Seminormal, Non-Normal Maximal Subgroups and Soluble PST-Groups

J.C. Beidleman

(Received Apr. 9, 2016; Accepted Aug. 11, 2016 — Communicated by M.R. Dixon)

Abstract

All groups in this paper are finite. Let G be a group. Maximal subgroups of G are used to establish several new characterisations of soluble PST-groups.

Mathematics Subject Classification (2010): 20D20, 20D10, 20F16
Keywords: finite group; permutability; seminormality; S-semipermutability

1 Introduction and statement of results

All groups in this paper are finite.

There are many articles in the literature (for instance, [1],[5],[3],[6] to name just the four classical ones) where global information about a group G is obtained by assuming that some members of relevant families of subgroups of G are either normal or satisfy a sufficiently strongly embedding property extending normality. In many cases, the subgroups are the normal subgroups of G, and the embedding assumptions are that they are permutable or S-permutable in G.

Recall that a subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (respectively, S-permutable) in G if H permutes with all subgroups
(respectively, Sylow subgroups) of G. Examples of permutably subgroups include the normal subgroups of G. Non-Dedekind modular groups and non-modular nilpotent groups show that S-permutability, permutability and normality are quite different subgroup embedding properties. However, according to a result of Kegel [12], every S-permutable subgroup of G is always subnormal.

A group G is a PST-group if every subnormal subgroup of G is S-permutable in G. In the same way classes of PT-groups and T-groups are defined, in which every subnormal subgroup is permutable or normal respectively. Since normal subgroups are permutable and obviously permutable subgroups are S-permutable then it follows that T is a proper subclass of PT and PT is a proper subclass of PST. Soluble PST, PT and T-groups were studied and characterised by Agrawal [1], Zacher [15] and Gaschütz [10] respectively.

Theorem 1

1. A soluble group G is a PST-group if and only if the nilpotent residual L of G is an abelian Hall subgroup of G on which G acts by conjugation as power automorphisms.

2. A soluble PST-group G is a PT-group (respectively T-group) if and only if G/L is a modular (respectively Dedekind) group.

Note that if G is a soluble T, PT or PST-group then every subgroup and every quotient of G inherits the same properties.

We mention that in [5, Chapter 2] many of the beautiful results on these classes of groups are presented.

Subgroup embedding properties closely related to permutability and S-permutability are semipermutability and S-semipermutability introduced by Chen in [8]: a subgroup X of a group G is said to be semipermutable (respectively, S-semipermutable) in G provided that it permutes with every subgroup (respectively, Sylow subgroup) K of G such that $\gcd(|X|,|K|) = 1$. A semipermutable subgroup of a group need not be subnormal. For example a 2-Sylow subgroup of the non-abelian group of order 6 is semipermutable but not subnormal.

Note that a subnormal semipermutable (respectively, S-semipermutable) subgroup of a group G must be normalised by every
subgroup (respectively, Sylow subgroup) P of G such that $\gcd(|X|,|P|) = 1$. This observation was the basis for Beidleman and Ragland [7] to introduce the following subgroup embedding properties.

A subgroup X of a group G is said to be *seminormal* (respectively, *S*-seminormal)\(^1\) in G if it is normalised by every subgroup (respectively, Sylow subgroup) K of G such that $\gcd(|X|,|K|) = 1$.

By [7, Theorem 1.2], a subgroup of a group is seminormal if and only if it is S-seminormal. Furthermore, seminormal subgroups are not necessarily subnormal: it is enough to consider a non-subnormal subgroup H of a group G such that $\pi(H) = \pi(G)$. The following result is an interesting characterisation of soluble PST-groups.

Theorem 2 ([7]) *Let G be a soluble group. Then the following statements are pairwise equivalent:*

1. G is a PST-group.
2. All the subnormal subgroups of G are seminormal in G.
3. All the subnormal subgroups of G are semipermutable in G.
4. All the subnormal subgroups of G are S-sempemutable in G.

Definition 3 *Let G be a group. Then*

1. G is called an $S(n)$NM-group if every non-seminormal subgroup of G is contained in a non-normal maximal subgroup of G.
2. G is called an $S(s)$NM-group if every non-S-sempemutable subgroup of G is contained in a non-normal maximal subgroup of G.
3. G is called a $P(s)$NM-group if every non-sempemutable subgroup of G is contained in a non-normal maximal subgroup of G.

The following three theorems provide some new and different characterisations of soluble PST-groups.

\(^1\) Note that the term *seminormal* has different meanings in the literature
Theorem A A group G is a soluble PST-group if and only if every subgroup of G is an $S(s)NM$-group.

Theorem B A group G is a soluble PST-group if and only if every subgroup of G is an $S(n)NM$-group.

