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Abstract
This paper presents the construction and some characterisation of the Minkow-
ski t-graph and Kendall ⌧-graph of the symmetric group of degree n. Further,
we demonstrate some properties of this graph associated with its connectedness,
bipartition, planarity, and regularity.
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1 Introduction

Recent works reveal many different ways of associating a graph with
a given finite group (see [2],[4],[10]). The difference between one and
others lies in the adjacency criteria used to relate two group elements
constituting the set of vertices of such a graph.

One of the graphs studied in this paper is the Minkowski t-graph,
or simply the t-graph, of the symmetric group of degree n.
The t-graph of a finite group G was first introduced by G. Diaz et al.
in [4]. In that work was investigated the t-graph on a finitely gener-
ated group G. It has to lead to an interesting combinatorial problem,
establishing sufficient conditions to guarantee the existence of iso-
lated points in the t-graph when G is a two-generator group. It also



58 I.S. Gutierrez-Garcia – S. Muñoz-Ruiz

proposed an expression to determine the number of the connected
components of the t-graph. Other results have to do with the condi-
tions that must be fulfilled for the t-graphs of the dihedral groups
to be a path graph or a cycle. Consequently, it was obtained that the
chromatic number of the t-graph depends exclusively on the parity
of t.

The second graph we investigate, the ⌧-Kendall graph of the sym-
metric group of degree n, defines its adjacency criterion based on
the Kendall metric. The Kendall ⌧-distance is a metric used in Statis-
tics that counts the number of pairwise disagreements between two
ranking lists. The larger the distance, the more dissimilar the two lists
are. Many authors first discussed it at the beginning of the 20th cen-
tury and rediscovered it by M.G. Kendall (see [8]). Kendall ⌧-distance
is also called bubble-sort distance since it is equivalent to the number
of swaps that the bubble-sort algorithm would take to place one list
in the same order as the other.

Recently, codes have been studied in which the codewords are ele-
ments of the symmetric group of degree n, called permutation codes.
Instead of considering the Hamming distance, the Kendall ⌧-distance
is used (see [1],[17]). One of the essential results of these works is the
non-existence of single-error-correcting permutation codes when n
is a prime greater than four or 4 6 n 6 10.

Another interesting problem related to Kendall’s distance is the
reconstruction of permutations distorted by single Kendall ⌧-errors,
which was first proposed by Levenshtein in [9] and most recently
studied by X. Wang et al. (see [11],[16]). This problem consists of the
following: a codeword is transmitted through multiple channels, and
a decoder receives all the different outputs and reconstructs the trans-
mitted codeword. The initial investigations studied the minimum
number of transmission channels required to precisely decode the
transmitted sequence.

In this paper, we use the Kendall ⌧-distance to define a graph over
the symmetric group of degree n. The initial idea is to use the same
philosophy that establishes the adjacency criterion in the Minkowski
graph. First, we obtain some results on the Minkowski t-graph of
the symmetric group, and then we define and characterise the Ken-
dall ⌧-graph over the same group. The rest of this paper is organ-
ised as follows. Section 2 gives basics and notations concerning el-
ementary graph theory and the symmetric group of degree n. Sec-
tion 3 presents the results of the Minkowski t-graph of the symmet-
ric group. We show that this graph is non-connected whenever t is
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an even natural number. We also present a table (Table 2) indicating
the number of connected components for 1 6 n 6 7 and 1 6 t 6 18.
In Section 4, we present the construction and some characterisation
of the Kendall ⌧-graph. We demonstrate some properties of this graph
associated with its connectedness, bipartition, planarity, and regular-
ity. This section concludes the work.

2 Preliminaries

In this section, for the reader’s convenience and later use, we recall
some definitions, notations and results concerning elementary graph
theory and the symmetric group. The reader is referred for unde-
fined terms and concepts of graph theory to [5] or [15].

An undirected graph (or simply a graph) G is a pair G = (V ,E),
where V is a set whose elements are called vertices, and E is a (pos-
sibly empty) set of pairs of vertices, whose elements are called edges.
In the following, G always denotes a graph. If x and y are vertices
of G, then we say that x is adjacent to y if {x,y} is an edge. In this case,
the edge’s endpoints are x and y. A vertex x is said to be incident with
an edge e if x is an endpoint of e. We also say that e is incident with x
whenever x is an endpoint of e. The number of vertices in G is called
the order of G, and the number of edges in G is called the size of G. A
subgraph of G is a graph H whose vertices and edges form subsets of
the vertices and edges of G.

