B,+, ∗) is
a Jacobson radical ring, where ∗ is the operation on B defined by

a ∗ b = ab− a− b

for a,b ∈ B. Conversely, if (R,+, ·) is a Jacobson radical ring then (R,+, ◦)
is a two-sided brace, where a ◦ b = ab+ a+ b, for a,b ∈ R.

Example 2.5 Let A be an abelian additive group. We define a multi-
plication on A by the rule ab = a+b, for all a,b ∈ A. Then (A,+, ·) is
a two-sided brace. We say that A is a trivial brace. Its corresponding
radical ring has zero multiplication.

Let B be a left brace. For every a ∈ B, we define a function

λa : B −→ B

by λa(b) = ab− a, for all b ∈ B.

Lemma 2.6 Let B be a left brace.

(i) λa(x + y) = λa(x) + λa(y), for all a, x,y ∈ B, that is λa is an
automorphism of the additive group of B.

(ii) λaλb = λab, for all a,b ∈ B, that is the map λ : (B, ·) −→ Aut(B,+),
defined by λ(a) = λa is a homomorphism of groups.

Proof — (i) Let a, x,y ∈ B. Then

λa(x+ y) =a(x+ y) − a = ax+ ay− a− a = λa(x) + λa(y).

(ii) Let a,b, x ∈ B. Then

λaλb(x) =λa(bx− b) = a(bx− b) − a = abx− ab = λab(x).

The proof is complete. ut

Definition 2.7 Let B be a left brace. The lambda map of B is the left action

λ : (B, ·) −→ Aut(B,+)
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defined by λ(a) = λa and λa(b) = ab− a, for all a,b ∈ B.

Definition 2.8 Let B be a left brace. A subbrace of B is a subgroup S of
the additive group of B which is also a subgroup of the multiplicative group
of B.

Note that if S is a subbrace of a left brace B, then λa(b) ∈ S for
all a,b ∈ S.

Definition 2.9 Let B be a left brace. A left ideal of B is a subgroup L of
the additive group of B such that λa(b) ∈ L for all a ∈ B and all b ∈ L.

Note that if L is a left ideal of a left brace B, then

ab−1 = −λab−1(b) + a ∈ L,

for all a,b ∈ L. Therefore L also is a subgroup of the multiplicative
group of B, and thus it is a subbrace of B.

Definition 2.10 Let B be a left brace. An ideal of B is a normal sub-
group I of the multiplicative group of B such that λa(b) ∈ I, for all a ∈ B
and b ∈ I.

Note that if I is an ideal of a left brace B, then

a− b = bb−1a− b = λb(b
−1a) ∈ I,

for all a,b ∈ I. Therefore I also is a subgroup of the additive group
of B. Hence every ideal of a left brace B is a left ideal of B.

Definition 2.11 Let I be an ideal of a left brace B. Let B/I be the quotient
group of the multiplicative group of B modulo its normal subgroup I. Let

c ∈ B and b ∈ I.

Note that
cb = c+ λc(b) ∈ c+ I

and also
c+ b = cλ−1c (b) ∈ cI.

Thus cI = c+ I and therefore G/I also is the quotient group of the additive
group of B modulo the additive subgroup I. It is easy to see that (B/I,+, ·)
is a left brace. This is called the quotient brace of B modulo I.
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Definition 2.12 Let B be a left brace. We define B1 = B(1) = B and for
every positive integer n, the additive subgroups

Bn+1 = B ∗Bn = 〈a ∗ b | a ∈ B, b ∈ Bn〉+

and
B(n+1) = B(n) ∗B = 〈a ∗ b | a ∈ B(n), b ∈ B〉+,

where a∗b = ab−a−b = (λa− idB)(b). Here 〈S〉+ denotes the subgroup
of the additive group of B generated by the subset S of B.

Note that the operation ∗ defined as above in a left brace B is not
associative in general. Thus the two series,

B ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . .

and
B ⊇ B(2) ⊇ . . . ⊇ B(n) ⊇ . . . ,

do not coincide in general.

Proposition 2.13 (Rump) Let B be a left brace. Then for every positive
integer n, Bn is a left ideal of B and B(n) is an ideal of B.

Proof — We will prove the result by induction on n. The result is
clear for n = 1. Let n be a positive integer. Suppose that Bn is a left
ideal and B(n) is an ideal of B. Let a,b ∈ B, c ∈ Bn and d ∈ B(n).
Then

λa(b ∗ c) = λa(λb(c) − c) = λaba−1(λa(c)) − λa(c)

= (aba−1) ∗ λa(c) ∈ Bn+1,

because λa(c) ∈ Bn by the induction hypothesis, and similarly

λa(d ∗ b) = (ada−1) ∗ λa(b) ∈ B(n+1),

because ada−1 ∈ B(n) by the induction hypothesis. Hence

Bn+1 and B(n+1)

are left ideals of B. Furthermore, if h ∈ B(n+1), then

aha−1 = λa(λh(a
−1) − a−1 + h) = λa(h ∗ a−1 + h) ∈ B(n+1).

Therefore, the result follows by induction. ut
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Definition 2.14 Let B be a left brace. The socle of B is

Soc(B) = {a ∈ B | ab = a+ b, for all b ∈ B}

= {a ∈ B | λa = idB} = Ker(λ).

Proposition 2.15 (Rump) Let B be a left brace. Then Soc(B) is an ideal
of B.

Proof — Since Soc(B) = Ker(λ) is a normal subgroup of (B, ·), it is
sufficient to show that it is invariant by λb for all b ∈ B. Let

a ∈ Soc(B) and b ∈ B.

Then

λb(a) = ba− b = bab−1b− b = bab−1 + b− b = bab−1 ∈ Soc(B),

where the third equality holds because bab−1 ∈ Soc(B). Thus the
result follows. ut
Definition 2.16 Let B1 and B2 be two left braces. A map

f : B1 −→ B2

is a homomorphism of left braces if

f(a+ b) = f(a) + f(b)

and
f(ab) = f(a)f(b),

for all a,b ∈ B1. The kernel of f is Ker(f) = {a ∈ B1 | f(a) = 1}.

Let
f : B1 −→ B2

be a homomorphism of left braces. Note that Ker(f) is a normal sub-
group of the multiplicative group of the left brace B1. Let

a ∈ B1 and b ∈ Ker(f).

Then

f(λa(b)) = f(ab− a) = f(a)f(b) − f(a) = f(a) − f(a) = 0 = 1.
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Hence Ker(f) is an ideal of B1. Note also that Im(f) = {f(a) | a ∈ B1}
is a subbrace of B2. If f is bijective, we say that f is an isomorphism.
Two left braces B1, B2 are isomorphic if there is an isomorphism

f : B1 −→ B2.

The notation B1 ' B2 will mean that the left braces B1 and B2 are
isomorphic.

Let B be a left brace and let I be an ideal of B. Note that we have a
natural short exact sequence of left braces

0 −→ I −→ B −→ B/I −→ 0.

We say that B is an extension of the left brace I by the left brace B/I.
In the context of Proposition 2.4 we now show that ideals of a two-

sided brace coincide with the ideals of the corresponding Jacobson
radical ring.

Let R be a Jacobson radical ring. Let I be an ideal of the ring R. We
shall see that I is an ideal of the two-sided brace (R,+, ◦). Let x ∈ I
and a,a ′ ∈ R be elements such that a ◦ a ′ = a ′ ◦ a = 0, that is a ′ is
the inverse of a in the group (R, ◦). We have

a ◦ x ◦ a ′ = (ax+ a+ x)a ′ + ax+ a+ x+ a ′

= axa ′ + aa ′ + xa ′ + ax+ a+ x+ a ′

= axa ′ + xa ′ + ax+ x+ a ◦ a ′ = axa ′ + xa ′ + ax+ x ∈ I.

Hence I is a normal subgroup of (R, ◦). Furthermore

λa(x) = a ◦ x− a = ax+ x+ a− a = ax+ x ∈ I.

Thus I is an ideal of the left brace R.
Conversely, let J be an ideal of the brace R. In order to prove that J

is an ideal of the ring R it is enough to show that ax, xa ∈ J for
all x ∈ J and all a ∈ R. Let x ∈ J and a ∈ R. Let a ′ ∈ R be the inverse
of a in the group (R, ◦). We have

ax = a ◦ x− a− x = λa(x) − x ∈ J

and
xa = x ◦ a− a− x = λa(a ′ ◦ x ◦ a) − x ∈ J.
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Therefore J indeed is an ideal of the ring R.
Note also that if I is an ideal of the radical ring R, then the ring R/I

is the radical ring corresponding to the quotient brace of the two-si-
ded brace R modulo I.

As in group theory one can prove the following isomorphism the-
orems.

Theorem 2.17 (First isomorphism theorem) Given any homomorphism
of left braces f : B1 −→ B2, there exists a unique isomorphism

f̃ : B1/Ker(f) −→ Im(f)

such that the diagram

-

-

?
6

B1/Ker(f)

B1 B2

Im(f)

f

f̃
π ι

commutes, that is f = ι ◦ f ◦ π, where π is the natural homomorphism and ι
is the inclusion mapping.

Theorem 2.18 (Second isomorphism theorem) Let B be a left brace,
let H be a subbrace of B, and let N be an ideal of B. Then, HN is a subbrace
of B, H∩N is an ideal of H and HN/N ' H/(H∩N).

Theorem 2.19 (Third isomorphism theorem) Given a left brace B and
an ideal N of B, there is a natural bijection between the subbraces of B
containing N and the subbraces of B/N: H ↔ H/N, and if H is and ideal
of B containing N, then the isomorphism

(G/N)/(H/N) ' G/H.

holds.

3 Construction of left braces

Let B1,B2 be two left braces. Then it is easy to see that the direct
product B1 × B2 of the multiplicative groups of the left braces B1
and B2 with the sum defined componentwise is a left brace called
the direct product of the braces B1 and B2.
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We shall construct the semidirect product of two left braces as in-
troduced by Rump in [51]. Let B1,B2 be left braces. Let

η : B2 −→ Aut(B1)

be a homomorphism of groups from the multiplicative group of B2 to
the group of automorphisms of the left brace B1 (see Definition 2.16).

Consider the semidirect product B1 o B2 of the multiplicative
groups B1 and B2 via η. Define in B1 oB2 a sum by

(a1,b1) + (a2,b2) = (a1 + a2,b1 + b2),

for a1,a2 ∈ B1 and b1,b2 ∈ B2. It is clear that (B1 o B2,+) is an
abelian group. We prove that the group B1 o B2 with this sum is a
left brace. Indeed, let a1,a2,a3 ∈ B1 and b1,b2,b3 ∈ B2. Then

(a1,b1)((a2,b2) + (a3,b3)) + (a1,b1)

= (a1,b1)(a2 + a3,b2 + b3) + (a1,b1)

= (a1η(b1)(a2 + a3),b1(b2 + b3)) + (a1,b1)

= (a1(η(b1)(a2) + η(b1)(a3)),b1(b2 + b3)) + (a1,b1)

= (a1(η(b1)(a2) + η(b1)(a3)) + a1,b1(b2 + b3) + b1)

= (a1η(b1)(a2) + a1η(b1)(a3),b1b2 + b1b3)

= (a1η(b1)(a2),b1b2) + (a1η(b1)(a3),b1b3)

= (a1,b1)(a2,b2) + (a1,b1)(a3,b3).

