

Advances in Group Theory and Applications © 2022 AGTA - www.advgrouptheory.com/journal 14 (2022), pp. 5–47 ISSN: 2499-1287 DOI: 10.32037/agta-2022-010

The Automorphism Group of certain 3-Generator p-Groups

Fernando Szechtman

(Received July 6, 2021; Accepted June 12, 2022 — Communicated by E. Aljadeff)

Abstract

A presentation as well as a structural description of the automorphism group of a family of 3-generator finite p-groups is given, p being an odd prime.

Mathematics Subject Classification (2020): 20D45, 20D15, 20D20 *Keywords*: automorphism group; p-group

1 Introduction

We fix a prime number p throughout the paper. The automorphism groups of finite p-groups have been widely studied. One line of investigation was related to the divisibility conjecture, to the effect that if G is a finite non-cyclic p-group of order larger than p^2 , then |G| divides |Aut(G)|. While this holds true for several classes of p-groups, it has recently been shown to be false in general [7]. A thorough survey of this conjecture can be found in [4]. A second avenue of research is connected to the conjecture that every finite non-abelian p-group has a non-inner automorphism of order p. We refer the reader to [5] and references therein for the status of this conjecture. A third focus of attention has been the actual structure of Aut(G) when G is a finite p-group of one type or another. This has been the case, in particular for metacyclic groups, as found in [1],[2],[3],[6],[8],[9],[12], for instance.

The present paper gives a presentation as well as a structural description of the automorphism group of a family of 3-generator finite p-groups, with p odd.

We assume henceforth that p is odd and that $i, n \in \mathbb{N}$ satisfy $n \ge 2$ and $1 \le i \le n-1$. Given an integer d that is not a multiple of p, the inverse of 1 + dp modulo p^n is also of the form 1 + ep for some integer e not divisible by p, so we have

$$p \nmid d, p \nmid e, \tag{1.1}$$

and

$$(1+dp)(1+ep) \equiv 1 \mod p^n.$$
(1.2)

Let Σ be the group with the following presentation, depending on whether $2i \leq n$ or $2i \geq n$:

$$\Sigma = \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{c} | \mathfrak{a}^{p^{i}} = \mathfrak{b}^{p^{n-i}} = \mathfrak{c}^{p^{n-1}} = \mathfrak{l}, [\mathfrak{a}, \mathfrak{b}] = \mathfrak{c}^{p^{n-i-1}},$$
$$\mathfrak{c}\mathfrak{a}\mathfrak{c}^{-1} = \mathfrak{a}^{1+ep}, \mathfrak{c}\mathfrak{b}\mathfrak{c}^{-1} = \mathfrak{b}^{1+dp} \rangle,$$
(1.3)

or

$$\Sigma = \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{c} | \mathfrak{a}^{p^{n-i}} = \mathfrak{b}^{p^{n-i}} = \mathfrak{c}^{p^{n-1}} = 1, [\mathfrak{a}, \mathfrak{b}] = \mathfrak{c}^{p^{i-1}}, \\ \mathfrak{c}\mathfrak{a}\mathfrak{c}^{-1} = \mathfrak{a}^{1+ep}, \mathfrak{c}\mathfrak{b}\mathfrak{c}^{-1} = \mathfrak{b}^{1+dp} \rangle.$$
(1.4)

This is a quotient of the finite Wamsley group [10] defined on 3 generators with 3 relations.

In this paper, we give a presentation of $Aut(\Sigma)$ and its normal Sylow p-subgroup Π , and provide a structural description of these groups.

There is a noteworthy connection between Σ and automorphism groups. Let Υ be the semidirect product of a cyclic group C_{p^n} of order p^n by the unique subgroup of order p^{n-i} of the cyclic group $Aut(C_{p^n})$. Thus

$$\Upsilon = \langle x, y | x^{p^n} = 1, y^{p^{n-i}} = 1, yxy^{-1} = x^{1+p^i} \rangle.$$
 (1.5)

Then Σ is isomorphic to the normal Sylow p-subgroup of Aut(Υ). A presentation for Aut(G) when G is a split metacyclic p-group can be found in [1]. This includes, in particular, the case when $G = \Upsilon$.

Consider the group Ψ with the following presentation, depending on whether $2i \leq n$ or $2i \geq n$:

$$\Psi = \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{d} | \mathfrak{a}^{p^{i}} = \mathfrak{b}^{p^{n-i}} = \mathfrak{d}^{p^{i}} = 1, [\mathfrak{a}, \mathfrak{b}] = \mathfrak{d}, \mathfrak{a}\mathfrak{d} = \mathfrak{d}\mathfrak{a}, \mathfrak{b}\mathfrak{d} = \mathfrak{d}\mathfrak{b} \rangle,$$
$$\Psi = \langle \mathfrak{a}, \mathfrak{b}, \mathfrak{d} | \mathfrak{a}^{p^{n-i}} = \mathfrak{b}^{p^{n-i}} = \mathfrak{d}^{p^{n-i}} = 1, [\mathfrak{a}, \mathfrak{b}] = \mathfrak{d}, \mathfrak{a}\mathfrak{d} = \mathfrak{d}\mathfrak{a}, \mathfrak{b}\mathfrak{d} = \mathfrak{d}\mathfrak{b} \rangle$$

Then Ψ is a p-group of Heisenberg type, and Σ is an extension of Ψ by a cyclic factor. Moreover, Σ cannot be generated by fewer than 3 elements, except in the extreme case n = 2, when Σ is the Heisenberg group of order p^3 . Furthermore, Σ is a non-split extension of Ψ , except when n = 2, in which case $\Sigma = \Psi$.

The fact that Σ requires 3 generators makes the computation of Aut(Σ) particularly challenging. An appreciation of the obstacles involved can perhaps be gleaned from the following: Π requires 6 generators and 21 relations when $2i \ge n$ but $i \ne n-1$, while if 2i < n we utilize 8 generators and 38 relations for this purpose (although we could manage with slightly fewer). We feel that the groups Σ constitute a non-trivial addition to the reservoir of p-groups for which the automorphism group is known.

Our work begins in Section 2, where we describe properties of Σ and Ψ . Once this background information has been collected, Sections 3 and 4 describe Aut(Σ) and Π . In Section 3 we assume that $2i \ge n$; in this case, Ψ is a characteristic subgroup of Σ and our analysis of the image of the restriction homomorphism

$$Aut(\Sigma) \to Aut(\Psi)$$

allows us in Theorem 3.2 to obtain the desired presentations of Aut(Σ) and Π when i < n - 1. Considerable effort is spent in Theorem 3.2 in finding suitable generators for Π , and we show that no smaller amount of generators is possible. In addition, Theorem 3.2 gives a presentation of Out(Σ), and shows that Π is the kernel of the canonical homomorphism

$$\operatorname{Aut}(\Sigma) \to \operatorname{Aut}(\Sigma/\Sigma^p).$$

The case i = n - 1 is essentially different and is handled in Theorem 3.4, which gives presentations of Bruhat type for Aut(Σ) and Aut(Ψ). In Section 4 we suppose that 2i < n; this case is considerably harder, as Ψ is not a characteristic subgroup of Σ . Let G be the subgroup of Aut(Σ) preserving Ψ . Theorem 4.3 shows that

$$\operatorname{Aut}(\Sigma) = \operatorname{G}\langle \mathbf{U} \rangle,$$

where U is a suitable automorphism of Σ , and finds generators for G and so for Aut(Σ). Presentations and further descriptions of Aut(Σ) and Π can be found in Theorem 4.4 (which omits some relations from the case n = 2i + 1). It turns out that $\Pi = \Phi \langle U \rangle$, where Φ is the kernel of the canonical homomorphism Aut(Σ) \rightarrow Aut(Σ / Σ^p). Moreover, Π requires at least 7 generators.

An appendix contains a study of $\operatorname{Aut}(\Upsilon)$, independent of [1], and establishes the foregoing connection between Σ and $\operatorname{Aut}(\Upsilon)$. In particular, we somewhat simplify the presentation of $\operatorname{Aut}(\Upsilon)$ derived in [1] for an arbitrary split metacyclic p-group.

Given a finite p-group P, we write z(P) for the minimum number of generators of P, that is, z(P) is the dimension of the $\mathbb{Z}/p\mathbb{Z}$ -vector space $P/\Phi(P)$, where $\Phi(P)$ is the Frattini subgroup of P. If G is an arbitrary finite group, we let s(G) denote a Sylow p-subgroup of G. Thus $z(\Upsilon) = 2$, $s(\operatorname{Aut}(\Upsilon)) = \Sigma$ and $z(\Sigma) = 3$ when n > 2; also $s(\operatorname{Aut}(\Sigma)) = \Pi$ with $z(\Pi) = 6$ if $2i \ge n$, $i \ne n - 1$, and $z(\Pi) = 7$ if 2i < n. On the other hand, if P is an elementary abelian group of order p^m , then z(P) = m and $z(s(\operatorname{Aut}(P))) = m - 1$. Prompted by these examples and others, and inspired by the divisibility conjecture, we wonder if it might be of interest to determine what classes of finite p-groups G satisfy $z(s(\operatorname{Aut}(G)))/z(G) \ge 1$, including further information about this ratio.

Given a group G, we write

$$[a,b] = aba^{-1}b^{-1}, \quad a,b \in G,$$

and let δ : G \rightarrow Inn(G) stand for the homomorphism $a \mapsto \delta_a$, where

$$\delta_{\mathfrak{a}}(\mathfrak{b}) = {}^{\mathfrak{a}}\mathfrak{b} = \mathfrak{a}\mathfrak{b}\mathfrak{a}^{-1}, \quad \mathfrak{a}, \mathfrak{b} \in \mathcal{G}.$$

The image of $\gamma \in Aut(G)$ under the natural projection

$$Aut(G) \rightarrow Out(G)$$

will be denoted by $\overline{\gamma}$. Observe that

 $[ab, c] = {}^{a}[b, c][a, c], [a, b]^{-1} = [b, a], [c, ab] = [c, a] {}^{a}[c, b].$

In particular, if [G, G] is included in the center of G, then the bracket is a group homomorphism in each variable. We will repeatedly and implicitly use these facts throughout the paper.

2 Background material on Σ and Ψ

Proposition 2.1 The group Σ cannot be generated by fewer than 3 elements, unless n = 2.