The degree of a vertex x in G, denoted by deg(x), is the number of
edges incident with x. A vertex of degree zero is called an isolated
vertex or isolated point. A path graph or linear graph is a graph whose
vertices can be listed in the order v1, v2, . . . , vn such that the edges
are {vi, vi+1} where i = 1, . . . ,n- 1. That is, a path has two terminal
vertices (vertices that have degree 1), while all others (if any) have
degree 2.

A walk in G is a sequence of vertices {v1, . . . , vn} such
that {vi, vi+1} 2 E. The length of a walk is just the number of edges
it has. A trail in G is a walk in G with the property that no edge is
repeated. A path in G is a trail with the property that no vertex is re-
peated. A closed trail, also called a circuit, is a trail for which v1 = vn.
A closed path, usually called a cycle, is a path whose endpoints are
the same vertex. We say that two vertices, x and y in G, are connected
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if G contains a path from x to y. Otherwise, they are called discon-
nected. If every pair of vertices in G are connected, then G is said to
be connected. If this is not the case, then G is called disconnected, i.e.
there exist two vertices in G such that no path in G has these vertices
as endpoints. A connected component of G is a maximal connected sub-
graph.

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are said to be isomor-
phic if there is a bijection f : V1 �! V2 such that

{u, v} 2 E1 () {f(u), f(v)} 2 E2.

We define a colouring of G as an assignment of colours to the
vertices of G such that no two adjacent vertices receive the same
colour. The minimum number of colours necessary to colour G, de-
noted by �(G), is called the chromatic number of G. We say also that G
is k-chromatic if �(G) = k. G is called bipartite if its set of vertices
can be divided into two disjoint sets, say U and V , such that every
edge {u, v} either connects a vertex from U to V or a vertex from V
to U. We can also say that no edge connects vertices of the same set.
Note that a graph G is bipartite if and only if �(G) = 2.

To study graphs in a given context, it is necessary to use the spec-
tral theory of graphs, which consists of studying the properties of
a graph’s Laplacian and adjacency matrices, more specifically, its
eigenvalues and eigenvectors. These are defined as follows. The adja-
cency matrix of G = (V ,E) is the n⇥n matrix A = (aij) indexed by V ,
whose (i, j)-entry is defined as

aij =

�
1 if {vi, vj} 2 E

0 if {vi, vj} /2 E,

and the Laplacian matrix L = (lij) is defined as follows

lij =

8
><

>:

-1 if {vi, vj} 2 E

deg(vi) if i = j

0 otherwise.

These two matrices will later be used to determine a graph’s number
of connected components.

To conclude this section, we present relevant results on the sym-
metric group of degree n. For more details on notation and defini-
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tions of this particular subject, we refer the reader to [6] or [14, Chap-
ter 6]. The symmetric group on a finite set ⌦ is the group whose ele-
ments are all permutations of ⌦, that is, all bijective functions from ⌦
to ⌦, and whose group operation is the composition. The symmetric
group of degree n, denoted by Sym(n), is the symmetric group defined
on the set ⌦ = {1, 2, . . . ,n}. The expression

� = (a1,a2, . . . ,ak)

denotes the permutation � that sends ai to ai+1 for i = 1, . . . , k- 1
and sends the last element ak to the first element a1. All other
elements of ⌦ are held fixed. This permutation is called
a k-cycle in Sym(n). A 2-cycle ⌧ = (ab) is a transposition. The support
of � 2 Sym(n), denoted by supp(�), is defined as follows:

supp(�) := {j 2 ⌦ | �(j) 6= j}.

Two permutations � and ⇡ in Sym(n) = are disjoint if their supports
are disjoint. In particular, two cycles

� = (a1a2 . . . ak) and ⇡ = (b1b2 . . . br)

are disjoint if the underlying sets {a1,a2, . . . ak} and {b1,b2, . . . br},
are disjoint. It is well known that disjoint permutations commute;
that is, if � and ⇡ are disjoint, then �⇡ = ⇡�.