Hence, B1 o B2 is a left brace. We call this left brace the semidirect
product of the left braces B1 and b2, via η.

We shall construct the wreath product of two left braces. Let B1,B2
be two left braces. Suppose that the multiplicative group of B2 is a
group of permutations of a set S. We have that

H = {f : S −→ B1 | |{s ∈ S | f(s) 6= 1}| <∞}

is a left brace with the operations

(f1 · f2)(s) = f1(s) · f2(s)
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and
(f1 + f2)(s) = f1(s) + f2(s),

for all f1, f2 ∈ H and s ∈ S. Consider the action of (B2, ·) on H given
by the homomorphism

σ : (B2, ·) −→ Aut(H,+, ·)

defined by σ(b)(f)(s) = f(b−1(s)), for all b ∈ B2, f ∈ H and s ∈ S.
Let b1,b2 ∈ B2, f1, f2 ∈ H and s ∈ S. Note that

σ(b1)(f1 · f2)(s) = (f1 · f2)(b−11 (s)) = (f1)(b
−1
1 (s)) · (f2)(b−11 (s))

= σ(b1)(f1)(s) · σ(b1)(f2)(s) = (σ(b1)(f1) · σ(b1)(f2))(s),

σ(b1)(f1 + f2)(s) = (f1 + f2)(b
−1
1 (s)) = (f1)(b

−1
1 (s)) + (f2)(b

−1
1 (s))

= σ(b1)(f1)(s) + σ(b1)(f2)(s) = (σ(b1)(f1) + σ(b1)(f2))(s)

and

σ(b1b2)(f1)(s) = f1(b
−1
2 b−11 (s)) = σ(b2)(f1)(b

−1
1 (s))

= σ(b1)(σ(b2)(f1))(s).

Thus σ is a well-defined action.
The wreath product B1 o B2 of the left braces B1 and B2 is a left

brace which is the semidirect product of left braces HoB2 via σ.
Note that given two left braces B1,B2, we may consider the multi-

plicative group B2 as a group of permutations on itself by left mul-
tiplication. The corresponding wreath product B1 o B2 is called the
regular wreath product of B1 and B2.

The matched product of two left braces was introduced in [5] as a
natural extension of the matched product (or bicrossed product) of
groups [41]. In [8] the iterated matched product of left ideals is con-
structed. We will call this simply the matched product of left braces.

Theorem 3.1 (see [8], Theorem 2.4) Let B1, . . . ,Bn be left braces
with n > 2. Let

α(j,i) : (Bj, ·) −→ Aut(Bi,+)

be actions satisfying the following conditions.
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(1) The equality

α
(j,k)
b α

(i,k)

α
(j,i)
b−1

(a)
= α

(i,k)
a α

(j,k)

α
(i,j)
a−1

(b)
,

holds for all a ∈ Bi and b ∈ Bj, and for all i, j, k ∈ {1, . . . ,n}, where
α(i,j)(a) = α

(i,j)
a .

(2) For every i ∈ {1, . . . ,n}, α(i,i) is the lambda map of Bi, that
is, α(i,i)x (y) = xy− x, for all x,y ∈ Bi.

Then there exists a unique structure of left brace on B1× . . .×Bn such that

(i) the equality (a1, . . . ,an) + (b1, . . . ,bn) = (a1 + b1, . . . ,an + bn)
holds for all ai,bi ∈ Bi and i = 1, . . . ,n;

(ii) λ(0,...,0,ai,0,...,0)(0, . . . , 0,bj, 0, . . . , 0)= (0, . . . , 0,α(i,j)ai (bj), 0, . . . , 0),
for all ai ∈ Bi, bj ∈ Bj and all i, j ∈ {1, . . . ,n}.

Furthermore, each {0}× . . .× {0}×Bi × {0}× . . .× {0} is a left ideal of this
left brace. We denote this left brace by B1 ./ . . . ./ Bn and we say that it is
the matched product of the left braces B1, . . . ,Bn via the actions α(i,j).

Remark 3.2 As in group theory, we also have the concepts of inner
direct product, inner semidirect product and inner matched product.

Let B be a left brace. If I1, . . . , In are ideals of B such that the addi-
tive group of B is the direct sum of the additive groups of I1, . . . , In,
we say that B is the inner direct product of I1, . . . , In. In this case,

B ' I1 × . . .× In.

If I is an ideal of B and L is a left ideal of B such that the additive
group of B is the direct sum of the additive groups of I and L, then
we say that B is the inner semidirect product of I and L. In this case

B ' Io L,

via the conjugation action. If the additive group of B is the direct
sum of the additive groups of left ideals L1, L2, . . . , Ln, then we say
that B is the inner matched product of L1, L2, . . . , Ln. In this case

B ' L1 ./ L2 ./ . . . ./ Ln,
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via the actions α(i,j) : (Li, ·)→ Aut(Lj,+) defined by α(i,j)(a) = α(i,j)a

and α(i,j)a (b) = λa(b), for all a ∈ Li and b ∈ Lj.

We finish this section with another important construction of left
braces, the asymmetric product of two left braces introduced by Ca-
tino, Colazzo and Stefanelli in [15].

Let A1 and A2 be two (additive) abelian groups. Recall that a (nor-
malized) symmetric 2-cocyle on A1 with values in A2 is a map

b : A1 ×A1 −→ A2

such that

(i) b(0, 0) = 0;

(ii) b(a1,a2) = b(a2,a1);

(iii) b(a1 + a2,a3) + b(a1,a2) = b(a1,a2 + a3) + b(a2,a3), for all
a1,a2,a3 ∈ A1.

As a consequence, we get that b(a, 0) = b(0,a) = 0, for all a ∈ A1.

Theorem 3.3 (see [15], Theorem 3) Let B1 and B2 be two left braces.
Let

b : B1 ×B1 −→ B2

be a symmetric 2-cocycle on (B1,+) with values in (B2,+), and let

α : (B2, ·) −→ Aut(B1,+, ·)

be a homomorphism of groups such that

s · b(t2, t3)+b(t1 ·αs(t2+t3), t1)=b(t1 ·αs(t2), t1 ·αs(t3))+s, (3.1)

where αs = α(s), for all s ∈ B2 and t1, t2, t3 ∈ B1. Then the addition and
multiplication over B1 ×B2 given by

(t1, s1) + (t2, s2) = (t1 + t2, s1 + s2 + b(t1, t2)),

(t1, s1) · (t2, s2) = (t1 ·αs1(t2), s1 · s2),

define a structure of left brace on B1 ×B2. We call this left brace the asym-
metric product of B1 by B2 (via b and α) and denote it by B1 o◦ B2.
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Note that the lambda map of B1 o◦ B2 is defined by

λ(t1,s1)(t2, s2) =
(
λt1αs1(t2), λs1(s2) − b(λt1αs1(t2), t1)

)
, (3.2)

and its socle is

Soc(B1 o◦ B2)

= {(t, s) | λs = idB2 , λt ◦αs = idB1 , b(t, t ′) = 0 for all t ′ ∈ B1}.

Moreover, the subset B1 × {0} is a normal subgroup of (B1 o◦ B2, ·),
and {0}×B2 is a left ideal of B1 o◦ B2.

A particular case of this theorem is when we assume that b is
a symmetric bilinear form. In this case, conditions (i)–(iii) are auto-
matic, and condition (3.1) becomes

λs(b(t2, t3)) = b(λt1αs(t2), λt1αs(t3)),

which is equivalent to the two conditions:

λs(b(t2, t3)) = b(αs(t2),αs(t3)), (3.3)

b(t2, t3) = b(λt1(t2), λt1(t3)), (3.4)

for all s ∈ B2 and t1, t2, t3 ∈ B1.

4 Left nilpotent, right nilpotent and solvable left
braces

Left nilpotent left braces and right nilpotent left braces were intro-
duced in [17]. Solvable left braces were introduced in [9].

Definition 4.1 Let B be a left brace. We say that B is left nilpotent if
there exists a positive integer n such that Bn= {0}. A left brace B is right
nilpotent if there exists a positive integer such that B(n) = {0} (see De-
finition 2.12).

Remark 4.2 Smoktunowicz in [55], Theorem 1, proved that a fi-
nite left brace B is left nilpotent if and only if its multiplicative
group (B, ·) is nilpotent. In particular, every left brace of order a
power of a prime is left nilpotent.
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Note that if B is a right nilpotent nonzero left brace, then there
exists a positive integer n such that B(n) 6= {0} and B(n+1) = {0}. Let

a ∈ B(n) and b ∈ B.

We have that ab − a − b = a ∗ b = 0 and thus ab = a + b. Hen-
ce a ∈ Soc(B). Therefore B(n) ⊆ Soc(B). In particular, Soc(B) 6= {0}.

There are many examples of nonzero left braces of order a power
of a prime with zero socle (see for example [3],[8],[15]). Therefore
these are examples of left nilpotent left braces which are not right
nilpotent.

Consider the trivial left braces K = Z/(2)×Z/(2) and Z/(3). Let

α : Z/(3) −→ Aut(K,+)

be the action defined by α(x) = αx and

αx(y, z) = (y, z)
(
0 1
1 1

)x
,

for all x ∈ Z/(3) and all y, z ∈ Z/(2). Then the semidirect product

B3 = Ko Z/(3)

is a left brace which is not left nilpotent. Now we have

((y1, z1), x1) ∗ ((y2, z2), x2)

= ((y1, z1), x1) · ((y2, z2), x2) − ((y1, z1), x1) − ((y2, z2), x2)

= ((y1, z1) +αx1(y2, z2), x1 + x2) − ((y1, z1), x1) − ((y2, z2), x2)

= (αx1(y2, z2) − (y2, z2), 0),

for all yi, zi ∈ Z/(2) and all xi ∈ Z/(3). Hence B(2)3 = K× {0} and,
since

((y1, z1), 0) ∗ ((y2, z2), x2) = ((0, 0), 0),

we get that B(3)3 = {0}. Therefore B3 is right nilpotent.

Recall that a trivial brace is a left brace B such that any a,b ∈ B
satisfy a · b = a+ b. We also say that B has trivial structure. Thus B
is a trivial brace if and only if B2 = {0}.
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Let B be a left brace. Note that B2 = B(2) is an ideal of B by Propo-
sition 2.13. Observe that B/B2 has trivial brace structure because

a · b− a− b = a ∗ b ∈ B2.