PROOF — Let E be an elementary abelian p-group of order p^3 and let a, b, c be generators of E. Consider the assignment

$$\mathfrak{a} \mapsto \mathfrak{a}, \ \mathfrak{b} \mapsto \mathfrak{b}, \ \mathfrak{c} \mapsto \mathfrak{c}.$$
 (2.1)

The given presentation of Σ ensures that, except when n = 2, we can extend (2.1) to an epimorphism $\Sigma \rightarrow E$. Since E cannot be generated by fewer than 3 elements, neither can Σ .

Proposition 2.2 The derived subgroup of Σ is generated by $\mathfrak{a}^p, \mathfrak{b}^p, \mathfrak{c}^{p^{n-i-1}}$ if $2i \leq n$, and by $\mathfrak{a}^p, \mathfrak{c}^p, \mathfrak{c}^{p^{i-1}}$ if $2i \geq n$.

PROOF — Let T be the subgroup of Σ generated by the stated elements. The given presentation of Σ and (1.1) ensure that $T \subseteq [\Sigma, \Sigma]$, T is normal in Σ , and Σ/T is abelian, whence $T = [\Sigma, \Sigma]$.

Given a ring R with $1 \neq 0$ and a right module M, the Heisenberg group Heis(R, M) consists of all matrices

$$\left(\begin{array}{ccc}1&u&\nu\\0&1&r\\0&0&1\end{array}\right),\quad r\in\mathsf{R},u,\nu\in\mathsf{M},$$

under the usual matrix multiplication, with the understanding that $1 \cdot u = u$ for $u \in M$. If M = R, we simply write Heis(R) = Heis(R, M).

Proposition 2.3 We have $\Psi \simeq \text{Heis}(\mathbb{Z}/p^{n-i}\mathbb{Z}, \mathbb{Z}/p^{i}\mathbb{Z})$ if $2i \leq n$ and $\Psi \simeq \text{Heis}(\mathbb{Z}/p^{n-i}\mathbb{Z})$ if $2i \geq n$. In particular, Ψ has order p^{n+i} if $2i \leq n$ and $p^{3(n-i)}$ if $2i \geq n$, and any element of Ψ can be written in one and only one way in the form ABD, where $A \in \langle \mathfrak{a} \rangle$, $B \in \langle \mathfrak{b} \rangle$, and $D \in \langle \mathfrak{d} \rangle$.

PROOF — Note that the annihilator of the \mathbb{Z} -module $\mathbb{Z}/p^i\mathbb{Z}$ is $p^i\mathbb{Z}$; if $2i \leq n$ then $p^{n-i}\mathbb{Z}$ is contained in $p^i\mathbb{Z}$, so $\mathbb{Z}/p^i\mathbb{Z}$ becomes a $\mathbb{Z}/p^{n-i}\mathbb{Z}$ -module. The given presentation of Ψ yields the decomposition $\Psi = \langle \mathfrak{a} \rangle \langle \mathfrak{b} \rangle \langle \mathfrak{d} \rangle$, and ensures that the assignment

$$\mathfrak{a} \mapsto \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \ \mathfrak{b} \mapsto \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right), \ \mathfrak{d} \mapsto \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

extends to a group epimorphism $\Psi \to \text{Heis}(\mathbb{Z}/p^{n-i}\mathbb{Z},\mathbb{Z}/p^{i}\mathbb{Z})$ if $2i \leq n$ and $\Psi \to \text{Heis}(\mathbb{Z}/p^{n-i}\mathbb{Z})$ if $2i \geq n$. It is an isomorphism as the presentation of Ψ bounds its order, from above, by the order of the corresponding Heisenberg group. Uniqueness follows from existence and $|\Psi|$. П

Lemma 2.4 Let $a, b, c, l \in \mathbb{Z}$, where $a, c \ge 1$ and $b \ge 0$. Then

$$(1 + \ell p^{a})^{cp^{b}} \equiv 1 + c\ell p^{a+b} \mod p^{2a+b}.$$
 (2.2)

PROOF — We assume first that c = 1 and show (2.2) by induction on b. If b = 0 there is nothing to do. Suppose (2.2) is true for some $b \ge 0$. Then there exists $s \in \mathbb{Z}$ such that

$$(1 + \ell p^{a})^{p^{b}} = 1 + \ell p^{a+b} + sp^{2a+b} = 1 + p^{a+b}(\ell + sp^{a}).$$

Set $f = \ell + sp^{a}$. Then

$$(1 + \ell p^{a})^{p^{b+1}} = (1 + p^{a+b}f)^{p}$$
$$= 1 + p^{a+b+1}f + {p \choose 2}p^{2(a+b)}f^{2} + \dots + {p \choose p}p^{p(a+b)}f^{p}.$$

Since p is odd, we have $p|\binom{p}{2}$, so there is some $k \in \mathbb{Z}$ such that

$$\binom{\mathfrak{p}}{2}\mathfrak{p}^{2(\mathfrak{a}+\mathfrak{b})}\mathfrak{f}^2 = \mathfrak{p}^{2\mathfrak{a}+2\mathfrak{b}+1}\mathfrak{k}.$$

Moreover, since $a \ge 1$, we have $i(a+b) \ge 2a+b+1$ for all $3 \le i \le p$. Therefore,

$$(1+\ell p^{\alpha})^{p^{b+1}} \equiv 1+p^{\alpha+b+1}(\ell+sp^{\alpha}) \equiv 1+\ell p^{\alpha+(b+1)} \mod p^{2\alpha+(b+1)}$$

This proves (2.2) when c = 1. Now if $c \in \mathbb{N}$ is arbitrary then the previous case yields

$$(1+\ell p^{a})^{cp^{b}} = (1+p^{a+b}(\ell+hp^{a}))^{c}$$

for some $h \in \mathbb{Z}$. Since $i(a + b) \ge 2a + b$ for all $i \ge 2$, the binomial expansion implies

$$\left(1+p^{a+b}(\ell+hp^{a})\right)^{c} \equiv 1+cp^{a+b}(\ell+hp^{a}) \equiv 1+c\ell p^{a+b} \mod p^{2a+b}.$$

This demonstrates (2.2) in general.

Proposition 2.5 The group Σ is an extension of Ψ by $C_{p^{n-i-1}}$ if $2i \leq n$ and by $C_{p^{i-1}}$ if $2i \geq n$. In particular, Σ has order p^{2n-1} if $2i \leq n$ and $p^{3n-2i-1}$ if $2i \geq n$, and any element of Σ can be written in one and only one way in the form ABC, where $A \in \langle \mathfrak{a} \rangle$, $B \in \langle \mathfrak{b} \rangle$, and $C \in \langle \mathfrak{c} \rangle$.

PROOF — By (1.1) and (1.2) there is an automorphism σ of Ψ such that $\mathfrak{a} \mapsto \mathfrak{a}^{1+ep}$, $\mathfrak{b} \mapsto \mathfrak{b}^{1+dp}$ and $\mathfrak{d} \mapsto \mathfrak{d}$. Setting j = n - i - 1 if $2i \leq n$ and j = i - 1 if $2i \geq n$, Lemma 2.4 implies that $\sigma^{p^j} = 1_{\Psi} = \delta_{\mathfrak{d}}$. As $\sigma(\mathfrak{d}) = \mathfrak{d}$, there is an extension $G = \Psi \langle \mathfrak{c} \rangle$ of Ψ with cyclic factor C_{p^j} and such that conjugation by \mathfrak{c} acts on Ψ via σ (see [11], Chapter III, Section 7). The given presentation of Σ yields an epimorphism $\Sigma \to G$, which is an isomorphism as $|\Sigma| \leq |G|$. That $\Sigma = \langle \mathfrak{a} \rangle \langle \mathfrak{b} \rangle \langle \mathfrak{c} \rangle$ follows from $G = \Psi \langle \mathfrak{c} \rangle$ and Proposition 2.3, while uniqueness follows from existence and the given order of Σ .

We henceforth view Ψ as a normal subgroup of Σ , as indicated in (the proof of) Proposition 2.5.

Lemma 2.6 Let $A \in \langle \mathfrak{a} \rangle$, $B \in \langle \mathfrak{b} \rangle$, $D \in \langle \mathfrak{d} \rangle$, and $C \in \langle \mathfrak{c} \rangle$. Then

$$(ABDC)^{p} = A_0 B_0 D_0 C^{p},$$

for some $A_0 \in \langle \mathfrak{a}^p \rangle$, $B_0 \in \langle \mathfrak{b}^p \rangle$, and $D_0 \in \langle \mathfrak{d}^p \rangle$.

PROOF — We have

$$(ABDC)^p = wC^p$$

where

$$w = AB \cdot {}^{C}(AB) \cdot {}^{C^{2}}(AB) \dots {}^{C^{p-1}}(AB)D^{p}$$

Now $C = c^r$, with $r \in \mathbb{N}$, so setting

$$j = (1 + ep)^r$$
, $k = (1 + dp)^r$,

where d and e are as in (1.1) and (1.2), the defining relations of Σ then give

$$w = ABA^{j}B^{k}A^{j^{2}}B^{k^{2}}\dots A^{j^{p-1}}B^{k^{p-1}}D^{p}.$$

Recalling the comments on commutators made in the Introduction, we find that

$$w = A^{1+j+\dots+j^{p-1}}B^{1+k+\dots+k^{p-1}}D^pD_1,$$

where

$$D_{1} = [B, A]^{j} [B, A]^{(1+k)j^{2}} \dots [B, A]^{(1+k+\dots+k^{p-2})j^{p-1}}$$

Since

$$j \equiv 1 \equiv k \mod p$$
,

we have

$$1+j+\ldots+j^{p-1}\equiv 0\equiv 1+k+\ldots+k^{p-1} \mod p$$

and

$$j + (1+k)j^2 + \ldots + (1+k+\ldots+k^{(p-2)})j^{p-1}$$

 $\equiv 1+2+\ldots+(p-1) \equiv 0 \mod p.$

Thus $w = A_0 B_0 D_0$, with $A_0 \in \langle \mathfrak{a}^p \rangle$, $B_0 \in \langle \mathfrak{b}^p \rangle$, and $D_0 \in \langle \mathfrak{d}^p \rangle$. \Box

If G is a group, then G^p stands for the subgroup of G generated by all elements g^p , with $g \in G$.