In general, the group Sym(n) can be factorised in the form

Sym(n) = Sym(n- 1)h(12 . . . n)i,

and, applying this property inductively, we have that Sym(n) is gen-
erated by the set

X := {�j = (12 . . . j) | j = 2, . . . ,n}.

That is, every element � 2 Sym(n) can be uniquely written as follows

� =
nY

j=2

�
✏j

j , (1)

where each ✏j is a natural number, with 0 6 ✏j < mj, and 2 6 j 6 n.
The numbers mj can be, for example, the orders of the corresponding
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elements in the finite case, but they may also differ from these orders.
Given �2Sym(n) we calculate the exponents ✏j with �=�✏2

2 . . .�✏n
n

as follows. First, consider k = �-1(n), that is, �(k) = n, then we
set ✏n = n- k. Now recursively, for j2 {2, . . . ,n-1} define kj=�-1(j)
and then we put

✏j = j- �
✏j+1

j+1 . . .�✏n
n (kj).

Since �n = (1 . . . k . . . n) it follows that �✏n
n (k) = �n-k

n (k) = n. On
the other hand, since �m fixes n for all m < n we have that

�✏2
2 . . .�✏n

n (k) = �(k) = n.

Similar to the above, �n-1 = (1 . . .�✏n
n (kn-1) . . . n- 1) and it holds

that �m fixes n- 1 for all m < n- 1. Then we get

�✏2
2 . . .�✏n

n (kn-1) = �(kn-1) = n- 1.

Continuing in this form leads to the statement.

Example 1 Let � = (12)(34) 2 Sym(4). We find the exponents ✏j,
j = 2, 3, 4, such that

� = �✏2
2 �✏3

3 �✏4
4 = (1, 2)✏2(1, 2, 3)✏3(1, 2, 3, 4)✏4 .

Following the above procedure, we first have 3 = �-1(4), then ✏4 = 1.
To find ✏3, note that 4 = �-1(3) and �4(4) = 1, and then

✏3 = 3- 1 = 2.

Finally, we have 1 = �-1(2), and �2
3�4(1) = 1. Therefore ✏2=2- 1=1,

and � = �2�
2
3�4.

3 The Minkowski t-graph of the symmetric group

Let G = hg1, . . . , gni be a finite group and suppose that every ele-
ment g 2 G can be uniquely written as follows

g =
nY

i=1

g✏i
i , (2)
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with 0 6 ✏i < mi, and 1 6 i 6 n. Further, we introduce the following
distance map

d1 : G⇥G �! N0

defined by

d1(g,h) = d1

⇣ nY

i=1

g✏i
i ,

nY

i=1

g�i
i

⌘
=

nX

i=1

|✏i - �i|. (3)

The distance map d1 is a metric over G. Actually, it is the Minkow-
ski lp metric for p = 1 in the set {(✏1, . . . , ✏n) | 0 6 ✏i < mi}.

Definition 2 Let t be a natural number and G be a finite generated
group. The Minkowski t-graph of G is defined as the pair G = (G,E),
where the set {g,h} 2 E if and only if d1(g,h) = t.

Theorem 3 Let t be an even natural number and G = hg1, . . . , gni be a
finite group and suppose that every element g 2 G can be uniquely written
as in (2). Then the Minkowski t-graph G = (G,E) is non-connected.

Proof — Let t be an even number. We define V1,V2 ✓ G as follows:

V1 :=
⌦ nY

j=1

g
✏j

j |

nX

j=1

✏j ⌘ 0 mod 2
↵

,

and

V2 :=
⌦ nY

j=1

g
✏j

j |

nX

j=1

✏j ⌘ 1 mod 2
↵

,

It is clear that

V1 \ V2 = ; and V1 [ V2 = G.

Let suppose that g,h 2 V1, say

g =
nY

j=1

g
✏j

j and h =
nY

j=1

g
�j

j .

Since g 2 V1, there exists a t 2 N such that the number of odd expo-
nents is 2t, similarly for h we have that the number of odd exponents
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is 2r for some natural number r. Let us define it now

P := {i | ✏i, �i ⌘ 1 mod 2},

P1 := {j | ✏j ⌘ 1 mod 2^ �j ⌘ 0 mod 2}

and

P2 := {k | ✏k ⌘ 0 mod 2^ �k ⌘ 1 mod 2}.