Moreover, if I is an ideal of B, B/I has trivial structure if and only
if B2 ⊆ I.

Definition 4.3 A solvable left brace is any left brace B which has a series

0 = B0 ⊆ B1 ⊆ . . . ⊆ Bm = B

such that Bi is an ideal of Bi+1, and such that Bi+1/Bi is a trivial brace
for any i ∈ {0, 1, . . . ,m− 1}.

Using the same arguments as in group theory, one can prove the
following results.

Proposition 4.4 Any subbrace, and any quotient of a left (right) nilpotent
left brace is left (right) nilpotent.

Proposition 4.5

(a) Define d1(B) = B2, and di+1(B) = di(B)
2 for every positive inte-

ger i. Then, B is a solvable brace if and only if dk(B) = 0 for some k.

(b) Let B be a left brace, and let I be an ideal of B. If I and B/I are solvable
left braces, then B is also solvable.

(c) Any subbrace, and any quotient of a solvable left brace is solvable.

Remark 4.6 Note that for every left brace B,

dn(B) ⊆ Bn+1 ∩B(n+1).

Hence every left nilpotent left brace is solvable, and every right nilpo-
tent left brace is solvable. We have seen in Remark 4.2 that there ex-
ists a finite left nilpotent left brace B1 which is not right nilpotent,
and there exists a finite right nilpotent left brace B2 which is not left
nilpotent. Hence the left brace B1 × B2 is neither left nilpotent nor
right nilpotent. But clearly B1 ×B2 is solvable.
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5 Simple left braces

In this section we will present some techniques to construct finite
simple left braces. For the complete list of known simple finite left
braces see [5],[8],[9].

Definition 5.1 A nonzero left brace B is said to be simple if {0} and B are
the only ideals of B.

To study finite left braces, the next result is fundamental. It is a
consequence of [29], Theorem 2.15, and [24], Theorem 2.1.

Theorem 5.2 (Etingof, Schedler, Soloviev) Let B be a finite left brace.
Then the multiplicative group of B is solvable.

Proof — Let B be a finite left brace. Note that the Sylow subgroups
of the additive group of B are left ideals of B. In fact, if

|B| = pm11 . . . pmnn ,

where pi are the different prime divisors of the order of B, and Bpi
is the Sylow pi-subgroup of the additive group of B, then Bpi also is
a Sylow pi-subgroup of the multiplicative group of B and

Bpi +Bpj = BpiBpj = BpjBpi ,

for all i 6= j. Thus Bp1 , . . . ,Bpn form a Sylow system for the multi-
plicative group of B. Hence, by Satz VI.2.3 of [38], the multiplicative
group of B is solvable. ut

As a consequence of [48], Proposition 8, we have the following
result.

Theorem 5.3 (Rump) Let B be a nonzero finite left brace of order a power
of a prime p. Then B2 is a proper ideal of B.

Recall that the Sylow subgroups of a finite nilpotent group are
normal subgroups. In particular, if B is a finite left brace with nilpo-
tent multiplicative group, then the Sylow subgroups of the additive
group are ideals of B. Therefore we have the following result.

Corollary 5.4 (Rump) Let B be a finite simple left brace. If the multi-
plicative group of B is nilpotent, then B is a trivial brace of prime order.
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The first examples of finite non-trivial simple left braces were con-
structed by Bachiller in [5]. The smallest of these is a simple left brace
with multiplicative group isomorphic to the symmetric group of de-
gree 4, Sym4, and additive group isomorphic to (Z/(2))3 ×Z/(3).

We know that every finite left brace is the inner matched product
of the Sylow subgroups of its additive group, since these are left
ideals. Thus a natural way to construct finite simple left braces is to
choose suitable finite left braces B1, . . . ,Bn of orders pm11 , . . . ,pmnn ,
where p1, . . . ,pn are n distinct primes, and to choose suitable actions

α(j,i) : (Bj, ·) −→ Aut(Bi,+)

satisfying the conditions in Theorem 3.1, such that the matched prod-
uct B1 ./ . . . ./ Bn is simple. This is the approach to construct finite
simple left braces in [5],[8].

The simple left braces constructed in [5] have order

p1p
k(p1−1)+1
2 ,

for any positive integer k, and any pair of different primes p1 and p2
with p2|(p1 − 1). Every such left brace is a matched product of a
trivial brace of order p1 and a left brace, that we call of Hegedűs
type, of order pk(p1−1)+12 .

Let s be an integer greater than 1. Let

p1,p2, . . . ,ps

be different prime numbers and let r1, r2, . . . , rs be positive integers.
Assume that p1, . . . ,ps−1 are odd. If ps = 2, then we also assume
that rs = 1. Let 0 6 r ′i 6 ri. Then in [8] a simple left brace is con-
structed with additive group

(Z/(pr11 ))p
r ′
1
1 (p

r2
2 −1)+1 × . . .× (Z/(p

rs−1
s−1 ))

p
r ′
s−1
s−1 (prss −1)+1

× (Z/(prss ))p
r ′s
s (p

r1
1 −1)+1.

It is a matched product of left braces of Hegedűs type.
The first example of left braces of Hegedűs type comes from [37],

where Hegedűs constructed regular subgroups of the affine
group AGL(n,p) containing only the trivial translation. In [16] Catino
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and Rizzo showed that these regular subgroups can be viewed as left
braces. This gives the first example of left braces of Hegedűs type
contained in the folowing result (see [5]).

For every prime p, we denote by Fp the field of p elements.

Theorem 5.5 (Hegedűs, Catino, Rizzo) Let p be a prime number, and
let n be a positive integer. Assume that we are given a quadratic form Q
on Fnp , and an element f of order p of the orthogonal group of Q. Then, the
abelian group Fn+1p with lambda map given by

λ(~x,xn+1)(~y,yn+1) := (fq(~x,xn+1)(~y),yn+1 + b(~x, fq(~x,xn+1)(~y))),

for ~x,~y ∈ Fnp and xn+1,yn+1 ∈ Fp, defines a structure of left brace, where

q(~x, xn+1) := xn+1 −Q(~x)

and b is the associated bilinear form

b(~x,~y) := Q(~x+ ~y) −Q(~x) −Q(~y).

Moreover, if Q is non-degenerate, then the socle of this brace is equal to
zero.

This was generalized from the field Fp to the case of the local
rings Z/(pr) in [8], Theorem 3.1, obtaining the left brace of Hegedűs
type with additive group (Z/(pr))n+1, denoted by

H(pr,n,Q, f),

where Q is a quadratic form over (Z/(pr))n (considered as a free
module over the ring Z/(pr)) and f is an element of order pr

′
in the

orthogonal group of Q, for some 0 6 r ′ 6 r, and

λ(~x,xn+1)(~y,yn+1) := (fq(~x,xn+1)(~y),yn+1 + b(~x, fq(~x,xn+1)(~y))),

for ~x,~y ∈ (Z/(pr))n and xn+1,yn+1 ∈ Z/(pr), where

q(~x, xn+1) := xn+1 −Q(~x)

and b is the associated bilinear form

b(~x,~y) := Q(~x+ ~y) −Q(~x) −Q(~y).
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Note that these left braces are rather complicated and it seems dif-
ficult to find actions satisfying the conditions in Theorem 3.1. Thus
we should understand better the structure of these finite simple left
braces.

On the other hand Catino, Colazzo and Stefanelli in [15] showed
that the left brace of Hegedűs type H(p,n,Q, f) is in fact the asym-
metric product of two trivial braces,

(Z/(p))n o◦Z/(p)

via the action
α : Z/(p) −→ Aut((Z/(p))n),

defined by α(z)(~x) = fz(~x), and the bilinear form b associated to −Q.
This was generalized in [9] showing that H(pr,n,Q, f) is the asym-
metric product of two trivial braces

(Z/(pr))n o◦Z/(pr)

via the action
α : Z/(pr) −→ Aut((Z/(pr))n),

defined by α(z)(~x) = fz(~x), and the bilinear form b associated to −Q.

By using these ideas, in [9], Theorem 6.2, it is shown that the finite
simple left braces constructed in [8], Theorem 3.6, are asymmetric
products of two trivial braces. Furthermore, the examples of finite
simple left braces constructed in [5] can be generalized using the
asymmetric product, obtaining in [9] a new family of finite left braces
of the form

((Z/(p))n oA)o◦Z/(p),

where A is any finite trivial brace and p is a prime such that p|(q− 1)
for all prime divisors q of the order of A.

Example 5.6 (Bachiller) This is the first example of non-trivial sim-
ple left brace constructed by Bachiller, but presented as an asymmet-
ric product.

Let A = Z/(3). Let F2 be the field of two elements. Consider the
ring R = F2[x]/(x

2 + x+ 1), and denote ξ := x ∈ R. Let c ∈ Aut(R,+)
be defined by

c(r) = ξr,
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for all r ∈ R. Let f ∈ Aut(R,+) be defined by

f(r(ξ)) = r(ξ2),

for all r(ξ) ∈ R. Note that

fc(r(ξ)) = f(ξr(ξ)) = ξ2r(ξ2) = c2f(r(ξ)),

for all r(ξ) ∈ R. Hence fc = c2f.

Since the characteristic polynomial of c is x2 + x+ 1 ∈ F2[x], c− id
is invertible.

Let b : R× R −→ F2 be the unique bilinear form such that the ma-
trix of b with respect to the basis B = (1, ξ) is(

0 1
1 0

)
∈M2(F2).

Hence b is non-degenerate. Note that the matrices of f and c with
respect the basis B are (

1 1
0 1

)
,
(
0 1
1 1

)
,

respectively. Since(
1 0
1 1

)(
0 1
1 0

)(
1 1
0 1

)
=

(
0 1
1 0

)
=

(
0 1
1 1

)(
0 1
1 0

)(
0 1
1 1

)
,

we have that f and c are in the orthogonal group of b.

Let T = R o A be the semidirect product of the trivial braces R
and A via the action

β : A −→ Aut(R,+)

defined by βa(u) = ca(u), where β(a) = βa, for all a ∈ Z/(3) and
all u ∈ R.

We define the map α : (Z/(2),+) −→ Aut(T ,+, ·) by

αµ(u,a) = (fµ(u), 2µa),

where α(µ) = αµ, for all µ ∈ F2, all a ∈ Z/(3) and all u ∈ R. (here we
have αµ ∈ Aut(T ,+, ·) because fc = c2f).
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Let b ′ : T × T −→ F2 be the symmetric bilinear form defined by

b ′((u,a), (v,a ′)) = b(u, v),

for all a,a ′ ∈ Z/(3) and all u, v ∈ R. Since f and c are in the or-
thogonal group of b, the conditions (3.3) and (3.4) are satisfied by b ′

and α. Hence we can form the asymmetric product B = T o◦ F2 of T
by F2, via b ′ and α. Since c− id is invertible, one can check that B is
a simple left brace.