Proposition 2.7 Suppose $n \neq 2$ and let $v \in \Sigma^p$. Then v = ABC for unique elements $A \in \langle \mathfrak{a}^p \rangle$, $B \in \langle \mathfrak{b}^p \rangle$, and $C \in \langle \mathfrak{c}^p \rangle$.

Proof — As $n \neq 2$, we have $\mathfrak{d} \in \langle \mathfrak{c}^p \rangle$. Let $\mathfrak{u} \in \Sigma$. Then Proposition 2.5 and Lemma 2.6 give

$$u^p = A_0 B_0 C_0, \qquad (2.3)$$

where $A_0 \in \langle \mathfrak{a}^p \rangle$, $B_0 \in \langle \mathfrak{b}^p \rangle$, and $C_0 \in \langle \mathfrak{c}^p \rangle$. As Σ has finite order, ν is a finite product of elements of the form (2.3), and it is easy to see that such a product will be also be of the stated form. This proves existence, while uniqueness follows from Proposition 2.5.

Given a non-zero integer m, we write $v_p(m)$ for the p-valuation of m, so that $v_p(m) = a$, where a is the unique integer satisfying $a \ge 0$, $p^a | m$, and $p^{a+1} \nmid m$. We extend the use of v_p to non-zero rational numbers in the usual way. **Proposition 2.8** Let Ω in Aut(Σ) and t in Ψ . Set $\ell = i$ if $2i \leq n$ and $\ell = n - i$ if $2i \geq n$. Suppose that $t^{p^{\ell}} = 1$. Then $\Omega(t) \in \Psi$. In particular, if $2i \geq n$ then Ψ is a characteristic subgroup of Σ .

PROOF — If n = 2 then $\Psi = \Sigma$, so we assume that $n \neq 2$.

Let $\Omega \in Aut(\Sigma)$ and $t \in \Psi$ be arbitrary. Then $t^p \in \langle \mathfrak{a}^p, \mathfrak{b}^p, \mathfrak{d}^p \rangle$ by Lemma 2.6. By Proposition 2.2, $\langle \mathfrak{a}^p, \mathfrak{b}^p, \mathfrak{d} \rangle = [\Sigma, \Sigma]$, which is a characteristic subgroup of Σ . Thus, setting $u = \Omega(t)$, we have

$$\mathfrak{u}^p = \Omega(\mathfrak{t})^p = \Omega(\mathfrak{t}^p) \in \langle \mathfrak{a}^p, \mathfrak{b}^p, \mathfrak{d} \rangle \subset \Psi.$$

On the other hand, by Proposition 2.5, we have

$$\mathfrak{u} = AB\mathfrak{c}^{r}, \quad r \in \mathbb{Z},$$
 (2.4)

where $A \in \langle \mathfrak{a} \rangle$ and $B \in \langle \mathfrak{b} \rangle$. Thus Lemma 2.6 gives

$$\mathfrak{u}^{p} = A_0 B_0 D_0 \mathfrak{c}^{rp},$$

where $A_0 \in \langle \mathfrak{a}^p \rangle$, $B_0 \in \langle \mathfrak{a}^p \rangle$, and $D_0 \in \langle \mathfrak{d}^p \rangle$. From $\mathfrak{u}^p \in \Psi$ we infer $\mathfrak{c}^{rp} \in \Psi$. Since $\mathfrak{c}^{p^{n-\ell-1}} = \mathfrak{d} \in \Psi$ but $\mathfrak{c}^{p^{n-\ell-2}} \notin \Psi$, we deduce $\nu_p(r) \ge n-\ell-2$, so

$$\mathbf{r} = \mathbf{p}^{\mathbf{n}-\ell-2}\mathbf{f}, \quad \mathbf{f} \in \mathbb{Z}, \tag{2.5}$$

and therefore

$$\mathfrak{u}^p = \mathcal{A}_0 \mathcal{B}_0 \mathcal{D}_0 \mathfrak{d}^f.$$

We now suppose for the first time that $t^{p^{\ell}} = 1$, so that $u^{p^{\ell}} = 1$. Then

$$(\mathsf{A}_0\mathsf{B}_0\mathsf{D}_0\mathfrak{d}^f)^{p^{\ell-1}}=1,$$

that is

$$(A_0B_0D_0)^{p^{\ell-1}}\mathfrak{d}^{fp^{\ell-1}}=1.$$

Referring to the normal form of the elements of Ψ , the \mathfrak{d} -component of $(A_0B_0D_0)^{p^{\ell-1}}$ is equal to

$$D_0^{p^{\ell-1}}[B_0, A_0][B_0, A_0]^2 \dots [B_0, A_0]^{p^{\ell-1}-1} = 1.$$

 Proposition 2.9 The group Σ is a non-split extension of Ψ , unless n = 2 in which case $\Psi = \Sigma$.

Proof — We may assume $n \neq 2$. Suppose, if possible, that there is an element $u \in \Sigma$ such that $\Sigma = \Psi \rtimes \langle u \rangle$, so that u has order q, with $q = p^{n-i-1}$ if $2i \leqslant n$ and $q = p^{i-1}$ if $2i \geqslant n$. Now $u = tc^j$, where $t \in \Psi$ and $j \in \mathbb{Z}$. Here $p \nmid j$, for otherwise $c \notin \Psi \rtimes \langle u \rangle$. Proposition 2.3 and a repeated application of Lemma 2.6 yield

$$1 = \mathfrak{u}^{q} = A_{1}B_{1}D_{1}\mathfrak{c}^{\mathfrak{j}q} = A_{1}B_{1}D_{1}\mathfrak{d}^{\mathfrak{j}},$$

where $A_1 \in \langle \mathfrak{a}^p \rangle$, $B_1 \in \langle \mathfrak{b}^p \rangle$, and $D_1 \in \langle \mathfrak{d}^p \rangle$. The normal form of the elements of Ψ forces $D_1 \mathfrak{d}^j = 1$. As $p \nmid j$, we see that $D_1 \mathfrak{d}^j$ generates the non-trivial group $\langle \mathfrak{d} \rangle$, a contradiction.

Proposition 2.10 Let (d_0, e_0) be a pair of integers satisfying (1.1) and (1.2), and let Σ_0 be the group associated with it via (1.3) and (1.4). Then $\Sigma \simeq \Sigma_0$.

PROOF — Set j = i if $2i \leq n$ and j = n - i if $2i \geq n$.

Let H be the Sylow p-subgroup of the unit group $(\mathbb{Z}/p^{n-1}\mathbb{Z})^{\times}$. Then H is generated by the class of 1 + ep. Since the class of $1 + e_0p$ also generates H, there is an integer r, relatively prime to p, such that

$$(1+ep)^r \equiv 1+e_0p \mod p^{n-1}.$$

Taking inverses modulo p^{n-1} , we infer

$$(1+dp)^r \equiv 1+d_0p \mod p^{n-1}.$$

Consider the elements $A = \mathfrak{a}^r$, $B = \mathfrak{b}$, $C = \mathfrak{c}^r$. They generate Σ and satisfy

$$A^{p^{j}} = B^{p^{n-i}} = C^{p^{n-1}} = 1, [A, B] = C^{n-j-1}$$

 $CAC^{-1} = A^{1+e_{0}p}, CBC^{-1} = B^{1+d_{0}p}.$

This readily gives an isomorphism $\Sigma_0 \rightarrow \Sigma$.

For future reference note that (1.2) implies $e \equiv -d \mod p$. Since p is odd and $p \nmid d$, we deduce

$$e \not\equiv d \mod p.$$
 (2.6)

П

3 The automorphism group of Σ when $2i \ge n$

We assume throughout this section that $2i \ge n$. Using the matrix description of Ψ given in Proposition 2.3, we readily see that

$$\mathsf{Z}(\Psi) = \langle \mathfrak{d} \rangle.$$

In particular, $\mathfrak{d} = \mathfrak{c}^{p^{i-1}}$ is central in Σ . More precisely, we have the following result.

Lemma 3.1 The center of Σ is generated by $c^{p^{n-i-1}}$.

PROOF — Let $z \in Z(\Sigma)$. Then $z = \mathfrak{c}^r \mathfrak{t}$ for some $\mathfrak{t} \in \Psi$ and $\mathfrak{r} \in \mathbb{N}$, so (1.4) yields

$${}^{t}\mathfrak{a} = \mathfrak{ad}^{\mathfrak{a}}, {}^{t}\mathfrak{b} = \mathfrak{bd}^{\mathfrak{b}}$$

for some $a, b \in \mathbb{Z}$, as well as

$$\mathfrak{a} = {}^{z}\mathfrak{a} = {}^{\mathfrak{c}^{r}}(\mathfrak{a}\mathfrak{d}^{\mathfrak{a}}) = \mathfrak{a}^{(1+ep)^{r}}\mathfrak{d}^{\mathfrak{a}}, \ \mathfrak{b} = {}^{z}\mathfrak{b} = {}^{\mathfrak{c}^{r}}(\mathfrak{b}\mathfrak{d}^{\mathfrak{b}}) = \mathfrak{b}^{(1+dp)^{r}}\mathfrak{d}^{\mathfrak{b}},$$

so $t \in Z(\Psi) = \langle \mathfrak{d} \rangle$ and \mathfrak{c}^r commutes with \mathfrak{a} and \mathfrak{b} . Since \mathfrak{c}^r commutes with \mathfrak{b} , we see that $(1 + dp)^r \equiv 1 \mod p^{n-i}$. As $p \nmid d$, Lemma 2.4 ensures that 1 + dp has order $p^{n-i-1} \mod p^{n-i}$, so $p^{n-i-1}|r$. But $i-1 \ge n-i-1$, so $\mathfrak{d} \in \langle \mathfrak{c}^{p^{n-i-1}} \rangle$, and by above $Z(\Sigma) \subseteq \langle \mathfrak{c}^{p^{n-i-1}} \rangle$. As the reverse inclusion is clear, the result follows.

Theorem 3.2 Let p be an odd prime. Suppose $i, n \in \mathbb{N}$ satisfy $n \ge 2$, $1 \le i \le n-1$, and $2i \ge n$. Let $d, e \in \mathbb{Z}$ be chosen so that (1.1) and (1.2) hold, and let Σ be the group with presentation (1.4).