Note that
|P1|=2t-|P| and |P2|=2r-|P|,

so |P1|+|P2| is even, and hence d1(g,h)⌘0 mod 2. Similarly, if g,h2V2,
then d1(g,h) ⌘ 0 mod 2.

On the other hand, if g 2 V1, and h 2 V2, then d1(g,h) ⌘ 1 mod 2.
This means that {g,h} cannot belong to E. Now,

E1 :=
⌦� nY

j=1

g
✏j

j ,
nY

j=1

g
�j

j

 
|

nX

i=1

✏i,
nX

i=1

�i ⌘ 0 mod 2^
nX

i=1

|✏i - �i| = t
↵

,

and

E2 :=
⌦� nY

j=1

g
✏j

j ,
nY

j=1

g
�j

j

 
|

nX

i=1

✏i,
nX

i=1

�i ⌘ 1 mod 2^
nX

i=1

|✏i - �i| = t
↵

.

This implies that

S1 := (V1,E1) and S2 := (V2,E2)

are subgraph of G, and then G is a non-connected graph. ut

Using (1) we can consider the Minkowski graph G with the group
Sym(n) as the underlying vertices. That is, {�,� 0} 2 E if and only if

d1(�,� 0) = d1

⇣ nY

j=2

�
✏j

j ,
nY

j=2

��i
j

⌘
=

nX

j=2

|✏j - �j| = t.

Example 4 Following the above notation, we have

Sym(4)=h�2,�3,�4i.

Then the table of distances would be given as shown in Table 1.
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Table 1: Distances Table of Sym(4)
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The t-graphs of Sym(4) for some t are presented in the next Fig-
ures.
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Figure 1: Minkowski 2-graph of Sym(4).
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Figure 2: Minkowski 4-graph of Sym(4).
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Figure 3: Minkowski 6-graph of Sym(4).

To analyse the behaviour of the number of connected components
of the Kendall ⌧-graphs defined on Sym(n), we use the following
theorem, which allows us to realize Tables 2 and 4. A proof of this
theorem can be found in [12, Theorem 7.1].

Theorem 5 A graph G has k connected components if and only if the
algebraic multiplicity of zero as the Laplacian eigenvalue is k.

Table 2: Number of connected components of the t-graphs of Sym(n)

n/t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 1 - - - - - - - - - - - - - - - - -
3 1 2 4 - - - - - - - - - - - - - - -
4 1 2 1 2 6 20 - - - - - - - - - - - -
5 1 2 1 2 1 2 5 26 68 112 - - - - - - - -
6 1 2 1 2 1 2 1 2 1 10 57 186 386 584 704 - - -
7 1 2 1 2 1 2 1 2 1 2 1 2 9 74 313 882 1825 2978
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4 The Kendall ⌧-graph of the symmetric group

Let n be a natural number, [n] = {1, . . . ,n}. Throughout this sec-
tion, we use vector notation for permutations. That is, if � 2 Sym(n)
and �(k) = ik for all k 2 {1, . . . ,n}, then we write � = [i1, i2, . . . , in].
Permutation multiplication is defined as compositions of functions
on two permutations from right to left.

An inversion is said to occur in a permutation � = [i1, i2, . . . , in]
in Sym(n) whenever a larger integer precedes a smaller one. For-
mally, an inversion in � 2 Sym(n) is a pair [�(i),�(j)] such that i < j
and �(i) > �(j), where {i, j} 2 [n]. With Inv(�) we denote the set of
inversions in �, and |Inv(�)| denotes the number of inversions in �.
For example, if � = [4, 2, 3, 1] 2 Sym(4), then |Inv(�)| = 5.

An adjacent transposition of a permutation � 2 Sym(n) is the local
exchange of two adjacent elements in �. That is,

� = [i1, . . . , ik-1, ik, ik+1, . . . , in]

is changed to the permutation

� 0 = [i1, . . . , ik-1, ik+1, ik, ik+2, . . . , in].