Note that the multiplicative groups of all the finite simple left
braces presented above are solvable groups of derived length at
most 3. In [9], Theorem 5.3, using the asymmetric product and the
wreath product of left braces, finite simple left braces with multi-
plicative group of arbitrary derived length are constructed.

Using the following result, which is a particular case of Theo-
rem 2.6 in [8], one can construct more finite simple left braces.

Theorem 5.7 (Bachiller, Cedó, Jespers, Okniński) Let B be a matched
product of two finite simple left braces B1,B2 of relatively prime orders via
the actions

α(j,i) : (Bj, ·) −→ Aut(Bi,+), , (i, j ∈ {1, 2}).

Then the left brace B is simple if and only if α(1,2) and α(1,2) are nontrivial.

6 Extensions of left braces

One way to classify left braces is to split this problem in two steps.
First, to classify the simple left braces, and second, to develop a gen-
eral theory of extensions of braces. In Section 5, we have seen what
is known about simple left braces. In this section, we will see what is
known about the theory of extensions of left braces.

Definition 6.1 Let I and H be two left braces. An extension of I by H is
a short exact sequence of left braces

0 −→ I −→ B −→ H −→ 0. (6.1)

A general theory of extensions has not been developed yet. The
first result of extensions appears in [11], Corollary D, an it was trans-
lated to the language of left braces in [3], Theorem 2.1. This result
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characterizes the extensions (6.1) of left braces such that the image
of I in B is an ideal of B contained in Soc(B). Note that in this case I
should be a trivial brace.

Another approach using linear cycle sets is given in [43]. In [46]
Rump introduced cycle sets and linear cycle sets. Recall that a cycle
set is a set X equipped with a binary operation · such that

(x · y) · (x · z) = (y · x) · (y · z),

for all x,y, z ∈ X, and for every x ∈ X, the map y 7→ x · y is a bijection
from X to X. A linear cycle set is an abelian group (A,+) with another
operation · such that (A, ·) is a cycle set and:

(1) (a+ b) · c = (a · b) · (a · c),

(2) a · (b+ c) = a · b+ a · c,

for all a,b, c ∈ A. In [48], Proposition 5, Rump showed that there is
a bijective correspondence between left braces and linear cycle sets.
In fact, note that in a linear cycle set A we can define an operation ◦
by the rule a ◦ b = ab+ a, where a · (ab) = b. Then (A,+, ◦) is a left
brace. Conversely, if B is a left brace then we can define an opera-
tion � by the rule a � b = λ−1a (b). Then (B,+, �) is a linear cycle set.
The central extensions defined in [43] (Definition 5.5) corresponds to
extensions of left braces (6.1) such that the image of I in B is an ideal
of B contained in Soc(B)∩Z(B), where Z(B) is the center of the mul-
tiplicative group of B. Thus this is a particular case of the extensions
of left braces of [11],[3]. The advantage of [43] is its interpretation
as 2-cohomological classes of a certain cohomology.

In [5] (Theorem 3.3) Bachiller characterizes the extensions (6.1)
such that I is a trivial brace. This generalizes [3], Theorem 2.1. It
would be interesting to know whether a cohomology theory can be
constructed to characterize this type of extensions.

7 Multiplicative group of finite left braces

By Theorem 5.2, the multiplicative group of every finite left brace is
solvable. Implicitly in [29] and explicitly in [24] it is asked: is every
finite solvable group isomorphic to the multiplicative group of a fi-
nite left brace? In [4] Bachiller answered this question in the negative
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by showing that for infinitely many primes p there exists a group of
order p10 of nilpotency class 9 which is not isomorphic to the multi-
plicative group of any left brace. His proof uses Lazard’s correspon-
dence between nilpotent Lie algebras over Fp and finite p-groups
and the generalization of some results in the theory of Hopf-Galois
extensions, and it also is based on the proof of Burde [14] of the
existence of nilpotent Lie algebras over C of dimension 10 with no
faithful representation of dimension 11.

On the other hand, there are some positive results on the structure
of the multiplicative group of a finite left brace.

The following result is a particular case of Lemma 8.1 in [23].

Lemma 7.1 Let p be a prime. Let G be a finite non-trivial p-group.
Then G is isomorphic to a subgroup of the multiplicative group of a two-si-
ded brace of order a power of p.

Proof — Let Fp be the field of p elements. Then it is known that the
augmentation ideal R = ω(Fp[G]) of the group algebra Fp[G] is its
Jacobson radical. In fact, R is a nilpotent ring. Thus (R,+, ◦), where

a ◦ b = ab+ a+ b,

is a two-sided brace. Let
f : G −→ R

be the map defined by f(g) = g− 1, for all g ∈ G. Note that

f(g1g2) = g1g2 − 1 = (g1 − 1)(g2 − 1) + g1 − 1+ g2 − 1

= (g1 − 1) ◦ (g2 − 1) = f(g1) ◦ f(g2),

for all g1, g2 ∈ G. The result follows. ut

The following result generalizes [24], Corollary 3.8.

Corollary 7.2 Every finite nilpotent group G is isomorphic to a subgroup
of the multiplicative group of a finite two-sided brace B, which is the direct
product of two-sided braces

B1, . . . ,Bn

of orders pm11 , . . . ,pmnn , where p1, . . . ,pn are the distinct prime divisors
of the order of G.
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Proof — Suppose that G is a finite nilpotent group of order

p
s1
1 . . . p

sn
n ,

where p1, . . . ,pn are distinct primes and s1, . . . , sn are positive inte-
gers. Since G is nilpotent, its Sylow subgroups are normal. Let Si be
the Sylow pi-subgroup of G. Then G is the direct product of its Sylow
subgroups

G =

n∏
i=1

Si.

By Lemma 7.1, there exists a finite two-sided brace Bi of order pmii
such that Si is isomorphic to a subgroup of the multiplicative group
of Bi. Let B = B1 × . . . × Bn. It is clear that G is isomorphic to a
subgroup of the multiplicative group of the two-sided brace B. Thus
the result follows. ut

Another result in this line is the following theorem.

Theorem 7.3 (see [24], Corollary 3.6) Every finite solvable group is
isomorphic to a subgroup of the multiplicative group of a finite left brace.

It is clear that every abelian group is isomorphic to the multiplica-
tive group of a trivial brace. It is also clear that if G1,G2 are groups
isomorphic to multiplicative groups of left braces, then its direct
product also is. We summarize other positive results in the follow-
ing theorem.

Theorem 7.4 Let G be a finite group. If one of the following conditions
holds, then G is isomorphic to the multiplicative group of a left brace.

(1) G is nilpotent of nilpotency class two ([1]).

(2) G is abelian-by-cyclic (see [24], Corollary 3.10).

(3) G = AoH, where A is abelian and H is the multiplicative group of
a left brace (see [24], Theorem 3.3)

(4) G = G1 oG2, where G1,G2 are isomorphic to multiplicative groups
of left braces (see [24], Corollary 3.5).

(5) G is solvable of A-type, i.e. with all its Sylow subgroups abelian
(see [13], Corollary 4.3).
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8 Left braces and the Yang-Baxter equation

The Yang-Baxter equation is an important equation in theoretical
physics that has become, since its origin in a paper of Yang [58],
a key ingredient in quantum groups and Hopf algebras [41]. It was
suggested by Drinfeld in [27] to find all the set-theoretic solutions of
the Yang-Baxter equation. In [29] and [33] the study of non-degenera-
te involutive set-theoretic solution of the Yang-Baxter equation was
initiated introducing interesting related algebraic structures. The last
years several papers on this type of solutions have appeared [7],[8],
[9],[10],[17],[20],[21],[22],[24],[25],[26],[30],[31],[32],[46],[48],[51],[55].
We recall its definition.

Let X be a non-empty set. Let

r : X2 −→ X2

be a bijective map and write

r(x,y) = (σx(y),γy(x)).

We say that (X, r) is involutive if r2 = idX2 . We say that (X, r) is non-
degenerate if σx,γx ∈ SymX, for all x ∈ X. We say that (X, r) is a
set-theoretic solution of the Yang-Baxter equation if r1r2r1 = r2r1r2,
where

r1 = r× idX : X3 −→ X3

and
r2 = idX × r : X3 −→ X3.

Example 8.1 Let X be a non-empty set. Let r : X2 −→ X2 by the
mapping defined by r(x,y) = (y, x), for all x,y ∈ X. It is easy to
check that (X, r) is a non-degenerate involutive set-theoretic solution
of the Yang-Baxter equation. It is called the trivial solution on X.

Let X, Y be non-empty sets and let

r : X2 −→ X2 and r ′ : Y2 −→ Y2

be maps. Write

r(x, x ′) = (σx(x
′),γx ′(x)) and r ′(y,y ′) = (σ ′y(y

′),γ ′y ′(y)).
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A homomorphism from (X, r) to (Y, r ′) is a map f : X −→ Y such that

(f(σx(x
′)), f(γx ′(x))) = r

′(f(x), f(x ′)),

for all x, x ′ ∈ X. Note that if (X, r) is a non-degenerate involutive
set-theoretic solution of the Yang-Baxter equation then so is

(f(X), r ′
|f(X)2

).

If f is bijective then we say that (X, r) and (Y, r ′) are isomorphic.

Convention. By a solution of the YBE we mean a non-degenerate
involutive set-theoretic solution of the Yang-Baxter equation.

The next result is an easy generalization of [19], Theorem 4.1.

Proposition 8.2 (see [21], Proposition 2) Let X be a non-empty set. Let

r : X2 −→ X2

be a bijective map such that

r(x,y) = (σx(y),γy(x)).

Then (X, r) is a solution of the YBE if and only if

(i) r2 = idX2 ,

(ii) σx ∈ SymX, for all x ∈ X,

(iii) σx ◦ σσ−1
x (y)

= σy ◦ σσ−1
y (x)

, for all x,y ∈ X.

Proof — It is straightforward (see the proof of Theorem 9.3.10

in [40]). ut

Let (X, r) be a solution of the YBE and write r(x,y) = (σx(y),γy(x)).
The structure group of (X, r) is the group G(X, r) with the presenta-
tion

G(X, r) = 〈X | xy = σx(y)γy(x), ∀x,y ∈ X〉.

Let ZX denote the additive free abelian group with basis X. Consider
the natural action of SymX on ZX and the associated semidirect prod-
uct

M(X) = ZX o SymX .
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In [29] (Proposition 2.4 and 2.5) it is proven that G(X, r) is isomorphic
to a subgroup B of M(X) of the form

B = {(a,φ(a)) | a ∈ ZX},

for some function
φ : ZX −→ SymX .

In fact, φ(x) = σx for all x ∈ X, and the map x 7→ (x,σx) from X
to ZX o SymX induces an isomorphism

φ̃ : G(X, r) −→ B.