Let $A, B, C \in Inn(\Sigma)$ be the inner automorphisms of Σ associated with a, b, c, respectively. Let $D, E, F, G, H \in Aut(\Sigma)$ be respectively the defined by

$$a \mapsto a^{1+p^{n-i-1}}, b \mapsto b, c \mapsto c^{1+p^{n-i-1}}, a \mapsto ab^{p^{n-i-1}}, b \mapsto b, c \mapsto c, a \mapsto a, b \mapsto a^{p^{n-i-1}}b, c \mapsto c, a \mapsto a^{g_0}, b \mapsto b^{h_0}, c \mapsto c, a \mapsto b, b \mapsto a, c \mapsto c^{-1}, a \mapsto b, b \mapsto a, c \mapsto c^{-1}, a \mapsto b, b \mapsto a, c \mapsto c^{-1}, b \mapsto c \mapsto c^{-1}$$

where g_0 is any integer of order p-1 modulo p^{n-i} , with inverse h_0 modulo p^{n-i} . Consider the homomorphism $\lambda : Aut(\Sigma) \to Aut(\Sigma/\Psi)$, whose

existence is ensured by Proposition 2.8, as well as the normal subgroup $\Delta = \ker \lambda$ of $\operatorname{Aut}(\Sigma)$. Moreover, suppose that $i \neq n - 1$. Then

$$Aut(\Sigma) = \langle A, B, C, D, E, F, G, H \rangle$$
(3.1)

is a group of order $2p^{3n-2i+1}(p-1)$, and

$$\begin{split} \Delta &= \langle A, B, C, D, E, F, G \rangle, \\ Aut(\Sigma) &= \Delta \rtimes \langle H \rangle = \langle A, B, C, D, E, F \rangle \rtimes (\langle G \rangle \rtimes \langle H \rangle), \\ & [Aut(\Sigma) : \Delta] = 2, \\ \Delta &= Inn(\Sigma) \rtimes \langle D, E, F, G \rangle, \\ Inn(\Sigma) &= \langle A, B, C \rangle \simeq (\mathbb{Z}/p^{n-i}\mathbb{Z} \times \mathbb{Z}/p^{n-i}\mathbb{Z}) \rtimes \mathbb{Z}/p^{n-i-1}\mathbb{Z}, \\ & \langle D, E, F, G \rangle \simeq \mathbb{Z}/p^{i}\mathbb{Z} \times \big[(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/(p-1)\mathbb{Z} \big]. \end{split}$$

Furthermore, the generators A, B, C, D, E, F, G, H of $Aut(\Sigma)$ satisfy the defining relations

$$A^{p^{n-i}} = 1, B^{p^{n-i}} = 1, C^{p^{n-i-1}} = 1, CAC^{-1} = A^{1+ep},$$

$$CBC^{-1} = B^{1+dp}, AB = BA, D^{p^{i}} = 1, E^{p} = 1, F^{p} = 1,$$

$$G^{p-1} = 1, H^{2} = 1, DE = ED, DF = FD, DG = GD, EF = FE,$$

$$GEG^{-1} = E^{h_{0}^{2}}, GFG^{-1} = F^{g_{0}^{2}}, HEH^{-1} = A^{-p^{n-i-1}}F,$$

$$HFH^{-1} = B^{p^{n-i-1}}E, HGH^{-1} = G^{-1},$$

$$DAD^{-1} = A^{1+p^{n-i-1}}, DB = BD, DC = CD,$$

$$EAE^{-1} = AB^{p^{n-i-1}}, EB = BE, EC = CE,$$

$$FA = AF, FBF^{-1} = A^{p^{n-i-1}}B, FC = CF,$$

$$GAG^{-1} = A^{g_{0}}, GBG^{-1} = B^{h_{0}}, GC = CG,$$

$$HAH^{-1} = B, HBH^{-1} = A, HCH^{-1} = C^{-1}, HDH^{-1} = DC^{\nu p^{n-i-2}},$$

where $v \in \mathbb{Z}$ satisfies $dv \equiv 1 \mod p$, and the generators $\overline{D}, \overline{E}, \overline{F}, \overline{G}, \overline{H}$ of $\operatorname{Out}(\Sigma) \simeq \mathbb{Z}/p^{i}\mathbb{Z} \times \left[(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes (\mathbb{Z}/(p-1)\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}) \right]$ (3.2) satisfy the defining relations naturally arising from the above, and realizing (3.2).

In addition, $\Pi = \langle A, B, C, D, E, F \rangle$ is a normal Sylow p-subgroup of Aut(Σ), with the above defining relations, excluding those involving G or H, and Π is the kernel of the natural homomorphism

$$\Gamma: Aut(\Sigma) \to Aut(\Sigma/\Sigma^p).$$

Furthermore, Π *cannot be generated by fewer than 6 elements.*

PROOF — That the maps defining D, E, F, G, H actually extend to automorphisms of Σ is a routine calculation involving the defining relations (1.4) of Σ and will be omitted.

The stated relations among A, B, C, D, E, F, G, H are easily verified. Moreover, any group generated by elements A through H subject to the given relations has order $\leq 2p^{3n-2i+1}(p-1)$.

We claim that $Inn(\Sigma)\cap \langle D,E,F,G\rangle$ is trivial. Indeed, the defining relations of Σ yield

$$\begin{split} A^{j}(\mathfrak{c}) &= \mathfrak{a}^{-jep}\mathfrak{c}, \ B^{j}(\mathfrak{c}) = \mathfrak{b}^{-jdp}\mathfrak{c}, \ A^{j}(\mathfrak{b}) = \mathfrak{b}\mathfrak{d}^{j}, \\ B^{j}(\mathfrak{a}) &= \mathfrak{a}\mathfrak{d}^{-j}, \quad j \in \mathbb{Z}. \end{split}$$

A general element of $Inn(\Sigma)$ (resp. $\langle D, E, F, G \rangle$) has the form $A^{j}B^{k}C^{m}$ (resp. $D^{a}G^{f}E^{b}F^{c}$) for some j, k, $m \in \mathbb{Z}$ (resp. a, b, c, $f \in \mathbb{Z}$). Suppose that $A^{j}B^{k}C^{m} = D^{a}G^{f}E^{b}F^{c}$. We wish to show that this common element is trivial. On the one hand, we have

$$(A^{j}B^{k}C^{m})(\mathfrak{c}) = \mathfrak{b}^{-kdp}\mathfrak{a}^{-jep}\mathfrak{d}^{-jkdp}\mathfrak{c}$$

and on the other hand

$$(\mathsf{D}^{\mathfrak{a}}\mathsf{G}^{\mathsf{f}}\mathsf{E}^{\mathfrak{b}}\mathsf{F}^{\mathfrak{c}})(\mathfrak{c}) = \mathfrak{c}^{(1+p^{n-\mathfrak{i}-1})^{\mathfrak{a}}}.$$

From the normal form of the elements of Σ deduce that $p^{n-i-1}|j$ and $p^{n-i-1}|k$. But then $\vartheta^{-jkdp} = 1$ and a fortiori

$$\mathbf{r} = \mathbf{r}^{(1+p^{n-i-1})^{\alpha}}$$

This forces $D^a = 1$. Now

$$(\mathsf{G}^{\mathsf{f}}\mathsf{E}^{\mathsf{b}}\mathsf{F}^{\mathsf{c}})(\mathfrak{a}) = \mathfrak{a}^{\mathsf{g}_{0}^{\mathsf{f}}}\mathfrak{b}^{\mathsf{h}_{0}^{\mathsf{f}}\mathfrak{b}p^{\mathsf{n}-\mathsf{i}-\mathsf{l}}},$$

while

$$(A^{j}B^{k}C^{m})(\mathfrak{a}) = \mathfrak{a}^{(1+ep)^{m}}\mathfrak{d}^{-k(1+ep)^{m}}.$$

This implies that p|b, $p^{n-i}|k$, and $(1 + ep)^m \equiv g_0^f \mod p^{n-i}$. The first two conditions yield that $E^b = 1$ and $B^k = 1$. As for the third, since the order of $(1 + ep)^m$ modulo p^{n-i} is a p-power and that of g_0^f is a factor of p - 1, both orders are equal to 1. This forces $G^f = 1$ and $C^m = 1$. Finally, we have $F^c(b) = \mathfrak{a}^{cp^{n-i-1}}\mathfrak{b}$, while $A^j(\mathfrak{b}) = \mathfrak{b}\mathfrak{d}^j$. Thus p|c and $p^{n-i}|j$, whence $F^c = 1$ and $A^j = 1$. This proves the claim.

We show below that (3.1) holds. Since $\langle A, B, C, D, E, F, G \rangle \subseteq \Delta$ and $H \notin \Delta$, we infer

$$\Delta = \operatorname{Inn}(\Sigma) \rtimes \langle \mathsf{D}, \mathsf{E}, \mathsf{F}, \mathsf{G} \rangle, \operatorname{Aut}(\Sigma) = \Delta \rtimes \langle \mathsf{H} \rangle, \ [\operatorname{Aut}(\Sigma) : \Delta] = 2.$$

On the other hand, the very definitions of D, E, F, G yield

$$\langle \mathsf{D},\mathsf{E},\mathsf{F},\mathsf{G}\rangle\simeq\mathbb{Z}/p^{i}\mathbb{Z}\times\left[(\mathbb{Z}/p\mathbb{Z}\times\mathbb{Z}/p\mathbb{Z})\rtimes\mathbb{Z}/(p-1)\mathbb{Z}
ight],$$

while Lemma 3.1 gives

$$Inn(\Sigma) \simeq \Sigma/Z(\Sigma) \simeq (\mathbb{Z}/p^{n-i}\mathbb{Z} \times \mathbb{Z}/p^{n-i}\mathbb{Z}) \rtimes \mathbb{Z}/p^{n-i-1}\mathbb{Z}.$$

Thus $|Aut(\Sigma)| = 2p^{3n-2i+1}$ (p - 1), consequently the given relations among A, B, C, D, E, F, G, H must be defining relations, and

$$\operatorname{Aut}(\Sigma) = \langle \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{D}, \mathsf{E}, \mathsf{F} \rangle \rtimes (\langle \mathsf{G} \rangle \rtimes \langle \mathsf{H} \rangle)$$

holds. This decomposition of $Aut(\Sigma)$ yields (3.2), whence the given presentation of $Aut(\Sigma)$ immediately gives one for $Out(\Sigma)$.