If ⌧ = (i, j) 2 Sym(n) is a transposition, then it can be expressed as a
product of 2j- 2i- 1 adjacent transpositions. Namely,

⌧ = (i, i+ 1)(i+ 1, i+ 2) . . . (j- 1, j)(j- 1, j- 2)(j- 2, j- 3) . . . (i+ 1, i).

Further |Inv(⌧)| = 2j- 2i- 1.
It is well known that every element in Sym(n) can be factorised

as a product of transpositions. It follows that the symmetric group
of degree n is generated by the adjacent transpositions ⌧j = (j, j+ 1),
with j = 1, . . . ,n- 1. Every permutation can be written as a product
of adjacent transpositions.

These adjacent transpositions satisfy the Coxeter relations:

⌧2j = 1 for all j,

⌧i⌧j = ⌧j⌧i for all |i- j| > 1, (4)

⌧j⌧j+1⌧j = ⌧j+1⌧j⌧j+1 for all j 6 n- 1. (5)

The relations (4) and (5) are known as commutations and braid rela-
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tions, respectively.
Let � 2 Sym(n), and ⌧ = (i, j) be a transposition. Then the prod-

uct �⌧ is the same permutation as � except that i and j are switched
in the product. In a particular case that ⌧ is an adjacent transposition,
say ⌧ = (j, j+ 1), it follows that |Inv(�⌧)| = |Inv(�)|± 1. Now, if we
have n disjoint adjacent transpositions ⌧1, . . . , ⌧n, then �⌧1 . . . ⌧n is
the same permutation as � except that each pair of numbers in each
transposition has switched positions in the product. Further

|Inv(�⌧1 . . . ⌧n)| =
nX

j=1

|Inv(�⌧j)|+ (1-n)|Inv(�)|.

In general, if ⌧1, . . . , ⌧n are adjacent transpositions there are some
bounds for |Inv(�⌧1 . . . ⌧n)|, which are:

1. |Inv(�)|-n 6 |Inv(�⌧1 . . . ⌧n)| 6 |Inv(�)|+n,

2. There are just 4 possible values for |Inv(�⌧1 . . . ⌧n)|, and these
are

|Inv(�⌧1 . . . ⌧n)|= |Inv(�)|+(n-2k), such hat 0 6 k 6
�n+1

n

�
-1.

The proof of all these remarks can be found in [13].

Definition 6 For ↵,� 2 Sym(n) we denote with dK(↵,�) the mini-
mal number of adjacent transpositions required to change ↵ into �.
The Kendall ⌧-weight of � 2 Sym(n), denoted by wt(�), is defined
as dK(�, 1), where 1 is the identity permutation.

The distance dK induces a metric over Sym(n) and is called the Ken-
dall ⌧-metric (see [8]). It is well-known that the Kendall ⌧-metric is
right invariant [3]. That is, for every ↵,�,� 2 Sym(n) holds

dK(↵�,��) = dK(↵,�).

By this observation, for any two permutations ↵,� 2 Sym(n) we have
that

dK(↵,�) = wt(↵�-1).

A. Jiang et al. proved in [7] that dK can be represented as follows:

dK(↵,�) = |{(i, j) | ↵(i) < ↵(j) ^ �(i) > �(j)}|.
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Example 7 Let G be the symmetric group of degree 3. That is,

G = {[1, 2, 3], [2, 1, 3], [3, 2, 1], [1, 3, 2], [2, 3, 1], [3, 1, 2]}

in vector notation, the Kendall ⌧-distance table is given by

Table 3: The Kendall ⌧-distance of Sym(3)

d [1, 2, 3] [2, 1, 3] [3, 2, 1] [1, 3, 2] [2, 3, 1] [3, 1, 2]
[1, 2, 3] 0 1 3 1 2 2

[2, 1, 3] 1 0 2 2 1 3

[3, 2, 1] 3 2 0 2 1 1

[1, 3, 2] 1 2 2 0 3 1

[2, 3, 1] 2 1 1 3 0 2

[3, 1, 2] 2 3 1 1 2 0

Definition 8 Let n, t 2 N, with 1 6 t 6
�n
2

�
. The Kendall t-graph

of G = Sym(n) is defined as the pair G = (G,E), where two permuta-
tions ↵ and � 2 G are adjacent if and only if dK(↵,�) = t.