Note that

(a,φ(a))(b,φ(b)) = (a+φ(a)(b),φ(a)φ(b)),

Thus φ(a+φ(a)(b)) = φ(a)φ(b).

Note that one can define a sum + on B by the rule

(a,φ(a)) + (b,φ(b)) = (a+ b,φ(a+ b)),

for all a,b ∈ ZX. Note also that

(a,φ(a))((b,φ(b)) + (c,φ(c))) + (a,φ(a))

= (a,φ(a))(b+ c,φ(b+ c)) + (a,φ(a))

= (a+φ(a)(b+ c),φ(a+φ(a)(b+ c))) + (a,φ(a))

= (a+φ(a)(b+ c) + a,φ(a+φ(a)(b+ c) + a))

= (a+φ(a)(b) +φ(a)(c) + a,φ(a+φ(a)(b) +φ(a)(c) + a))

= (a+φ(a)(b),φ(a+φ(a)(b))) + (a+φ(a)(c),φ(a+φ(a)(c)))

= (a,φ(a))(b,φ(b)) + (a,φ(a))(c,φ(c)).

Hence (B,+, ·) is a left brace.

We can define a sum + in G(X, r) by

g+ h = φ̃−1(φ̃(g) + φ̃(h)),

for all g,h ∈ G(X, r). Then (G(X, r),+, ·) is a left brace and the addi-
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tive group is ZX, the additive free abelian group with basis X. We
say that this is the natural structure of left brace on the structure
group G(X, r). Note that

λa(b) = ab− a = φ̃−1(φ̃(ab) − φ̃(a))

= φ̃−1((a,φ(a))(b,φ(b)) − (a,φ(a)))

= φ̃−1((a+φ(a)(b),φ(a+φ(a)(b))) − (a,φ(a)))

= φ̃−1((φ(a)(b),φ(φ(a)(b))))

= φ(a)(b),

for all a,b ∈ G(X, r). In particular, λx(y) = σx(y), for all x,y ∈ X.
The subgroup of SymX generated by {σx | x ∈ X} is denoted

by G(X, r) (see [31]) and it is called the permutation group of the
solution (X, r). Note that G(X, r) = φ(G(X, r)). The map

φ : G(X, r) −→ G(X, r)

is a homomorphism of groups. Then G(X, r) has a unique structure
of left brace such that φ is a homomorphism of left braces. This is
the natural structure of left brace on the permutation group of (X, r).
Note that Ker(φ) = Soc(G(X, r)). Thus

G(X, r) ' G(X, r)/ Soc(G(X, r)).

In [33], Theorem 1.6, it is proven that the structure group G(X, r) of
a finite solution (X, r) of the YBE is a Bieberbach group, i.e. a finitely
generated torsion-free abelian-by-finite group.

In order to study the structure group G(X, r) of a solution of
the YBE and to classify such solutions, Etingof, Shedler and Solo-
viev in [29] proposed an interesting operator as a tool. We recall its
definition.

Definition 8.3 Let (X, r) be a solution of the YBE. Suppose that

r(x,y) = (σx(y),γy(x)).

The retract relation ∼ on the set X with respect to r is defined by x ∼ y
if σx = σy.

There is a natural induced solution Ret(X, r) = ([X], [r]), called the re-
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traction of (X, r), where [X] = X/ ∼ and

[r]([x], [y]) = ([σx(y)], [γy(x)]),

where [x] denotes the ∼ equivalence class of x ∈ X.

Definition 8.4 A solution (X, r) of the YBE is called a multipermutation
solution of level m if m is the smallest nonnegative integer such that the
solution Retm(X, r) has cardinality 1; in this case we write mpl(X, r) = m.
Here we define

Retk(X, r) = Ret(Retk−1(X, r))

for k > 1, and Ret0(X, r) = (X, r).
We say that the solution (X, r) is irretractable if Ret(X, r) = (X, r).

We now discuss a strong connection between braces and solutions
of the YBE. We begin with the following lemma which is implicit
in [48] and at page 132 of [47].

Lemma 8.5 (see [21], Lemma 2) Let B be a left brace. The following
properties hold.

(i) aλ−1a (b) = bλ−1b (a).

(ii) λaλλ−1a (b)
= λbλλ−1b (a)

.

(iii) The map
rB : B×B −→ B×B

defined by rB(x,y) = (λx(y), λ−1λx(y)(x)) is a solution of the YBE.

Proof — (i) Let a,b ∈ B. Then

aλ−1a (b) =a(a−1(b+ a)) = b+ a = bλ−1b (a).

(ii) is a consequence of (i) and Lemma 2.6.
(iii) It is easy to check that r2B = idB2 . Let gy(x) = λ−1λx(y)(x). To show
that (B, rB) is non-degenerate we prove that gy is bijective. For this
we note that

gy(x) = λ
−1
λx(y)

(x) = λ−1xy−x(x) = (xy− x)−1(x+ xy− x)

= (xy− x)−1xy = ((xy)−1(xy− x))−1 = (1− y−1 + (xy)−1)−1

= (−y−1 + (xy)−1)−1.
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Now, by (ii) and Proposition 8.2, the assertion follows. ut

Let B be a left brace. The solution of the YBE equation (B, rB) de-
fined in Lemma 8.5 is called the solution of the YBE associated to the
left brace B.

Recall that a left brace B is right nilpotent if B(n) = {0} for some
positive integer n. The following result is a characterization of this
class of left braces.

Proposition 8.6 (see [17], Proposition 6) Let B be a nonzero left brace
and let (B, rB) be its associated solution of the YBE. Then

mpl(B, rB) = m < +∞
if and only if B(m+1) = {0} and B(m) 6= {0}.

Let (X, r) be a finite multipermutation solution of the YBE. Then it
is easy to see that the group G(X, r) is poly-(infinite cyclic) (Proposi-
tion 4.2 in [39]). Recently the converse has been proven.

Theorem 8.7 (see [10], Theorem 2.1) Let (X, r) be a finite solution of
the YBE. Then the following statements are equivalent:

(1) (X, r) is a multipermutation solution.

(2) G(X, r) is left orderable.

(3) G(X, r) is poly-(infinite cyclic).

We now give an equivalent condition for a group to be a multiplica-
tive group of a left brace. This is an easy generalization of a part of
[24], Theorem 2.1 (see the definition of IYB morphism at page 2546

of [24]).

Proposition 8.8 (see [23], Proposition 4.2) A group G is the multiplica-
tive group of a left brace if and only if there exists a group homomorphism

µ : G −→ SymG

such that xµ(x)−1(y) = yµ(y)−1(x) for all x,y ∈ G.

Proof — Suppose that such a homomorphism µ is given. Define an
operation + on G by

x+ y = xµ(x)−1(y)
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for x,y ∈ G. Clearly x+ y = y+ x. Further, for x,y, z ∈ G,

(x+ y) + z = yµ(y)−1(x) + z = yµ(y)−1(x)µ(yµ(y)−1(x))−1(z)

= yµ(y)−1(x) µ(µ(y)−1(x))−1 (µ(y)−1(z))

= yµ(y)−1(z) µ(µ(y)−1(z))−1 (µ(y)−1(x))

= yµ(y)−1(z)µ(yµ(y)−1(z))−1(x)

= (y+ z) + x = x+ (y+ z).

It is easy to check that 1 is the neutral element for this addition
and µ(x)(x−1) is the opposite of x. Hence (G,+) is an abelian group.

For x,y, z ∈ G we also get that x−1µ(x−1)−1(y+ z) = x−1 + y+ z
and hence

µ(x)(y+ z) = x (x−1 + y+ z) = x (x−1µ(x)(y) + z)

= xx−1µ(x)(y) µ(x−1µ(x)(y))−1(z)

= µ(x)(y) µ(µ(x)(y))−1 (µ(x)(z))

= µ(x)(y) + µ(x)(z)

and therefore

x(y+ z) + x =xµ(x)−1(µ(x)(y+ z)) + x = x+ µ(x)(y+ z) + x

=x+ µ(x)(y) + x+ µ(x)(z) = xy+ xz.

Hence (G,+, ·) is a left brace. Note that in this brace λx = µ(x) for
every x ∈ G.

The converse follows by Lemmas 2.6 and 8.5. ut

The following result gives a strong link between left braces and
solutions of the YBE.

Theorem 8.9 (see [21], Theorem 2) If B is a left brace then there exists
a solution (X, r ′) of the YBE such that the solution Ret(X, r ′) is isomorphic
to the solution (B, rB) associated to the left brace B and, moreover, G(X, r ′)
is isomorphic to B as left braces. Furthermore, if B is finite then X can be
taken a finite set.

Given a left brace B, in [7] there is a method to construct explic-
itly all the solutions (X, r) of the YBE such that G(X, r) is isomorphic
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to B as left braces. In some sense in [7], the classification of all finite
solutions of the YBE is reduced to the classification of all finite left
braces.

9 Left braces and related algebraic structures

In this section we give some connections between left braces an other
algebraic structures.

Definition 9.1 Let G be a group. The holomorph of G is the group

Hol(G) = Go Aut(G).

Definition 9.2 Let G be a group. A regular subgroup of Hol(G) is a
subgroup H of Hol(G) of the form H = {(a,φ(a)) ∈ Hol(G) | a ∈ G} for
some function φ : G −→ Aut(G).

Theorem 9.3 (see [23], Theorem 5.1) Let (A,+) be an abelian group.
Let

B(A) = {(A,+, ·) | (A,+, ·) is a left brace}

and
S(A) = {G | G is a regular subgroup of Hol(A)}.

Then the map f : B(A)→ S(A) defined by

f(A,+, ·) = {(a, λa) | a ∈ A}

is bijective.

Proof — Let a,b ∈ A. Then

(a, λa)(b, λb) = (a+ λa(b), λaλb) = (a+ ab− a, λab) = (ab, λab)

and
(a, λa)−1 = (λ−1a (−a), λ−1a ) = (−λa−1(a), λa−1)

= (−a−1a+ a−1, λa−1) = (a−1, λa−1).

Hence {(a, λa) | a ∈ A} ∈ S(A) and thus f is well defined.
Consider G = {(a,φ(a)) | a ∈ A} ∈ S(A). We define an operation ·

on A by
a · b = a+φ(a)(b),
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for a,b ∈ A. We prove that (A,+, ·) is a left brace. For this we first
show that (A, ·) is a group. Let a,b, c ∈ A. Since

(a,φ(a)) (b,φ(b)) = (a+φ(a)(b),φ(a)φ(b)) ∈ G

we have that
φ(a+φ(a)(b)) = φ(a)φ(b).

Thus

(a · b) · c = (a+φ(a)(b)) · c =

a+φ(a)(b) +φ(a+φ(a)(b))(c) = a+φ(a)(b) +φ(a)φ(b)(c)

and
a · (b · c) = a · (b+φ(b)(c)) =

a+φ(a)(b+φ(b)(c)) = a+φ(a)(b) +φ(a)φ(b)(c).