That Π is a normal Sylow p-subgroup of Aut(Σ) with the stated defining relations follows directly from above. The very definition of A, B, C, D, E, F places them in ker Γ . Thus ker $\Gamma = \Pi$ provided we show that ker $\Gamma \cap (\langle G \rangle \rtimes \langle H \rangle)$ is trivial. To this end, let $l \in \mathbb{Z}$ and suppose, if possible, that $G^{1}H \in \ker \Gamma$. This implies $\mathfrak{c}^{2} \in \Sigma^{p}$, whence $\mathfrak{c} \in \Sigma^{p}$, against Proposition 2.7. Suppose next that $G^{1} \in \ker \Gamma$. This implies that $\mathfrak{a}^{g_{0}^{1}} \in \Sigma^{p}$, so $\mathfrak{a}^{g_{0}^{1}} = \mathfrak{a}^{k}$ for some multiple k of p, by Proposition 2.7. The order of this common element is a factor of p - 1 as well as a p-power, whence this element is 1, which implies $G^{1} = 1$. This proves that ker $\Gamma = \Pi$. The defining relations of Π make it clear that $[\Pi, \Pi] \subseteq \Pi^{p}$, which yields an epimorphism $\Pi \to V$, where V

is 6-dimensional $\mathbb{Z}/p\mathbb{Z}$ -vector space. Thus Π cannot be generated by fewer than 6 elements.

We proceed to show (3.1). Let Ω be an arbitrary automorphism of Σ . By Proposition 2.8,

$$\Omega(\mathfrak{a}) = \mathfrak{a}^{\mathfrak{a}}\mathfrak{b}^{\mathfrak{b}}\mathfrak{d}^{\mathfrak{c}}, \ \Omega(\mathfrak{b}) = \mathfrak{a}^{\mathfrak{f}}\mathfrak{b}^{\mathfrak{j}}\mathfrak{d}^{\mathfrak{k}}, \ \Omega(\mathfrak{c}) = \mathfrak{a}^{\mathfrak{m}}\mathfrak{b}^{\mathfrak{q}}\mathfrak{c}^{\mathfrak{r}}, \tag{3.3}$$

where a, b, c, f, j, k, m, q, $r \in \mathbb{N}$. Since Ω is an automorphism, we have

$$\begin{aligned} &\Omega^{(\mathfrak{c})}\Omega(\mathfrak{a}) = \Omega^{(\mathfrak{c}\mathfrak{a})} = \Omega(\mathfrak{a})^{1+ep}, \\ &\Omega^{(\mathfrak{c})}\Omega(\mathfrak{b}) = \Omega^{(\mathfrak{c}\mathfrak{b})} = \Omega(\mathfrak{b})^{1+dp}. \end{aligned}$$
 (3.4)

Using (3.3) and comparing the \mathfrak{a} -components of each side of (3.4) yields

$$\mathfrak{a}^{(1+ep)^r\mathfrak{a}} = \mathfrak{a}^{(1+ep)\mathfrak{a}}, \ \mathfrak{a}^{(1+ep)^r\mathfrak{f}} = \mathfrak{a}^{(1+dp)\mathfrak{f}}.$$
 (3.5)

By Proposition 2.8, Ω induces an automorphism in $\Psi/Z(\Psi)$. Let $M \in GL_2(\mathbb{Z}/p^{n-i}\mathbb{Z})$ be the matrix of this automorphism with respect to the basis formed by $\mathfrak{a}, \mathfrak{b}$ when taken modulo $Z(\Psi)$. Then (3.3) gives

$$\mathsf{M} = \left(\begin{array}{cc} \overline{\mathsf{a}} & \overline{\mathsf{b}} \\ \overline{\mathsf{f}} & \overline{\mathsf{j}} \end{array} \right),$$

where the bar indicates the passage from \mathbb{Z} to $\mathbb{Z}/p^{n-i}\mathbb{Z}$. Since M is invertible, one of a, f is not divisible by p, whence by (3.5)

$$(1+ep)^r \equiv 1+ep \mod p^{n-i}$$
 or $(1+ep)^r \equiv 1+dp \mod p^{n-i}$.

Thus by (1.2)

$$(1+ep)^{r-1} \equiv 1 \mod p^{n-i}$$
 or $(1+ep)^{r+1} \equiv 1 \mod p^{n-i}$.

Since $p \nmid e$, Lemma 2.4 ensures that 1 + ep has order p^{n-i-1} modulo p^n , whence

$$r \equiv 1 \mod p^{n-i-1}$$
 or $r \equiv -1 \mod p^{n-i-1}$.

In the second case, we replace Ω by H Ω , so we may assume that the first case occurs. Thus

$$r \equiv 1 \mod p^{n-i-1}. \tag{3.6}$$

Taking into account (1.2), we deduce

$$(1+ep)^r \equiv 1+ep \mod p^{n-i}$$
, and
 $(1+dp)^r \equiv 1+dp \mod p^{n-i}$.
(3.7)

In view of (3.7), the automorphisms that conjugation by c^r and c induce on $\Psi/Z(\Psi)$ are identical. Let N be the matrix of this automorphism relative to the same basis used above. Then

$$N = \begin{pmatrix} \overline{1 + ep} & \overline{0} \\ \overline{0} & \overline{1 + dp} \end{pmatrix}.$$

Using once more that Ω is an automorphism of Σ , we see that for any $t \in \Psi$, we have

$$\Omega(\mathfrak{c})\Omega(\mathfrak{t}) = \Omega(\mathfrak{c}\mathfrak{t}). \tag{3.8}$$

Since conjugation by \mathfrak{c}^r and \mathfrak{c} induce the same automorphism on $\Psi/Z(\Psi)$, (3.3) and (3.8) give ${}^{\mathfrak{c}}\Omega(t) Z(\Psi) = \Omega({}^{\mathfrak{c}}t) Z(\Psi)$. In matrix terms, this means that NM = MN, which is equivalent to

$$b(e-d)p \equiv 0 \mod p^{n-i}, \ f(e-d)p \equiv 0 \mod p^{n-i}.$$
(3.9)

It follows from (2.6) and (3.9) that

$$b \equiv 0 \equiv f \mod p^{n-i-1}. \tag{3.10}$$

We now use for the first time the hypothesis i < n - 1. Since M is invertible, (3.10) implies

$$\overline{\mathfrak{a}}, \overline{\mathfrak{j}} \in (\mathbb{Z}/p^{n-i}\mathbb{Z})^{\times}.$$
(3.11)

Using (3.3) and (3.7), and carefully comparing the ∂ -components of each side of (3.4) gives

$$\vartheta^{-(1+ep)aq} \vartheta^{(1+dp)bm} \vartheta^{c} = \vartheta^{-abep(ep+1)/2} \vartheta^{c(1+ep)},$$

$$\vartheta^{-(1+ep)fq} \vartheta^{(1+dp)jm} \vartheta^{k} = \vartheta^{-fjdp(dp+1)/2} \vartheta^{k(1+dp)}.$$
(3.12)

We claim that

$$q \equiv 0 \equiv m \mod p. \tag{3.13}$$

Indeed, using (3.10), that n-1 > i, and that e(ep+1) (resp. d(dp+1)) is even, we deduce from the first (resp. second) equality in (3.12) that $\vartheta^{\alpha q}$ (resp. ϑ^{jm}) is in $\langle \vartheta^{p} \rangle$. Thus (3.11) yields $q \equiv 0 \mod p$ (resp. $m \equiv 0 \mod p$). This proves the claim.

On the other hand, in view of (3.7), we have

$$\mathfrak{a}\mathfrak{c}^{r}\mathfrak{a}^{-1} = \mathfrak{a}^{-ep}\mathfrak{c}^{r}, \ \mathfrak{b}\mathfrak{c}^{r}\mathfrak{b}^{-1} = \mathfrak{b}^{-dp}\mathfrak{c}^{r}.$$
 (3.14)

We deduce from (3.3), (3.13), and (3.14) that if we replace Ω by $\delta_s \Omega$, where $\delta_s \in \text{Inn}(\Sigma)$ for a suitable $s \in \Psi$, the following will hold in (3.3):

$$q = 0 = m.$$
 (3.15)

Making use of (3.6) and replacing Ω by $D^{l}\Omega$ for a suitable $l \in \mathbb{Z}$, we will have q = 0 = m and r = 1 in (3.3), so that

$$\Omega(\mathfrak{c}) = \mathfrak{c}. \tag{3.16}$$

Taking into account that $\mathfrak{d}^{aj-bf} = [\Omega(\mathfrak{a}), \Omega(\mathfrak{b})] = \Omega([\mathfrak{a}, \mathfrak{b}]) = \Omega(\mathfrak{d}) = \mathfrak{d}$, and appealing to (3.10), we infer

$$aj \equiv 1 \mod p^{n-1}. \tag{3.17}$$

Going back to (3.12) and making use of (3.15), we see that

$$\partial^{abep(ep+1)/2} = \partial^{cep} \cdot \partial^{fjdp(dp+1)/2} = \partial^{kdp}$$

But d(dp + 1) and e(ep + 1) are even, so (3.10) yields

$$\mathfrak{d}^{cep} = \mathfrak{l} = \mathfrak{d}^{kdp}.$$

Since d and e are not divisible by p, we deduce

$$c \equiv 0 \equiv k \mod p^{n-i-1}. \tag{3.18}$$

Now $\mathfrak{a}^{p^{n-i-1}}$ and $\mathfrak{b}^{p^{n-i-1}}$ commute with \mathfrak{c} and with each other, so replacing Ω by $\delta_s \Omega$, where $\delta_s \in \text{Inn}(\Sigma)$ for a suitable $s \in \Psi$, (3.10) and (3.18) imply that (3.16) still holds and we further have $\mathfrak{c} = 0 = k$ in (3.3).

We next replace Ω by $\delta_s G^1 \Omega$, for a suitable $l \in \mathbb{Z}$ and $\delta_s \in Inn(\Sigma)$, with $s \in \langle \mathfrak{c} \rangle$. This will keep (3.16) and c = 0 = k, and, because

of (3.17), will further achieve a = 1 = j in (3.3). Taking into account (3.10), we see that $E^{u}F^{\nu}\Omega = 1$ for suitable $u, \nu \in \mathbb{Z}$. This proves (3.1), completing the proof of the theorem.