Theorem C A group G is a soluble PST-group if and only if every subgroup of G is a $P(s)NM$-group.

Robinson [13] introduced classes of groups in which cyclic subnormal subgroups are S-permutable, permutable or normal.

Definition 4 A group G is called a PST_c-group if every cyclic subnormal subgroup of G is S-permutable in G.

Similarly, classes PT_c and T_c are defined, by requiring cyclic subnormal subgroups to be permutable or normal respectively. Robinson [13] provided characterisations for both soluble and insoluble cases. Here we mention only the soluble case.

Theorem 5 ([13]) Let G be a group and $F = F(G)$, the Fitting subgroup of G.

1. G is a soluble PST_c-group if and only if there is a normal subgroup L such that,
 a) L is abelian and G/L is nilpotent.
 b) p'-elements of G induce power automorphisms in the Sylow p-subgroup L_p of L for all primes p.
 c) $\pi(L) \cap \pi(F/L) = \emptyset$

2. A soluble PST_c-group is supersoluble.

3. A soluble group G is a PT_c (T_c)-group if and only if G is a soluble PST_c-group such that all the elements of G induce power automorphisms in L and F/L is a modular (Dedekind) group, where L is the subgroup described in 1.

Note that the important distinction between soluble PST-groups and soluble PST_c-groups is that the nilpotent residual is a Hall subgroup of the Fitting subgroup whereas the nilpotent residual of a soluble PST-group is a Hall subgroup of the entire group. In fact, Robinson in [13] showed that the sets of primes $\pi(L)$ and $\pi(G/L)$ can have
a large intersection, even when G is a soluble T_c-group. It is clear that a soluble PST$_c$-group such that the nilpotent residual is a Hall subgroup of G is a PST-group. Also, note that the class of all soluble PST$_c$-group is much different than the class of soluble PST-group as the following theorem shows.

Theorem 6 ([13]) Let G be a group. Then

1. If every subgroup of G is a PST$_c$-group, then G is a soluble PST-group.

2. If every quotient of G is a soluble PST$_c$-group, then G is a soluble PST-group.

In addition, a PST$_c$-group is a PT$_c$ (T_c)-group if all of its Sylow subgroups are modular (Dedekind) respectively [13].

There are similar connections as in Theorems 2 and 5 with classes PST$_c$, PT$_c$ and T_c as seen in the next two theorems.

Theorem 7 ([4]) Let G be a soluble group. Then the following statements are pairwise equivalent:

1. G is a PST$_c$-group.

2. All the cyclic subnormal subgroups of G are seminormal in G.

3. All the cyclic subnormal subgroups of G are semipermutable in G.

4. All the cyclic subnormal subgroups of G are S-semipermutable in G.

Theorem 8 ([4]) Let G be a soluble group with abelian nilpotent residual L. Then:

1. G is a PT$_c$ (T_c)-group if and only if every cyclic subnormal subgroup of G is seminormal in G, all the elements of G induce power automorphisms in L, and F/L is a modular (Dedekind) group.

2. G is a PT$_c$ (T_c)-group if and only if every cyclic subnormal subgroup of G is semipermutable in G, all the elements of G induce power automorphisms in L, and F/L is a modular (Dedekind) group.

3. G is a PT$_c$ (T_c)-group if and only if every cyclic subnormal subgroup of G is S-semipermutable in G, all the elements of G induce power automorphisms in L, and F/L is a modular (Dedekind) group.
4. G is a PT$_c$ (T_c)-group if and only if G is an PST$_c$-group such that all the elements of G induce power automorphisms in L, and F/L is a modular (Dedekind) group.

Definition 9 Let G be a group.

1. G is called a $S(n)NM_c$-group if every cyclic non-seminormal subgroup of G is contained in a non-normal maximal subgroup of G.

2. G is called an $S(s)NM_c$-group if every cyclic non-S-semipermutable subgroup of G is contained in a non-normal maximal subgroup of G.

3. G is called a $P(s)NM_c$-group if every cyclic non-semipermutable subgroup of G is contained in a non-normal maximal subgroup of G.

We now list three theorems that are similar to Theorems A, B and C; however we only consider certain subgroups of a group which are contained in non-normal maximal subgroups.