So
(a · b) · c = a · (b · c).

Notice that
a · 0 = a+φ(a)(0) = a

and
a ·φ(a)−1(−a) = a− a = 0.

Hence, (A, ·) is a group. We also have

a · (b+ c) + a = a+φ(a)(b+ c) + a

= a+φ(a)(b) + a+φ(a)(c) = a · b+ a · c.

Hence (A,+, ·) is a left brace.
So, we have constructed a map S(A)→ B(A) and it is easy to verify

that this is the inverse of the map f. ut
A connection of this type in the context of regular permutation

subgroups of the affine group AGL(V) on a vector space V was given
by Catino and Rizzo [16].

Note that if G = {(a,φ(a)) | a ∈ A} ∈ S(A) then from the proof
it follows that the bijective map G → A : (a,φ(a)) 7→ a is a multi-
plicative homomorphism of the group G to the multiplicative group
of the left brace f−1(G). We can now define a sum on G using this
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bijection, that is

(a,φ(a)) + (b,φ(b)) = (a+ b,φ(a+ b))

for a,b ∈ A, making this bijection an isomorphism of left braces.
In case the group φ(A) is finite then the group G has been investi-

gated in [34] and it was called a group of IG-type. Thus every group
of IG-type is isomorphic to the multiplicative group of a left brace.

We now recall the definition of a monoid of I-type introduced
by Gateva-Ivanova and Van den Bergh in [33]. For this, let FaMn

denote the multiplicative free abelian monoid of rank n with basis

{u1, . . . ,un}.

Definition 9.4 A monoid S generated by a set X = {x1, . . . , xn} is said
to be of left I-type if there exists a bijection (called a left I-structure)

v : FaMn −→ S

such that, for all a ∈ FaMn,

v(1) = 1 and {v(u1a), . . . , v(una)} = {x1v(a), . . . , xnv(a)}.

Similarly, one defines monoids of right I-type. In [39] Jespers
and Okniński proved that a monoid S is of left I-type if and only
if S is of right I-type. The monoid S is simply called a monoid
of I-type and its group of fractions SS−1 is said to be a group of I-ty-
pe.

Gateva-Ivanova and Van den Bergh in [33] proved that a group G
is of I-type if and only if it is isomorphic to the structure group of a
finite solution of the YBE. Thus, groups of I-type are also of IG-type.

We can now characterize groups of I-type as follows.

Proposition 9.5 (see [23], Proposition 5.2) A group G is of I-type if
and only if it is isomorphic to the multiplicative group of a left brace B such
that the additive group of B is a free abelian group with a finite basis X such
that λx(y) ∈ X for all x,y ∈ X.

Proof — Suppose G is a group of I-type. We may assume that G is
a subgroup of ZY o SymY , for some finite set Y, of the form

G = {(u,φ(u)) | u ∈ ZY},
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and for some mapping φ : ZY −→ SymY . By the comment given be-
fore the proposition, we know that G is a left brace for the addition

(a,φ(a)) + (b,φ(b)) = (a+ b,φ(a+ b)),

with a,b ∈ ZY . Its additive group is a free abelian group with basis

X = {(x,φ(x)) | x ∈ Y}

and
λ(x,φ(x))(y,φ(y)) = (x,φ(x))(y,φ(y)) − (x,φ(x))

= (x+φ(x)(y),φ(x+φ(x)(y))) − (x,φ(x))

= (φ(x)(y),φ(φ(x)(y))) ∈ X.

Conversely, suppose that B is a left brace such that its additive
group is a free abelian group with a finite basis X such that λx(y) ∈ X
for all x,y ∈ X. Hence λ−1x (y) ∈ X, for all x,y ∈ X. By Lemma 2.6,

λ−1x = λx−1 .

In particular,
λx−1(x) = 1− x

−1 = −x−1 ∈ X

for all x ∈ X. Since X is finite, the map x 7→ −x−1 is a permutation
of X. It follows that (−x)−1 ∈ X (the inverse image of x) for all x ∈ X.
Therefore,

λ−x(y) = λ
−1
(−x)−1

(y) ∈ X

for all x,y ∈ X. Let a ∈ B. We know from Lemma 2.6 that λa is an
automorphism of the additive group of the brace B.

Suppose that
a =

∑
x∈X

zxx

for some integers zx. We shall prove that λa(x) ∈ X, for all x ∈ X, by
induction on

ma =
∑
x∈X

|zx|.

If ma = 1, then the result is clear. Suppose that ma > 1 and that
λb(x) ∈ X, for all x ∈ X and all b ∈ B such that mb < ma. Clearly
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there exists x ∈ X such that either

ma+x < ma or ma−x < ma.

Note that, for all c,d ∈ B,

c+d=c+d− 1=c+cc−1d− cc−1=c(c−1d− c−1)=cλc−1(d). (9.1)

Suppose that ma+x < ma. Because of (9.1) we get that

λa = λa+x−x = λ
(−x)λ−1−x(a+x)

= λ−xλλ−1−x(a+x)
.

Since λ−x(y) ∈ X and λ−x is an automorphism of the additive group
of B, we have that

m
λ−1−x(a+x)

= ma+x < ma.

Hence by the induction hypothesis, λ
λ−1−x(a+x)

(y) ∈ X, and therefo-
re λa(y) ∈ X, in this case.

Suppose that ma−x < ma. Again by (9.1) we have

λa = λa−x+x = λ
xλ−1x (a−x)

= λxλλ−1x (a−x)
.

Since λx(y) ∈ X and λx is an automorphism of the additive group
of B, we have that

m
λ−1x (a−x)

= ma−x < ma.

Hence by the induction hypothesis,

λ
λ−1x (a−x)

(y) ∈ X,

and therefore λa(y) ∈ X, in this case.
Thus every automorphism λa of the additive group of B is induced

by a permutation of the finite set X. Note that for all a,b ∈ B

(ab, λab) = (a+ λa(b), λaλb) = (a, λa)(b, λb).

Therefore the map

f : B −→ {(a, λa) | a ∈ B}
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defined by f(a) = (a, λa) is an isomorphism of the multiplicative
group of B and the subgroup

{(a, λa) | a ∈ B}

of the semidirect product B o Aut(B,+). Hence the multiplicative
group of B is of I-type. ut

Note also that if G is a left brace, then the identity map

id : G −→ G

is a bijective 1-cocycle of the group G with coefficients in the left
G-module (G,+) with respect the action given by

λ : G −→ Aut(G,+).

This is because for all a,b ∈ G we have ab = a+ λa(b). Furthermore,
if H is a group, A is a left H-module and

π : H −→ A

is a bijective 1-cocycle, then we can define a sum + in H by

a+ b = π−1(π(a) + π(b)),

for all a,b ∈ H; and the group H with this sum is a left brace. This is
because for all a,b, c ∈ H we have that

π(a(b+ c) + a) = π(a(b+ c)) + π(a)

= π(a) + aπ(b+ c) + π(a)

= π(a) + a(π(b) + π(c)) + π(a)

= π(a) + aπ(b) + aπ(c) + π(a)

= π(ab) + π(ac).

This gives us a bijective correspondence between left braces and
groups with a bijective 1-cocycle with respect to a left action
(see [24],[29]). The latter class of groups gives rise to groups of central
type which play an important role in the theory of finite dimensional
central simple algebras (see [12],[28]). This class of groups with a bi-
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jective 1-cocycle also appeared in the context of left-invariant affine
structures on Lie groups [14].

Definition 9.6 A Garside monoid is a pair (M,∆) where M is a cancella-
tive monoid such that:

(1) there exists d :M −→N satisfying d(ab) > d(a) + d(b) and a 6= 1
implies d(a) 6= 0,

(2) any two elements of M have a left- and a right-lcm and a left- and a
right-gcd,

(3) ∆ is a Garside element of M, this meaning that the left- and right-
divisors of ∆ coincide and generate M,

(4) the family of all divisors of ∆ in M is finite.

Recall that a non-invertible element of a monoid is an atom if it is
not a product of two non-invertible elements. A monoid S is atomic
if every non-invertible element of S is a product of atoms.

Note that if (M,∆) is a Garside monoid, then condition (1) in the
definition implies that d(1) = 0 and M is conical, that is ab = 1
implies a = b = 1. Furthermore, M is atomic and the set of atoms
of M is finite by (4). Moreover, for every a ∈M, the supremum of the
number of atoms in the factorization of a as a product of atoms is
finite. Note that if a ∈M is a divisor of ∆, then there exist a ′,a ′′ ∈M
such that aa ′ = a ′a ′′ = ∆ and a∆ = ∆a ′′. Now it is easy to see thatM
satisfies the left and right Ore conditions. Thus it has left and right
group of fractions G =M−1M =MM−1.

Definition 9.7 A group G is said to be a Garside group if it is the
(left) group of fractions of a submonoid M and there exists ∆ ∈ M such
that (M,∆) is a Garside monoid.

In [25] (Theorem 3.3), Chouraqui proved that the structure group
of a finite solution of the YBE is a Garside group. We shall prove this
result using the natural structure of left brace of the structure group
of a solution of the YBE.

Lemma 9.8 Let (X, r) be a finite solution of the YBE. Let

n = [G(X, r) : Soc(G(X, r))].

Let z be an integer. Let
∆z =

∑
x∈X

zx.
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Then g∆z = g+∆z, for all g ∈ G(X, r). In particular, ∆mz = m∆z, for all
integer m, and n∆z is a central element of the structure group G(X, r).

Proof — Let g ∈ G(X, r). We have

g∆z = λg(∆z) + g = λg
(∑
x∈X

zx
)
+g =

∑
x∈X

zλg(x) + g = ∆z + g.

The second part is a consequence of the first and the fact that n∆z is
contained in Soc(G(X, r)). ut

Let (X, r) be a finite solution of the YBE. Let M(X, r) be the sub-
monoid of G(X, r) generated by X.

Lemma 9.9 We have

M(X, r) =
{∑
x∈X

zxx | zx ∈N
}

and M(X, r)−1 = −M(X, r).

Proof — Let
M =

{∑
x∈X

zxx | zx ∈N
}

.

Note that λg(a) ∈M, for all g ∈ G(X, r) and all a ∈M.
Every element of M(X, r) is of the form

x1 . . . xm,

with x1, . . . , xm ∈ X. We shall prove that x1 . . . xm ∈ M by induction
on m. For m = 1 it is clear. Suppose that m > 1 and that

y1 . . . ym−1 ∈M

for all y1, . . . ,ym−1 ∈ X. By the induction hypothesis, x2 . . . xm ∈M,
and thus

x1 . . . xm = x1 + λx1(x2 . . . xm) ∈M.

Hence M(X, r) ⊆M. Let ∑
x∈X

zxx ∈M.

We shall prove that ∑
x∈X

zxx ∈M(X, r)
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by induction on
t =
∑
x∈X

zx.