Proposition 3.3 Let Λ : Aut $(\Sigma) \rightarrow$ Aut (Ψ) be the restriction homomorphism ensured by Proposition 2.8. Then ker Λ is the cyclic group of order p^{i-1} generated by

$$\mathfrak{a} \mapsto \mathfrak{a}, \ \mathfrak{b} \mapsto \mathfrak{b}, \ \mathfrak{c} \mapsto \mathfrak{c}^{1+p^{n-1}}.$$

PROOF — Let $\Omega \in \ker \Lambda$. Then $\Omega(\mathfrak{c}) = \mathfrak{tc}^s$, where $\mathfrak{t} \in \Psi$ and $\mathfrak{s} \in \mathbb{N}$. Since Ω is the identity on Ψ ,

$$\mathfrak{a}^{1+ep} = \Omega(\mathfrak{a}^{1+ep}) = \Omega(\mathfrak{c}\mathfrak{a}\mathfrak{c}^{-1})$$
$$= \Omega(\mathfrak{c})\Omega(\mathfrak{a})\Omega(\mathfrak{c}^{-1}) = \mathfrak{t}\mathfrak{c}^{s}\mathfrak{a}\mathfrak{c}^{-s}\mathfrak{t}^{-1} = \mathfrak{t}\mathfrak{a}^{(1+ep)^{s}}\mathfrak{t}^{-1}.$$

Since conjugation by t sends \mathfrak{a} to itself times some power of \mathfrak{d} , this forces

 $(1+ep)^s \equiv (1+ep) \mod p^{n-i},$

so

$$(1+ep)^{s-1} \equiv 1 \mod p^{n-i}.$$

As $p \nmid e$, Lemma 2.4 yields

$$s \equiv 1 \mod p^{n-i-1}$$
.

We also deduce that t must commute with \mathfrak{a}^{1+ep} and hence with \mathfrak{a} . A like calculation with \mathfrak{b} instead of a forces t to commute with \mathfrak{b} , whence $t \in Z(\Psi) = \langle \mathfrak{d} \rangle$. Since $\mathfrak{d} = \mathfrak{c}^{p^{i-1}}$ and $i-1 \ge n-i-1$, we infer $\Omega(\mathfrak{c}) = \mathfrak{c}^k$, where $k \equiv 1 \mod p^{n-i-1}$. But Ω must fix \mathfrak{d} as well, so in fact $k \equiv 1 \mod p^{n-i}$.

Note that if $i \neq n-1$ then, in the notation of Theorem 3.2, we have ker $\Lambda = \langle D^p \rangle$.

Theorem 3.4 Suppose i = n - 1, so that Σ be the group of order p^{n+1} generated by $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$, with defining relations

$$\mathfrak{a}^{p} = 1, \mathfrak{b}^{p} = 1, \mathfrak{c}^{p^{n-1}} = 1, [\mathfrak{a}, \mathfrak{b}] = \mathfrak{c}^{p^{n-2}}, \mathfrak{a}\mathfrak{c} = \mathfrak{c}\mathfrak{a}, \mathfrak{b}\mathfrak{c} = \mathfrak{c}\mathfrak{b},$$

and $\Psi \simeq \text{Heis}(\mathbb{Z}/p\mathbb{Z})$ is the subgroup of Σ of order p^3 generated by $\mathfrak{a}, \mathfrak{b}$ and $\mathfrak{c}^{p^{n-2}} = \mathfrak{d}$.

Let Λ : Aut(Σ) \rightarrow Aut(Ψ) be the restriction homomorphism whose existence is ensured by Proposition 2.8. Then

$$\operatorname{Aut}(\Sigma) \simeq \ker \Lambda \times \operatorname{Im} \Lambda$$
,

where ker Λ is a cyclic group of order p^{n-2} and Im $\Lambda = Aut(\Psi)$ is an extension of $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ by $GL_2(\mathbb{Z}/p\mathbb{Z})$. More precisely, let Λ , B be the inner automorphisms of Σ associated with $\mathfrak{a}, \mathfrak{b}$, respectively. Let C, D, E, F, G in $Aut(\Sigma)$ be respectively defined by

```
a \mapsto a, \ b \mapsto ab, \ c \mapsto c,a \mapsto b, \ b \mapsto a^{-1}, \ c \mapsto c,a \mapsto a^{r}, \ b \mapsto b^{s}, \ c \mapsto c,a \mapsto a^{r}, \ b \mapsto b, \ c \mapsto c^{r},a \mapsto a, \ b \mapsto b, \ c \mapsto c^{1+p},
```

where r is any integer of order p-1 modulo p^{n-1} (and hence modulo p), with inverse s modulo p^{n-1} (and hence modulo p), both of which are taken to be odd (as we are allowed to do), and further let t = r(r-1)/2. Then ker $\Lambda = \langle G \rangle$ and Aut(Σ) is generated by A, B, C, D, E, F, G, with defining relations

$$\begin{split} A^{p} &= 1, B^{p} = 1, AB = BA, \\ C^{p} &= 1, D^{2} = E^{(p-1)/2}, E^{p-1} = 1, F^{p-1} = 1, G^{p^{n-2}} = 1, \\ DED^{-1} &= E^{-1}, DFD^{-1} = E^{-1}F, \\ EF &= FE, ECE^{-1} = A^{-t}C^{r^{2}}, FCF^{-1} = C^{r}, \\ A^{(r^{k}-1)/2}B^{-(s^{k}+1)/2}DC^{s^{k}}D &= E^{k}C^{-s^{k}}DC^{-r^{k}}, \quad 0 \leq k < p-1, \\ CAC^{-1} &= A, CBC^{-1} = AB, DAD^{-1} = B, DBD^{-1} = A^{-1}, \\ EAE^{-1} &= A^{r}, EBE^{-1} = B^{s}, FAF^{-1} = A^{r}, FBF^{-1} = B, \\ AG &= GA, BG = GB, CG = GC, DG = GD, EG = GE, FG = GF. \end{split}$$

Moreover, $Aut(\Psi)$ is generated by the restrictions to Ψ of A through F, say A_0 through F_0 , respectively, with the above defining relations, mutatis mutandi (this means that we replace A through F by A_0 through F_0 and we

remove all relations involving G). Furthermore,

$$|\operatorname{Aut}(\Sigma)| = p^{n+1}(p-1)^2(p+1), \ |\operatorname{Aut}(\Psi)| = p^3(p-1)^2(p+1).$$

PROOF — That the maps defining A through G extend to automorphisms of Σ follows from the defining relations of Σ .

We have ker $\Lambda = \langle G \rangle$, a group of order p^{n-2} , by Proposition 3.3. Let Z be the subgroup of Aut(Ψ) generated by A_0 through F_0 . We claim that $Z = Aut(\Psi)$. Indeed, we have a homomorphism

$$\Gamma$$
 : Aut(Ψ) \rightarrow Aut(Ψ /Z(Ψ))

whose kernel is easily seen to be $Inn(\Psi)$. Relative to the basis { $\mathfrak{aZ}(\Psi), \mathfrak{bZ}(\Psi)$ } of the $\mathbb{Z}/p\mathbb{Z}$ -vector space $\Psi/Z(\Psi)$, the matrices of $\Gamma(C_0)$ through $\Gamma(F_0)$ are respectively given by

$$\left(\begin{array}{cc}1&1\\0&1\end{array}\right), \left(\begin{array}{cc}0&-1\\1&0\end{array}\right), \left(\begin{array}{cc}r&0\\0&r^{-1}\end{array}\right), \left(\begin{array}{cc}r&0\\0&1\end{array}\right).$$

As these matrices generate $GL_2(\mathbb{Z}/p\mathbb{Z})$, we see that the restriction of Γ to Z is surjective. Since $Inn(\Psi) \subset Z$, it follows that $Z = Aut(\Psi)$. We have shown, in particular, that $Aut(\Psi)$ is an extension of

$$\ker\Gamma\simeq\mathbb{Z}/p\mathbb{Z}\oplus\mathbb{Z}/p\mathbb{Z}$$

by $\text{Im}\Gamma \simeq \text{GL}_2(\mathbb{Z}/p\mathbb{Z})$.

The verification of the given relations among A through G is a routine calculation and will be omitted. We next show that these are defining relations.

Let P be the abstract group generated by elements A through G subject to the given relations. It suffices to show that

$$|\mathbf{P}| \leq p^{n+1}(p-1)^2(p+1).$$

In this respect, it is clear that $\langle A, B, G \rangle$ is a normal subgroup of P of order $\leq p^n$. Let $Q = P/\langle A, B, G \rangle$ and let c, u, v, f be the images of C, D, E, F, respectively, under the canonical projection P $\rightarrow Q$. We further let N = $\langle c, v, f \rangle$. Then v, f commute and normalize $\langle c \rangle$, so $|N| \leq p(p-1)^2$. We claim that $Q = N \cup NuN$. This means that

$$Y = N \cup N \mathfrak{u} N$$

is a subgroup of Q. Now $u^{-1} = u^3 = uu^2$, with $u^2 \in N$, so Y is closed under inversion. That Y is closed under multiplication is respectively equivalent to NuNuN \subset Y, uNu \subset Y, and $uNu^{-1} \subset$ Y. Now u conjugates v, f back into N, and $u\langle c \rangle u \subset$ Y by the given relations, so Y is closed under multiplication. Since NuN = Nu $\langle c \rangle$, we have

$$|\mathsf{N}\mathsf{u}\mathsf{N}| \leq |\mathsf{N}||\langle \mathsf{c}\rangle| = \mathsf{p}^2(\mathsf{p}-1)^2,$$

and therefore

$$|Q| \leq |N| + |NuN| \leq p(p-1)^2 + p^2(p-1)^2 = p(p-1)^2(p+1),$$

whence

$$|\mathbf{P}| = |\langle \mathbf{A}, \mathbf{B}, \mathbf{G} \rangle ||\mathbf{Q}| \le p^{n} p(p-1)^{2}(p+1) = p^{n+1}(p-1)^{2}(p+1),$$

as required. This shows that the stated relations are defining relations for $Aut(\Sigma)$.

Now, F normalizes $\langle A, B, C, D, E \rangle$, every element of this group fixes \mathfrak{c} , while $F(\mathfrak{c}) = \mathfrak{c}^r$ and $G(\mathfrak{c}) = \mathfrak{c}^{1+p}$. Since r has order p-1 modulo p^{n-1} and 1+p has order p^{n-2} modulo p^{n-1} (where p^{n-1} is the order of \mathfrak{c}), it follows that the intersection of

$$\langle A, B, C, D, E, F \rangle = \langle A, B, C, D, E \rangle \rtimes \langle F \rangle$$

with $\langle G \rangle$ is trivial, so the restriction of Λ to $\langle A, B, C, D, E, F \rangle$ is an isomorphism and, since G is central, we have

Aut(
$$\Sigma$$
) = $\langle G \rangle \times \langle A, B, C, D, E, F \rangle$.