Theorem D Let G be a group. Then

1. If every subgroup of G is an $S(n)NM_c$-group, then G is a soluble PST$_c$-group and so G is a soluble PST-group.

2. If every subgroup of G is a PST$_c$-group, then G is an $S(n)NM_c$-group and hence a soluble PST-group.

Theorem E Let G be a group. Then

1. If every subgroup of G is an $S(s)NM_c$-group, then G is a soluble PST$_c$-group and so G is a soluble PST-group.

2. If every subgroup of G is a PST$_c$-group, then G is an $S(s)NM_c$-group and a soluble PST-group.

Theorem F Let G be a group. Then

1. If every subgroup of G is a $P(s)NM_c$-group, then G is a soluble PST$_c$-group and so is a soluble PST-group.

2. If every subgroup of G is a PST$_c$-group, then G is a $P(s)NM_c$-group and a soluble PST-group.
2 Preliminaries

The lemmas encountered here are used in the proofs of the main theorems of this paper.

Lemma 10 ([5, Theorem 2.1.8, p. 57])

1. Let G be a soluble group and let L be the nilpotent residual of G. Then G is a PST-group if and only if L is an abelian Hall subgroup of G and G acts by conjugation on L as a group of power automorphisms.

2. A soluble group is a PST-group if and only if every subnormal subgroup of G is S-permutable (seminormal, semipermutable in G).

Lemma 11 ([14, Theorem 13.3.7, p. 399]) Let N be a minimal normal subgroup of a group G. Then N normalizes all the subnormal subgroups of G.

Lemma 12 ([9, Theorem 5.9, p. 238; 14, Theorem 9.2.9, p. 265]) A finite soluble group is generated by its system normalizers.

Lemma 13 ([14, Theorem 9.2.7, p. 264]) Let G be a finite soluble group and let L be the nilpotent residual of G. If L is abelian and D is a system normalizer of G, then $G = L \rtimes D$, that is, G is a semidirect product of L by D.

Lemma 14 ([2, Corollary 1.3.3, p. 9]) Let the finite group $G = AB$ be the product of two subgroups A and B. Then for each prime p there exist Sylow p-groups A_0 of A and B_0 of B such that A_0B_0 is a Sylow p-subgroup of G.

3 Proof of the theorems

Proof of Theorem A — Let G be a group. Assume that G is a soluble PST-group, let L be the nilpotent residual of G, and let D be a system normalizer of G. By Lemma 10 L is an abelian Hall subgroup of G and G acts by conjugation on L as a group of power automorphisms. Moreover, by Lemma 13 $G = L \rtimes D$, the semidirect product of L by D. We prove that G is an S(s)NM-group by induction on $|G|$. Let A be a non-S-semipermutable subgroup of G. Then $L \neq 1$ and $A \cap L \lhd G$. Also $A/A \cap L$ is a non-S-semipermutable subgroup
of $G/A \cap L$. Now $A \cap L = 1$, for otherwise, by induction, $A/A \cap L$ would be contained in a non-normal maximal subgroup $M/A \cap L$ of $G/A \cap L$. Then M would be a non-normal maximal subgroup of G containing A. This would mean that G is an $S(s)NM$-group. Hence $A \cap L = 1$. Since L and D are Hall subgroups we may assume $A \leq D$. Let M be a maximal subgroup of G containing D. Assume that $M \triangleleft G$, then $D^g \leq M$ for all $g \in G$ and so $D^G \leq M$. But $D^G = G$ by Lemma 12 so that M is non-normal. Thus $A \leq M$ and hence, G is an $S(s)NM$-group. Now applying [5, 2.1.9] we have every subgroup H of G is a soluble PST-group. Hence, by the argument above H is an $S(s)NM$-group.

Now assume that every subgroup of G is an $S(s)NM$-group but G is not a soluble PST-group. Let G be the counterexample of least order. Then every proper subgroup of G is a soluble PST-group. Thus every proper subgroup of G is supersoluble and hence G is a soluble group. Since G is not a PST-group there is a subnormal subgroup H which is not S-semipermutable in G. Let M be a maximal normal subgroup of G such that $H \leq M$. Now G is an $S(s)NM$-group so there is a non-normal maximal subgroup L of G such that $H \leq L$. Note that $G = LM$ and both L and M are soluble PST-subgroups of G. There is a Sylow p-subgroup P of G such that the gcd $(p, |H|) = 1$ and H does not permute with P.

By Lemma 14 there is a Sylow p-subgroup A of L and a Sylow p-subgroup B of M such that AB is a subgroup of G and $AB \in Syl_p(G)$. Note that H permutes with A and B so H permutes with $AB = Q$. There is an element $x \in G$ such that $P^x = Q$. The properties of G as stated in the Theorem are inherited by quotients, so if N is a minimal normal subgroup of G contained in M, then $(HN)P/N = P(HN)/N$ is a subgroup of G/N. Hence P permutes with HN.