Remark 9 The parameter t is restricted to those values since there
is a unique permutation, namely, ↵ = [n,n - 1, . . . , 2, 1] such that
wt(↵) =

�n
2

�
(by Equation (2)), which is the largest value.

Example 10 We present the Kendall t-graph of Sym(3) for t = 1, 2, 3.

[3, 2, 1]

[3, 1, 2][1, 3, 2]

[1, 2, 3]

[2, 1, 3] [2, 3, 1] [2, 1, 3]

[3, 2, 1]

[1, 3, 2]

[2, 3, 1] [3, 1, 2]

[1, 2, 3]

[2, 3, 1]

[1, 3, 2]

[1, 2, 3]

[3, 2, 1]

[3, 1, 2]

[2, 1, 3]

Figure 4: Some Kendall t-graphs of Sym(3)

Proposition 11 Let n 2 N, G be the symmetric group of degree n, and t
be a positive even number. Then the Kendall t-graph G is disconnected.
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Proof — Suppose G is connected, then there exists a finite path
(v1, v2, . . . , vk) from [1, 2, 3, . . . ,n] to [2, 1, 3, . . . ,n], this implies that
there are t adjacent permutations such that v1 is the composition of
these t permutations, similarly there exist other t permutations such
that v2 is the composition of v1 and these t permutations, keeping
these process, we see that [2, 1, 3, . . . ,n] is the composition of tk per-
mutations, which is absurd since [2, 1, 3, . . . ,n] is an odd permutation,
then G must be disconnected. ut

Lemma 12 Let G the Kendall t-graph, if t is odd then G is bipartite.

Proof — Let A be the alternating subgroup of G and B be the com-
plement of A, i.e., the set of odd permutations. If two vertex u, v 2 A
were connected, then one of them is an odd permutation (since t
is odd), and then there is no edge between elements in A, similarly
for B. Therefore all edges must connect an element from A to one
in B. This completes the proof. ut

The converse is generally not true; if we take G = Sym(4) and t = 6,
then G is bipartite.

[1, 2, 3, 4]

[4, 3, 2, 1]

[2, 1, 3, 4]

[4, 3, 1, 2]

[3, 2, 1, 4]

[4, 1, 2, 3]

[4, 2, 3, 1]

[1, 3, 2, 4]

[1, 4, 3, 2]

[2, 3, 4, 1]

[1, 2, 4, 3]

[3, 4, 2, 1]

[2, 3, 1, 4]

[4, 1, 3, 2]

[2, 4, 3, 1]

[1, 3, 4, 2]

[3, 1, 2, 4]

[4, 2, 1, 3]

[3, 2, 4, 1]

[1, 4, 2, 3]

[2, 1, 4, 3]

[3, 4, 1, 2]

[2, 4, 1, 3]

[3, 1, 4, 2]

Figure 5: Kendall 6-graph of Sym(4)

The girth of a graph G denoted g(G) is the length of the shortest
cycle contained in the graph. If G is an acyclic graph, we say that
g(G) = 1.

Corollary 13 Let n 2 N, G be the symmetric group of degree n, and t be
a positive odd number. Then the Kendall t-graph G has no triangles.

Proof — It follows from the above lemma since any bipartite graph
has no odd length cycle. ut

The above proposition implies that for t odd, g(G) > 4.
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Theorem 14 Let t 2 N and n > 2t+ 2, then the Kendall t-graph G has
a cycle of length 4.

Proof — Consider the vertices

↵1 = 1,↵2 = ⌧1 . . . ⌧t,↵3 = ⌧t+2 . . . ⌧2t+1,↵4 = ↵2↵3.

It is clear that dK(↵1,↵2) = dK(↵1,↵3) = t. On the other hand,
since ↵2 and ↵3 are disjoint permutations then ↵4 = ↵3↵2, therefore

dK(↵2,↵4) = dK(↵2,↵3↵2) = dK(↵1,↵3) = t.

Similarly we have that dK(↵3,↵4) = t, then G has a length 4 cycle. ut

This means that for those values of t and n, we have g(G) 6 4.

Corollary 15 If t is an odd natural number and n > 2t+2, then g(G)=4.

In Figure 5, we can see that the graph consists of 12 connected
components, all isomorphic to the complete bipartite graph K1,1. The
following lemma characterises the Kendall

�n
2

�
-graph for Sym(n).