The statement is proved.

4 The automorphism group of Σ when 2i < n

We assume throughout this section that 2i < n.

Lemma 4.1 The center of Σ is generated by \mathfrak{d} and $\mathfrak{b}^{p^{n-i-1}}$.

PROOF — Let $z \in Z(\Sigma)$. Then $z = \mathfrak{c}^{r}t$, where $t \in \Psi$. The first part of the proof of Lemma 3.1 shows that $t \in Z(\Psi)$, that \mathfrak{c}^{r} commutes with \mathfrak{a} and \mathfrak{b} , and that $p^{n-i-1}|r$. In this case, $Z(\Psi) = \langle \mathfrak{d}, \mathfrak{b}^{p^{i}} \rangle$.

As $\mathfrak{d} = \mathfrak{c}^{p^{n-i-1}}$, we infer $Z(\Sigma) \subseteq \langle \mathfrak{b}^{p^i}, \mathfrak{d} \rangle$. Here \mathfrak{d} actually belongs to $Z(\Sigma)$, so $Z(\Sigma) = \langle \mathfrak{b}^{p^j}, \mathfrak{d} \rangle$, where $j \ge i$ is large enough so that \mathfrak{c} commutes with \mathfrak{b}^{p^j} , that is, $j \ge n-i-1$. Since $n-i-1 \ge i$, the proof is complete. \Box

Lemma 4.2 Let $a, b \in \mathbb{N}$ and $z \in \mathbb{Z}$ be such that

$$z^{p^{a}} \equiv 1 \mod p^{b}. \tag{4.1}$$

Then

$$1+z+z^2+\ldots+z^{p^a-1}\equiv p^a \mod p^b.$$

PROOF — It follows from (4.1) that $z \equiv 1 \mod p$. Indeed, the order of *z* modulo *p* must be a factor of both p^a and p - 1 (which is the order of $(\mathbb{Z}/p\mathbb{Z})^{\times}$), so *z* has order 1 modulo *p*.

If z = 1 the result is obvious. If not, $z = 1 + hp^s$, where $h \in \mathbb{Z}$ not divisible by p and $s \ge 1$. Then by Lemma 2.4,

$$z^{p^{a}} \equiv (1 + hp^{s})^{p^{a}} \equiv 1 + hp^{s+a} \mod p^{2s+a},$$

so for some integer f, we have

$$z^{p^{a}} = 1 + hp^{s+a} + fp^{2s+a} = 1 + p^{s+a}(h + fp^{s}).$$

Here $p \nmid (h + fp^s)$, because $s \ge 1$. It follows from (4.1) that $b \le s + a$. Now

$$1 + z + z^2 + \ldots + z^{p^a - 1} \equiv (z^{p^a} - 1)/(z - 1)$$
$$\equiv p^{s+a}(h + fp^s)/hp^s \mod p^b.$$

Here z - 1 divides $z^{p^{a}} - 1$, so hp^{s} divides $p^{s+a}(h + fp^{s})$. But hp^{s} also divides hp^{s+a} , so hp^{s} divides $p^{s+a}fp^{s}$, that is h divides $p^{s+a}f$. Since h is relatively prime to p, we infer that h divides f. As $b \leq s + a$, we conclude that

$$p^{s+a}(h+fp^s)/hp^s \equiv p^a + fp^{s+a}/h \equiv p^a \mod p^b.$$

This completes the proof of the lemma.

Theorem 4.3 Let p be an odd prime. Suppose $i, n \in \mathbb{N}$ satisfy $n \ge 2$, $1 \le i \le n-1$, and 2i < n. Let $d, e \in \mathbb{Z}$ be chosen so that (1.1) and (1.2) hold, and let Σ be the group with presentation (1.3).

Let $L, M, N \in Inn(\Sigma)$ be the inner automorphisms of Σ associated with $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$, respectively. Let $U, V, W, X, Y, Z \in Aut(\Sigma)$ be respectively the defined by

$$a \mapsto a, \ b \mapsto bc^{p^{n-i-2}}, \ c \mapsto a^{-e}c,$$
$$a \mapsto a, \ b \mapsto b^{1+p^{n-i-1}}, \ c \mapsto c^{1+p^{n-i-1}},$$
$$a \mapsto ab^{p^{n-i-1}}, \ b \mapsto b, \ c \mapsto c,$$
$$a \mapsto a, \ b \mapsto a^{p^{i-1}}b, \ c \mapsto c,$$
$$a \mapsto ac^{p^{n-2}}, \ b \mapsto b, \ c \mapsto c,$$
$$a \mapsto a^{g_0}, \ b \mapsto b^{h_0}, \ c \mapsto c,$$

where g_0 is any integer of order p - 1 modulo p^{n-i} , with inverse h_0 modulo p^{n-i} . Let G be the subgroup of $Aut(\Sigma)$ preserving Ψ . Then

$$G = \langle L, M, N, V, W, X, Y, Z \rangle$$
(4.2)

and

Aut(
$$\Sigma$$
) = G $\langle U \rangle$ = $\langle U \rangle$ G.

PROOF — Let $\Omega \in Aut(\Sigma)$. Since $\mathfrak{a}^{p^i} = 1$, Proposition 2.8 ensures that $\Omega(\mathfrak{a}) \in \Psi$, so $\Omega(\mathfrak{a}) = PQR$ for some $P \in \langle \mathfrak{a} \rangle$, $Q \in \langle \mathfrak{b} \rangle$, and $R \in \langle \mathfrak{d} \rangle$. Now the order of \mathfrak{b} is p^{n-i} , with n-i > i, but equation (2.5) from Proposition 2.8 still gives $\Omega(\mathfrak{b}) = t_0 \mathfrak{c}_0$, where $t_0 \in \Psi$ and $\mathfrak{c}_0 \in \langle \mathfrak{c}^{p^{n-i-2}} \rangle$. Using the normal form of elements of Ψ , it follows that

$$\Omega(\mathfrak{b}) = AB\mathfrak{c}^{sp^{n-i-2}}$$

for some $A \in \langle \mathfrak{a} \rangle$, $B \in \langle \mathfrak{b} \rangle$, and $s \in \mathbb{N}$. As $\Omega(\mathfrak{c}) \in \Sigma$, we have

$$\Omega(\mathfrak{c}) = CD\mathfrak{c}^{\mathsf{r}}$$

for some $C \in \langle \mathfrak{a} \rangle$, $D \in \langle \mathfrak{b} \rangle$, and $r \in \mathbb{N}$. Thus

$$\Omega(\mathfrak{b}) = AB\mathfrak{c}^{sp^{n-\iota-2}}, \ \Omega(\mathfrak{a}) = PQR, \ \Omega(\mathfrak{c}) = CD\mathfrak{c}^{r}.$$
(4.3)

Since $\Omega(\mathfrak{b}), \Omega(\mathfrak{a}), \Omega(\mathfrak{c})$ must generate Σ , we see that $p \nmid r$. Claim 1. $Q \in \langle \mathfrak{b}^{p^{n-2i}} \rangle$.

Since $1 = \Omega(\mathfrak{a}^{p^i}) = (PQR)^{p^i} = P^{p^i}Q^{p^i}R^u$, $u \in \mathbb{Z}$, and the order of \mathfrak{b} is p^{n-i} , the result follows.

CLAIM 2. P generates $\langle \mathfrak{a} \rangle$, B generates $\langle \mathfrak{b} \rangle$ and $\Omega(\mathfrak{d})$ generates $\langle \mathfrak{d} \rangle$. Set $f = p^{n-i-2}s$. We then have

$$\Omega(\mathfrak{d}) = \Omega([\mathfrak{a},\mathfrak{b}]) = [\Omega(\mathfrak{a}), \Omega(\mathfrak{b})] = [\mathsf{PQR}, \mathsf{ABc}^{\mathsf{f}}].$$

Here

$$[PQR, ABc^{f}] = [PQR, A] \cdot {}^{A}[PQR, Bc^{f}]$$
$$= [PQR, A] \cdot {}^{A}[PQR, B] \cdot {}^{AB}[PQR, c^{f}],$$

where

$$[PQR, A] \cdot {}^{A}[PQR, B] = [Q, A][P, B],$$
$$[\mathfrak{c}^{f}, PQR] = [\mathfrak{c}^{f}, P] \cdot {}^{P}[\mathfrak{c}^{f}, QR] = [\mathfrak{c}^{f}, P] \cdot {}^{P}[\mathfrak{c}^{f}, Q]$$

Using Lemma 2.4, $P^{p^{i}} = 1$, and $n - i - 1 \ge i$, we see that

$$[\mathfrak{c}^{f}, P] = P^{(1+ep)^{f}}P^{-1} = P^{1+sep^{n-i-1}}P^{-1} = 1.$$

Moreover, by Claim 1, $Q^{p^i} = 1$. Using again Lemma 2.4 and the fact that $n - i - 1 \ge i$, we obtain

$$[\mathfrak{c}^{\mathrm{f}}, Q] = Q^{(1+d\mathfrak{p})^{\mathrm{f}}}Q^{-1} = Q^{1+sd\mathfrak{p}^{n-i-1}}Q^{-1} = 1.$$

Therefore,

$$\Omega(\mathfrak{d}) = [PQR, AB\mathfrak{c}^{\mathsf{f}}] = [Q, A][P, B] \in \langle \mathfrak{d} \rangle.$$

This shows that $\langle \mathfrak{d} \rangle$ is a characteristic subgroup of Σ , whence $\Omega(\mathfrak{d})$ generates $\langle \mathfrak{d} \rangle$. In particular, [Q, A][P, B] has order p^i . But $Q \in \langle \mathfrak{b}^{p^{n-2i}} \rangle$ by Claim 1, so

$$[\mathbf{Q},\mathbf{A}] \in \langle \mathfrak{d}^{\mathfrak{p}^{n-2\mathfrak{l}}} \rangle$$

has order $\langle p^i$. Since [P, B] commutes with [Q, A], it follows that [P, B] has order p^i . Thus $\langle P \rangle = \langle \mathfrak{a} \rangle$ and $\langle B \rangle = \langle \mathfrak{b} \rangle$.