If $(HN)P$ is a proper subgroup of G, then, by the hypothesis of the theorem, $HP = PH$, which is a contradiction. Hence, $G = (HN)P$. By Lemma 11 N normalizes H and so $H \triangleleft HN$. Since $G = HNP$, there is an element $a \in P$ and $b \in HN$ such that $x = ab$. Thus, $H^b = H$ or $H^{b^{-1}} = H$ and H permutes with P^b so $HP = PH$, a final contradiction. \Box

Proof of Theorem B — First assume that G is a soluble PST-group. As in the proof of Theorem A we prove that G is an $S(n)NM$-group in the same way we showed that G is an $S(s)NM$-group in the proof of Theorem A. As in that proof, we use the fact that every subgroup
of G is a soluble PST-group to prove that every subgroup of G is an S(n)NM-group.
Conversely, assume that every subgroup of G is an S(n)NM-group but G is not a soluble PST-group and let G be such a group of smallest order. As in the proof of Theorem A, G is soluble and by Lemma 10, Part 2, there is a subnormal subgroup H of G which is not seminormal in G. There is a normal maximal subgroup M of G and a maximal subgroup L of G such that $G = LM$ and $H \leq L \cap M$. Now L and M are soluble PST-groups so that L (respectively, M) contains a Sylow p-subgroup A (respectively, B) such that AB is a Sylow subgroup of G. (Note this proof follows that of the proof of Theorem A). There is a Sylow p-subgroup P of G which does not normalize H but H is normalized by AB. So there is an $x \in G$ such that $P^x = Q = AB$. As in the proof of Theorem A a minimal normal subgroup N of G normalizes H and P normalizes HN in G. Also $G = HNP$.

Then there is an element $a \in P$ and an element $b \in HN$ such that $x = ab$ and $H^b^{-1} = H$ is normalized by P^b. This is the final contradiction. □

Proof of Theorem C — To obtain a proof of Theorem C just replace S-semipermutable in the proof of Theorem A by semipermutable and we obtain the desired proof. □

Proof of Theorem D — Suppose that every subgroup of the group G is an $S(n)NM_c$-group but G is not a soluble PST$_c$-group and we assume G is a counterexample of least order to the result. Then G is not a soluble PST$_c$-group but every proper subgroup of G is a soluble PST$_c$-group. By Theorem 5 (2) every proper subgroup of G is supersoluble and hence G is soluble.

By Theorem 7 (2) there is a cyclic subnormal subgroup H which is not seminormal in G. Hence there is a Sylow p-subgroup P such that P does not normalize H. As in the proof of Theorem A there exists a normal maximal subgroup L of G and a non-normal maximal subgroup M of G such that $G = LM$ and $H \leq L \cap M$. Since L and M are $S(n)NM_c$-subgroups of G, it follows from Lemma 13 that there are Sylow p-subgroups A of L and B of M such that AB is a Sylow p-subgroup of G and both A and B normalize H. There is an element $x \in G$ such that $P^x = AB$. Let $Q = AB$.

Consider a minimal normal subgroup N of G with $N \leq L$. We now consider the quotient G/N of G. Since the properties of G, as enunciated in the statement of the theorem, are inherited by quotients of $S(n)NM_c$, the minimality of G implies HN/N in G/N is normal-
ized by PN/N. Hence, P normalizes HN. Also by Lemma 11 N normalizes H in HN. If HNP is a proper subgroup of G, then P normalizes H, which is a contradiction. Thus HNP = G. Let \(x = ab \) where \(b \in HN \) and \(a \in P \), then \(H^b = H \) and \(P^x = P^b \). Hence

\[H^{b^{-1}} = H \text{ and } (p^b)^{b^{-1}} = P \]

normalizes H, a final contradiction.

Hence, G is a soluble PST\(_c\)-group. Now let X be a subgroup of G. Then every subgroup of X is an S(\(n \))NM\(_c\)-group so that our proof can be applied to X to show that X is a soluble PST\(_c\)-group. By Theorem 6 (1) G is a soluble PST-group. This completes the proof of part (1) of Theorem D.

If every subgroup of G is a PST\(_c\)-group, then by Theorem 6 (1) G is a soluble PST-group. To show that every subgroup of G is an S(\(n \))NM\(_c\)-group follows from the necessity part of the proof of Theorem A.

\(\square \)

Proof of Theorem E — In the proof of Theorem E replace in Theorem D seminormal subgroup with S-semipermutable subgroup. Also replace S(\(n \))NM\(_c\) by S(\(s \))NM\(_c\). \(\square \)

Proof of Theorem F — In the proof of Theorem F replace in Theorem D seminormal subgroup with semipermutable subgroup. Also replace S(\(n \))NM\(_c\) by P(\(s \))NM\(_c\). \(\square \)

REFERENCES

J.C. Beidleman
Department of Mathematics
University of Kentucky
715 Patterson Office Tower
Lexington, KY (USA)
e-mail: james.beidleman@uky.edu