For t = 1 it is clear. Suppose that t > 1 and that∑
x∈X

axx ∈M(X, r)

for all ∑
x∈X

axx ∈M

with ∑
x∈X

ax < t.

Since t > 1 there exists x0 ∈ X such that zx0 > 0. Let

a = −λ−1x0 (x0) +
∑
x∈X

zxλ
−1
x0

(x).

Now we have that a∈M and, by the induction hypothesis, a∈M(X, r).
Thus∑
x∈X

zxx = x0−x0+
∑
x∈X

z ′xx = x0λ
−1
x0

(−x0+
∑
x∈X

z ′xx) = x0a ∈M(X, r).

Hence M =M(X, r).
Note that

g−1 = −λg−1(g)

and
−g = λ(−g)−1(g)

−1

for all g ∈ G(X, r). Therefore

M−1 = −M,

and the result follows. ut

Note that M(X, r) has a degree function

deg : M(X, r) −→N
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defined by deg(x1 . . . xm) = m, for all x1, . . . , xm ∈ X.

Lemma 9.10 Let a ∈M(X, r). By Lemma 9.9,

a =
∑
x∈X

axx,

for some ax ∈N. Then deg(a) =
∑
x∈X ax.

Proof — We will prove the result by induction on deg(a). If
deg(a)=1, then a = x for some x ∈ X, and the result is clear. Suppose
that

deg(a) = m > 1

and that the result is true for all b ∈ M(X, r) with deg(b) < m. We
have that a = x1 . . . xm, for some x1, . . . , xm ∈ X. By the induction
hypothesis,

x2 . . . xm =
∑
x∈X

bxx,

for some bx ∈N such that
∑
x∈X bx = m− 1. We have

a = x1 + λx1(x2 . . . xm)

= x1 + λx1(
∑
x∈X bxx) = x1 +

∑
x∈X bxλx1(x).

Since λx1(x) ∈ X, for all x1, x ∈ X, the result follows. ut

Lemma 9.11 Let a,b ∈M(X, r) and c,d ∈M(X, r)−1. By Lemma 9.9,

a =
∑
x∈X

axx, b =
∑
x∈X

bxx, c =
∑
x∈X

cxx and d =
∑
x∈X

dxx,

for some ax,bx,−cx,−dx ∈N. Then

(i) b−1a ∈M(X, r) if and only if bx 6 ax for all x ∈ X.

(ii) c−1d ∈M(X, r)−1 if and only if cx > dx for all x ∈ X.

Proof — (i) Note that

b−1a = b−1 + λb−1(a) = −λb−1(b) + λb−1(a) = λb−1(a− b).

Therefore b−1a ∈M(X, r) if and only if a−b ∈M(X, r) and the result
follows easily by Lemma 9.9.
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(ii) As above
c−1d = λc−1(d− c).

Therefore c−1d ∈M(X, r)−1 if and only if d− c ∈M(X, r)−1 and the
result follows easily by Lemma 9.9. ut

Lemma 9.12 Any two elements of M(X, r) have a left- and a right-lcm
and a left- and a right-gcd.

Proof — Let a,b ∈M(X, r). By Lemma 9.9

a =
∑
x∈X

axx and b =
∑
x∈X

bxx,

for some ax,bx ∈ N. By Lemma 9.11 it is clear that the left-gcd of a
and b is

l-gcd(a,b) =
∑
x∈X

min(ax,bx)x,

and that its right-lcm is

r-lcm(a,b) =
∑
x∈X

max(ax,bx)x.

Now consider the monoid M(X, r)−1. Since a−1,b−1 ∈ M(X, r)−1,
by Lemma 9.9

a−1 =
∑
x∈X

a ′xx and b−1 =
∑
x∈X

b ′xx,

for some non-positive integers a ′x,b ′x. By Lemma 9.11 it is clear that
the left-gcd of a−1 and b−1 in M(X, r)−1 is

l-gcd(a−1,b−1) =
∑
x∈X

max(a ′x,b ′x)x,

and that its right-lcm is

r-lcm(a−1,b−1) =
∑
x∈X

min(a ′x,b ′x)x.

Note that if d−1 = l-gcd(a−1,b−1), then d is the right-gcd of a and b
in M(X, r), and if m−1 = r-lcm(a−1,b−1), then m is the left-lcm of a
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and b in M(X, r). Thus the result follows. ut

Theorem 9.13 (see [25], Theorem 3.3) Let (X, r) be a finite solution
of the YBE. Let m be a positive integer. Then (M(X, r),∆m) is a Garside
monoid and thus G(X, r) is a Garside group.

Proof — It is clear that the submonoid M(X, r) of G(X, r) is can-
cellative. We have seen that M(X, r) has a degree function deg. In
particular condition (1) in the definition of Garside monoid is satis-
fied.

By Lemma 9.12, condition (2) in the definition of Garside monoid
is satisfied by M(X, r).

By Lemma 9.9, ∆m ∈ M(X, r) and, by Lemma 9.8, ∆−1
m = −∆m.

By Lemma 9.11, the set of left-divisors of ∆m in M(X, r) is

D1 =
{∑
x∈X

zxx | zx ∈ Z, 0 6 zx 6 m, for all x ∈ X
}

,

and the set of left-divisors of ∆−1
m in the monoid M(X, r)−1 is

D2 =
{
−
∑
x∈X

zxx | zx ∈ Z, 0 6 zx 6 m, for all x ∈ X
}

.

Note that(∑
x∈X

zxx
)−1

= −λ(
∑
x∈X zxx)

−1

(∑
x∈X

zxx
)
= −

∑
x∈X

zxλ(
∑
x∈X zxx)

−1(x),

for all zx ∈ Z. Hence D−1
2 = D1. Thus the set of right-divisors of ∆m

in M(X, r) also is D1, which is finite and contains X. Therefore ∆m is
a Garside element of M(X, r). Hence

(M(X, r),∆m)

is a Garside monoid, and clearly G(X, r) is its group of left (right)
group of fractions. ut

In [26] Dehornoy develops a sort of right-cyclic calculus to give
another proof of Theorem 9.13. He also describes finite quotients
of G(X, r) that play a role similar to the role that Coxeter groups play
for Artin-Tits groups. We shall see this using the left brace structure
of G(X, r).
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Definition 9.14 (see [26], Definition 5.1) If (M,∆) is a Garside monoid
and G is its group of fractions, a surjective homomorphism

π : G −→ G

is said to provide a Garside germ for (G,M,∆) if there exists a map

σ : G −→M

such that π ◦ σ is the identity, the image of σ is the family of all divisors
of ∆ in M, and M admits a presentation

〈σ(G) | {σ(f)σ(g) = σ(fg) | f, g ∈ G and ‖f‖S + ‖g‖S = ‖fg‖S}〉,

where S is the image under π of the atom set of M, and ‖f‖S is the length
of a shortest decomposition of f as a product of elements of S.

Proposition 9.15 (see [26], Proposition 5.2) Let (X, r) be a finite solu-
tion of the YBE. Let

|X| = n, G = G(X, r), M =M(X, r) and d = [G : Soc(G)].

Let k be a positive integer such that

kd− 1 > 1 and ∆ = ∆kd−1.

Then
N = {kdg | g ∈ G}

is a normal subgroup of G and the natural map

π : G −→ G/N

provides a Garside germ for (G,M,∆). The group G/N has order (kd)n

and the kernel of π is isomorphic to Zn.

Proof — By Theorem 9.13, (M,∆) is a Garside monoid. We also
know that the set of left-divisors of ∆ is

D1 =
{∑
x∈X

zxx | zx ∈ Z, 0 6 zx 6 kd− 1
}

.

It is easy to see that N is a left ideal of the left brace G. Let g,h ∈ G.
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Then, since d = [G : Soc(G)], dg ∈ Soc(G) and

h−1(kdg)h = h−1(kdg+ h) = λh−1(kdg+ h) + h−1

= kdλh−1(g) + λh−1(h) + h−1 = kdλh−1(g) ∈ N.

Hence N is an ideal of the left brace G. In particular, the multiplica-
tive group of N is a normal subgroup of the structure group G. The
natural homomorphism π : G −→ G/N is in fact a homomorphism of
left braces. Since the additive group of the left brace G is free abelian
with basis X, the restriction of π to D1 is a bijection

π|D1 : D1 −→ G/N.

Let
σ = (π|D1)

−1.

We have that π(σ(f)) = f, for all f ∈ G/N. We know by [33] that M
admits a presentation as a monoid

〈X | xy = zt whenever r(x,y) = (z, t)〉.

The set of atoms of M is X. Let X = π(X). Let ‖a‖X denote the length
of a shortest decomposition of a ∈ G/N as a product of elements of X.
Let a ∈ G/N and

σ(a) =
∑
x∈X

axx,

for some ax ∈N. By Lemma 9.10,

‖a‖X =
∑
x∈X

ax.

Hence, for f, g ∈ G/N,

‖f‖X + ‖g‖X = ‖fg‖X

if and only if
σ(f)σ(g) = σ(fg).

Since kd > 1, for x,y ∈ X, xy /∈ D1 if and only if

kd = 2 and xy = x+ λx(y) = 2x,
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that is if and only if kd = 2 and λx(y) = x. In this case,

r(x,y) = (λx(y), λ−1λx(y)(x)) = (x,y).

Now it is easy to see that M admits a presentation

〈σ(G/N) | {σ(f)σ(g) = σ(fg) | f, g ∈ G/N and ‖f‖X + ‖g‖X = ‖fg‖X}〉.

Therefore the result follows. ut

Now give an intriguing connection between multiplicative groups
of left braces and fundamental problems on integral group rings.

Proposition 9.16 (Sysak, [56],[57]) Let G be a group. Then G is the
multiplicative group of a left brace if and only if there exists a left ideal L
of Z[G] such that

(i) the augmentation ideal ω(Z[G]) = G− 1+ L and

(ii) G∩ (1+ L) = {1}.

Proof — Suppose that there exists a left ideal L of Z[G] satisfying (i)
and (ii). Let a,b ∈ G. Then by (i) there exist c ∈ G and α ∈ L such
that a− 1+ b− 1 = c− 1+α. Furthermore, if

a− 1+ b− 1 = d− 1+β,

for d ∈ G and β ∈ L, then c − d ∈ L. Hence d−1c − 1 ∈ L and,
by (ii), d−1c = 1. Thus there is a unique c ∈ G such that

a− 1+ b− 1− c+ 1 ∈ L.

We define a sum ⊕ on G by

(a⊕ b) − a− b+ 1 ∈ L,

for a,b ∈ G.
Clearly

a⊕ b = b⊕ a.

Let a,b, c ∈ G. Then

((a⊕ b)⊕ c) − (a⊕ b) − c+ 1 ∈ L.
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Since
(a⊕ b) − a− b+ 1 ∈ L,

we have that
((a⊕ b)⊕ c) − a− b− c+ 2 ∈ L.