Lemma 16 Let n 2 N. The Kendall
�n
2

�
-graph G of the symmetric group

of degree n has n!/2 connected components, all isomorphic to K1,1.

Proof — It follows from the fact that there is a unique permuta-
tion ↵ such that wt(↵) =

�n
2

�
. ut

Proposition 17 The Kendall t-graph of Sym(n) is k-regular for some
k 2 N.

Proof — Let � 2 Sym(n); we define D(�) := {↵|dK(�,↵) = t},
clearly deg(�) = |D(�)|, since the Kendall metric is right invariant
then it follows that |D(�)| = |D(1)|, therefore deg(�) = |D(1)| for
all � 2 Sym(n). ut

Theorem 18 The Kendall 1-graph of Sym(n) is (n- 1)-regular.

Proof — Let � 2 Sym(n). Every permutation of the form �j := �⌧j
with j = 1, . . . ,n- 1 is adjacent to �. Therefore deg(�) = n- 1, and
the assertion is true. ut

Theorem 19 The Kendall 2-graph of Sym(n) is
��n

2

�
- 1

�
-regular.
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Proof — First notice that in Sym(n) there are n-1 adjacent transpo-
sitions, and that if |i- j| > 1 then ⌧i⌧j=⌧j⌧i for all i, j2 {1, 2, . . . ,n- 1},
let � 2 Sym(n) we want the number of �i,j such that �i,j = �⌧i⌧j.
There are n- 1 choices for i, and n- 2 choices for j since j cannot
be equal to i; from all of those choices, some duplicates correspond
to commutativity, for i = 1,n- 1 there are (n- 3) adjacent transposi-
tions which commute with ⌧i, for 1 < i < n- 1 there are (n- 4) of
this transpositions. Therefore it leads to the following

deg(�) = (n- 1)(n- 2)- 2(n-3)+(n-3)(n-4)
2 =

�n
2

�
- 1.

Since the choice of � was arbitrary, it follows that the Kendall 2-graph
of Sym(n) is

��n
2

�
- 1

�
-regular. ut

Theorem 20 The Kendall 3-graph of Sym(n) is
��n+1

3

�
-
�n
1

��
-regular.

Proof — Given a permutation � = (a1, . . . ,an) there are 3 possibil-
ities

1. We do (ak,ak+1), (am,am+1) and (al,al+1), that is, composi-
tion with 3 adjacent transpositions.

2. We do (ak,ak+1), (am,am+2), that is, composition with 1 adja-
cent transposition and a 2-cycle of weight 2.

3. We do (ak,ak+3), that is, composition with a 2-cycle of weight 3.

For the first there are
�n-1

3

�
ways of choosing, for the second there

are
�n-1

1

��n-2
1

�
ways and for the latter

�n-3
1

�
, and finally we exclude

the n- 2 braids. Therefore the degree of � is

deg(�) =
✓
n- 1

3

◆
+

✓
n- 1

1

◆✓
n- 2

1

◆
+

✓
n- 3

1

◆
- (n+ 2) =

✓
n+ 1

3

◆
-

✓
n

1

◆
.

The statement is proved. ut

Theorem 21 The Kendall 1-graph G of Sym(n) is planar if and only
if n 6 4.

Proof — The necessity can be checked straightforwardly. For the
sufficiency, let’s suppose that n > 4 since G is planar and by Corol-
lary 13 it has no triangles, then

|E| 6 2|G|- 4, (6)
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by Theorem 18 we have |E| = n!(n-1)
2 , replacing in Equation 6 we

have (n- 5)n! 6 -8, which is absurd, then n 6 4. ut

Finally, we present a table with the number of connected compo-
nents of the Kendall graph.

Table 4: Number of connected components of the ⌧-graphs of Sym(n)

n/⌧ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 1 - - - - - - - - - - - - - -
3 1 2 3 - - - - - - - - - - - -
4 1 2 1 2 1 12 - - - - - - - - -
5 1 2 1 2 1 2 1 2 1 60 - - - - -
6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 360

Conjecture 22 Let n 2 N. Then the chromatic number of the Ken-
dall 2-graph of Sym(n) is n.
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