Since
(b⊕ c) − b− c+ 1 ∈ L,

we have
((a⊕ b)⊕ c) − a− (b⊕ c) + 1 ∈ L.

Therefore
(a⊕ b)⊕ c = a⊕ (b⊕ c).

Note that
(a⊕ 1) − a− 1+ 1 ∈ L.

Therefore
a−1(a⊕ 1) ∈ 1+ L,

and by (ii), a ⊕ 1 = a. Furthermore, for a ∈ G, there exists a uni-
que 	a ∈ G such that

1− a− (	a) + 1 ∈ L.

Then
a⊕ (	a) = 1.

Hence (G,⊕) is an abelian group. Let a,b, c ∈ G. Then

(c(a⊕ b)⊕ c) − ca− cb+ 1

= (c(a⊕ b)⊕ c) − c(a⊕ b) − c+ 1+ c(a⊕ b) + c− 1− ca− cb+ 1

= (c(a⊕ b)⊕ c) − c(a⊕ b) − c+ 1+ c((a⊕ b) − a− b+ 1) ∈ L.

Therefore
c(a⊕ b)⊕ c = ca⊕ cb.

Thus G is the multiplicative group of a left brace.
Suppose now that G is the multiplicative group of a left brace. De-

note by ⊕ the sum of the left brace G. Let I be the additive subgroup
of ω(Z[G]) generated by all the elements of the form

(a⊕ b) − a− b+ 1,
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for a,b ∈ G. We shall see that I is a left ideal of Z[G]. To prove this, it
is sufficient to show that c((a⊕ b) − a− b+ 1) ∈ I, for all a,b, c ∈ G.
Note that

c((a⊕ b) − a− b+ 1) = c(a⊕ b) − ca− cb+ c

= (c(a⊕ b)⊕ c) − (c(a⊕ b)⊕ c)

+ c(a⊕ b) − ca− cb+ c

= (ca⊕ cb) − (c(a⊕ b)⊕ c) + c(a⊕ b) − ca− cb+ c

= (ca⊕ cb) − ca− cb+ 1

−(c(a⊕ b)⊕ c) + c(a⊕ b) + c− 1 ∈ I.

Therefore I is a left ideal.

Let
α =

∑
x∈G

αxx ∈ ω(Z[G]).

We shall prove that α ∈ G− 1+ I by induction on∑
x∈G

|αx|.

If ∑
x∈G

|αx| = 0,

then α = 0 = 1− 1 ∈ G− 1+ I. If∑
x∈G

|αx| = 2,

then α = x− y, for some x,y ∈ G with x 6= y. In this case, let z ∈ G
such that y⊕ z = 1. Then

α = x− 1+ (y⊕ z) − y− z+ 1+ z− 1

= (x⊕ z) − 1− (x⊕ z) + x+ z− 1+ (y⊕ z) − y− z+ 1 ∈ G− 1+ I.

Suppose that ∑
x∈G

|αx| = n > 2
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and that
β ∈ G− 1+ I,

for all
β =

∑
x∈G

βxx ∈ ω(Z[G])

such that ∑
x∈G

|βx| < n.

Because
α ∈ ω(ZG)

there exist x,y ∈ G such that αxαy < 0. By symmetry we may assume
that αx < 0. Then,

β = α+ x− y ∈ G− 1+ I,

by the induction hypothesis, and therefore

α = y− x+ g− 1+ γ,

for some g ∈ G and some γ ∈ I. Since

y− x = h− 1+ δ

for some h ∈ G and some δ ∈ I, we have that

α=h+g− 2+γ+ δ = (h⊕g)− 1−(h⊕g)+h+g− 1+γ+ δ∈G− 1+I.

Hence
ω(Z[G]) = G− 1+ I.

Note that ω(Z[G]) is the free abelian group⊕
g∈G

Z(g− 1).

Let
ψ : ω(Z[G]) −→ (G,⊕)

be the morphism of abelian groups such that

ψ(g− 1) = g.
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It is easy to see that I ⊆ ker(ψ). Therefore

G∩ (1+ I) = {1}.

The proof is complete. ut

In a similar way we can prove the following result.

Proposition 9.17 Let G be a group. Then G is the multiplicative group
of a two-sided brace if and only if there exists an ideal L of Z[G] such that

(i) the augmentation ideal ω(Z[G]) = G− 1+ L and

(ii) G∩ (1+ L) = {1}.

Proposition 9.17 for finite groups essentially was proven by San-
dling (see [53], Theorem 1.5). It is a crucial property to prove the
following positive solution to the isomorphism problem of integral
group rings of adjoint groups of finite radical rings (see also [44],
Section 9.4, for a proof of this result).

Theorem 9.18 (see Sandling [53], Theorem 3.1) Let G be a finite group
isomorphic to the adjoint group of a radical ring. If H is a group such that

Z[G] ' Z[H],

then G ' H.

Roggenkamp and Scott gave in [45] an affirmative answer to the
isomorphism problem for finite nilpotent groups, thus generalizing
the result of Sandling.

Remark 9.19 Suppose that for a group G, there exists a left ideal L
of Z[G] such that

ω(Z[G]) = G− 1+ L

and
G∩ (1+ L) = {1}.

Let α be a unit in Z[G] of augmentation 1. Then there exist g ∈ G
and β ∈ L such that

α− 1 = g− 1+β.

Thus α = g(1+ g−1β). Thus the group of units of Z[G] is

U(Z[G]) = (±G)H,



Left braces: solutions of the Yang-Baxter equation 83

where
H = (1+ L)∩U(Z[G]).

Furthermore, since G∩ (1+ L) = {1}, we have that

(±G)∩H = {1}.

If L is a two-sided ideal, then H is a normal subgroup of U(Z[G]).
Such normal subgroups H are called normal complements in the
group of units of the group ring. The existence of normal comple-
ments is related with the isomorphism problem. For finite nilpo-
tent groups, an affirmative answer to the existence of normal com-
plements implies an affirmative answer to the isomorphism prob-
lem [54], Proposition (30.4). The existence of normal complements is
known for finite nilpotent groups of class 2. But for general finite
nilpotent groups it remains an open question (see [54], Section 34

and Problem 30).

10 Open problems

Problem 10.1 (see [18], Question 2.1(2)) Let B be a left brace. Assume
that the operation ∗, defined by a ∗ b = ab − a− b, for all a,b ∈ B, is
associative. Is B a two-sided brace?

With the additional hypothesis that the additive group of B has no
elements of order 2, the answer is positive (see [18], Proposition 2.2).

Note that a left brace B is a two-sided brace if and only if

(a+ b) ∗ c = a ∗ c+ b ∗ c,

for all a,b, c ∈ B. In fact, for a,b, c ∈ B,

(a+ b) ∗ c = (a+ b)c− a− b− c

and
a ∗ c+ b ∗ c = ac− a− c+ bc− b− c,

thus (a+ b) ∗ c = a ∗ c+ b ∗ c if and only if (a+ b)c+ c = ac+ bc.

Problem 10.2 (see [8], Problem 5.1) Describe the structure of all left
braces of order pn, for a prime p. And describe the group Aut(B,+, ·) of
automorphisms for all such left braces.
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We know that all finite non-trivial simple left braces are special
matched products of left braces B1, . . . ,Bn of orders pm11 , . . . ,pmnn ,
for n > 1, distinct primes p1, . . . ,pn and positive integersm1, . . . ,mn.
Thus in order to classify all finite simple left braces, to solve this
problem seems crucial.

Also for the classification of the finite simple left braces the follow-
ing two problems are interesting.

Problem 10.3 (see [8], Problem 5.2) Determine for which prime num-
bers p, q and positive integers α,β, there exists a simple left brace of cardi-
nality pαqβ.

Problem 10.4 Classify all the finite simple left braces such that every
simple homomorphic image of each proper subbrace is trivial.

Problem 10.5 Let G be a nilpotent group of nilpotency class 2. Is G iso-
morphic to the multiplicative group of a two-sided brace? Is G isomorphic
to the multiplicative group of a left brace?

In [1] Ault and Watters conjectured that every nilpotent group of
class 2 is the adjoint group of a nilpotent ring of nilpotency index 3.
They show that this is true for nilpotent groups G of class 2 that
satisfies one of the following properties:

(i) G/Z(G) is a weak direct product of cyclic groups.

(ii) G/Z(G) is a torsion group.

(iii) Every element of [G,G] has a unique square root.

In [36] Hales and Passi gave a counterexample to the conjecture
of Ault and Watters. They also showed that a nilpotent group G of
class 2 is the adjoint group of a nilpotent ring of nilpotency index 3
if it satisfies any of the following properties:

(iv) G/Z(G) is a uniquely 2-divisible group.

(v) G/N is a torsion-free group and completely decomposable (i.
e. a weak direct product of rank one groups) for some normal
subgroup N such that [G,G] ⊆ N ⊆ Z(G).

Proposition 10.6 (see [21], Proposition 4) Let G be a nilpotent group
of class 2. Let H be the subgroup H = {g2z | g ∈ G, z ∈ Z(G)} of G. Then
the operation + defined on H by

h21z1 + h
2
2z2 = (h1h2)

2z1z2[h2,h1]
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for h1,h2 ∈ G and z1, z2 ∈ Z(G), is well defined and (H,+, ·) is a two-si-
ded brace. The radical ring associated to the two-sided brace H is nilpotent
of nilpotency index at most 3. Furthermore, the solution of the Yang-Baxter
equation associated to the brace H is square free.

Problem 10.7 Let G be a finite nilpotent group of nilpotency class 3. Is G
isomorphic to the multiplicative group of a left brace.

Note if p is an odd prime, then the group

〈a,b | ap = bp = [a,b]p = [[a,b],a]p = [[a,b],b]p = 1

and [[a,b],a], [[a,b],b] are central〉

is not isomorphic to the multiplicative group of a two-sided brace
(see [42]). But, by [22] (Theorem 2.1), it is isomorphic to the multi-
plicative group of a left brace.

Problem 10.8 Let G be a finite nilpotent group of nilpotency class c < 9.
Is G isomorphic to the multiplicative group of a left brace.

By [4], there is a finite nilpotent group (in fact, a p-group for some
prime p) of nilpotency class 9 which is not isomorphic to the multi-
plicative group of any left brace.

Problem 10.9 Characterize the finite nilpotent groups that are multiplica-
tive groups of a left brace.

Problem 10.10 Characterize the finite nilpotent groups that are multi-
plicative groups of a two-sided brace.

This is equivalent to characterize the finite nilpotent groups that
are isomorphic to the circle group of a finite nilpotent ring. In [42]
one can find an obstruction to this.
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matched products of finite braces and simplicity; new solutions
of the Yang-Baxter equation”, Trans. Amer. Math. Soc 370 (2018),
4881–4907.

[9] D. Bachiller – F. Cedó – E. Jespers – J. Okniński: “Asymmetric
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