CLAIM 3.
$$r \equiv 1 \mod p^{n-i-1}$$

We have $\Omega(\mathfrak{c})\Omega(\mathfrak{b}) = \Omega(\mathfrak{b})^{1+dp}$. Setting $f = p^{n-i-2}s$, this translates into

$$^{CD\mathfrak{c}^{r}}(AB\mathfrak{c}^{f}) = (AB\mathfrak{c}^{f})^{1+dp}$$

The b-component of the left hand side is equal to $B^{(1+dp)^r}$. As for the b-component of the right hand side, we have

$$(AB\mathfrak{c}^{f})^{p} = ABA^{(1+ep)^{f}}B^{(1+dp)^{f}}\dots A^{(1+ep)^{f(p-1)}}B^{(1+dp)^{f(p-1)}}\mathfrak{d}^{s}.$$

Using Lemma 4.2 with $z = (1 + dp)^f$, a = 1 and b = n - i we see that the b-component of $(ABc^f)^p$ is B^p and that the a-component of $(ABc^f)^p$ is A^p . Reordering the factors, it follows that

$$(AB\mathfrak{c}^{f})^{p} = A^{p}B^{p}\mathfrak{d}^{u}, \quad u \in \mathbb{Z}.$$

Thus

$$(AB\mathfrak{c}^{f})^{dp} = A^{pd}B^{pd}\mathfrak{d}^{q}, \quad q \in \mathbb{Z}.$$

so

$$(AB\mathfrak{c}^{f})^{1+d\mathfrak{p}} = (AB\mathfrak{c}^{f})(AB\mathfrak{c}^{f})^{d\mathfrak{p}} = AB\mathfrak{c}^{f}A^{\mathfrak{p}d}B^{\mathfrak{p}d}\mathfrak{d}^{\mathfrak{q}},$$

and therefore

$$(AB\mathfrak{c}^{\mathfrak{f}})^{1+dp} = AA^{(1+ep)^{\mathfrak{f}}pd}BB^{(1+dp)^{\mathfrak{f}}pd}\mathfrak{c}^{\mathfrak{f}}\mathfrak{d}^{\mathfrak{l}}, \quad \mathfrak{l} \in \mathbb{Z}.$$

Now by Lemma 2.4,

$$(1+dp)^f pd \equiv pd \mod p^{n-i},$$

so the b-component of $(ABc^{f})^{1+dp}$ is B^{1+dp} . All in all, we deduce

$$B^{(1+dp)^r} = B^{1+dp}$$

Since B has order p^{n-i} by Claim 2, we infer from $p \nmid d$ and Lemma 2.4 that

$$r \equiv 1 \mod p^{n-i-1}$$

CLAIM 4. The map defining U extends to an automorphism of Σ .

It is clear that the images of c, a, b generate Σ . We need to verify that the defining relations of Σ are preserved. We proceed to do this, labeling each step with the corresponding relation of Σ .

• $\mathfrak{b}^{p^{n-i}} = 1$. Set $f = p^{n-i-2}$ and $z = (1 + dp)^{f}$. Then

$$(\mathfrak{b}\mathfrak{c}^{\mathsf{f}})^{\mathsf{p}} = \mathfrak{b}^{\mathsf{u}}\mathfrak{d},$$

where

$$\mathfrak{u} = 1 + z + \ldots + z^{p-1} \mod p^{n-i}.$$

But $z^p \equiv 1 \mod p^{n-i}$, so Lemma 4.2 implies $u \equiv p \mod p^{n-1}$, whence

$$(\mathfrak{b}\mathfrak{c}^{\mathsf{T}})^{\mathsf{p}} = \mathfrak{b}^{\mathsf{p}}\mathfrak{d}. \tag{4.4}$$

This element has order p^{n-i-1} , since the factors commute, \mathfrak{d} has order p^i , and $n - i - 1 \ge i$.

- $\mathfrak{a}^{p^i} = 1$. This step is clear.
- $[\mathfrak{a},\mathfrak{b}] = \mathfrak{c}^{\mathfrak{p}^{n-i-1}}$. We need to verify that

$$[\mathfrak{a},\mathfrak{bc}^{p^{n-i-2}}] = (\mathfrak{a}^{-e}\mathfrak{c})^{p^{n-i-1}}.$$

On the one hand, we have

$$[\mathfrak{a},\mathfrak{bc}^{p^{n-i-2}}] = [\mathfrak{a},\mathfrak{b}] \cdot \mathfrak{b}[\mathfrak{a},\mathfrak{c}^{p^{n-i-2}}] = [\mathfrak{a},\mathfrak{b}] = \mathfrak{c}^{p^{n-i-1}},$$

because $\mathfrak{c}^{p^{n-i-2}}$ commutes with \mathfrak{a} , since $(1+ep)^{p^{n-i-2}} \equiv 1+ep^{n-i-1}$ mod p^{n-i} , $n-i-1 \ge i$, and a has order p^i . On the other hand,

$$(\mathfrak{a}^{-e}\mathfrak{c})^{p^{n-i-1}} = \mathfrak{c}^{p^{n-i-1}}$$
(4.5)

applying Lemma 4.2 with z = 1 + ep, a = n - i - 1, and b = n - i, and using $n - i - 1 \ge i$.

- $\mathfrak{c}^{\mathfrak{p}^{n-1}} = 1$. This step follows from (4.5).
- ${}^{\mathfrak{c}}\mathfrak{a} = \mathfrak{a}^{1+ep}$. This step is clear because \mathfrak{a}^{-e} commutes with \mathfrak{a} .
- ${}^{\mathfrak{c}}\mathfrak{b} = \mathfrak{b}^{1+dp}$. Set $f = \mathfrak{p}^{n-i-2}$. We need to verify that

$$\mathfrak{a}^{-e}\mathfrak{c}(\mathfrak{b}\mathfrak{c}^{\mathsf{f}}) = (\mathfrak{b}\mathfrak{c}^{\mathsf{f}})^{1+dp}.$$
(4.6)

Using (4.4) and the fact that ϑ is central in Σ , we have

$$(\mathfrak{b}\mathfrak{c}^{\mathrm{f}})^{\mathrm{d}p} = \mathfrak{b}^{\mathrm{d}p}\mathfrak{d}^{\mathrm{d}},$$

so

$$(\mathfrak{b}\mathfrak{c}^{f})^{1+dp} = (\mathfrak{b}\mathfrak{c}^{f})(\mathfrak{b}\mathfrak{c}^{f})^{dp} = \mathfrak{b}\mathfrak{c}^{f}\mathfrak{b}^{dp}\mathfrak{d}^{d}$$

Here \mathfrak{c}^{f} and \mathfrak{b}^{dp} commute, since $d\mathfrak{p}(1+d\mathfrak{p})^{\mathfrak{p}^{n-i-2}} \equiv d\mathfrak{p} \mod \mathfrak{p}^{n-i}$ by Lemma 2.4. Thus

$$(\mathfrak{b}\mathfrak{c}^{\mathrm{f}})^{1+dp} = \mathfrak{b}^{1+dp}\mathfrak{c}^{\mathrm{f}}\mathfrak{d}^{\mathrm{d}}.$$

On the other hand, since $n - i - 1 \ge i$, c^{f} commutes with a, so

$$\mathfrak{a}^{-e}\mathfrak{c}(\mathfrak{b}\mathfrak{c}^{f}) = \mathfrak{a}^{-e}(\mathfrak{b}^{1+dp}\mathfrak{c}^{f}) = \mathfrak{b}^{1+dp}\mathfrak{d}^{-e(1+dp)}\mathfrak{c}^{f}$$

Now from $(1 + dp)(1 + ep) \equiv 1 \mod p^n$ we infer $e + d + edp \equiv 0 \mod p^{n-1}$, so $d \equiv -e(1 + dp) \equiv p^i$. This completes the proof of Claim 4.

Recall that $\langle B \rangle = \mathfrak{b}$ by Claim 2. Using (4.3), we see that $U^1\Omega$ preserves Ψ for a suitable 1. This proves that $Aut(\Sigma) = \langle U \rangle G$. Since this is a subgroup, it follows that $\langle U \rangle G = G \langle U \rangle$.

We proceed to prove (4.2). The verification that the maps defining V, W, X, Y, Z extend to automorphisms of Σ is routine and will be omitted.

Let $\Omega \in G$. Then

$$\Omega(\mathfrak{b}) = ABS, \ \Omega(\mathfrak{a}) = PQR, \ \Omega(\mathfrak{c}) = CD\mathfrak{c}^{r}.$$
(4.7)

Here A, P, C $\in \langle \mathfrak{a} \rangle$, B, Q, D $\in \langle \mathfrak{b} \rangle$, and R, S $\in \langle \mathfrak{d} \rangle$. We know from Claim 3 that $r \equiv 1 \mod p^{n-i-1}$. Thus, replacing Ω by $V^j \Omega$ for a suitable j, we will have r = 1 in (4.7).

For any $t \in \Psi$, we have

$$\Omega(\mathfrak{c})\Omega(\mathfrak{c}) = \Omega(\mathfrak{c}\mathfrak{c}\mathfrak{c}\mathfrak{c})$$

Taking t = a, we get

$$^{(CD\mathfrak{c})}PQR = \Omega(\mathfrak{c})\Omega(\mathfrak{a}) = \Omega(\mathfrak{c}\mathfrak{a})$$

$$= \Omega(\mathfrak{a}^{1+ep}) = \Omega(\mathfrak{a})^{1+ep} = (PQR)^{1+ep}.$$

$$(4.8)$$

Comparing the b-components in (4.8), we see that

$$Q^{1+dp} = Q^{1+ep}$$

It follows from (2.6) that $Q^p = 1$ and therefore

$$\mathbf{Q} \in \left\langle \mathbf{b}^{\mathbf{p}^{n-i-1}} \right\rangle. \tag{4.9}$$

Comparing the \mathfrak{d} -components in (4.8), we find that

$$[C,Q]^{1+dp}[D,P]^{1+ep}R = [Q,P][Q,P]^2 \dots [Q,P]^{ep}R^{1+ep}.$$
 (4.10)

This implies that

$$[C,Q][D,P] \in \langle \mathfrak{d}^p \rangle.$$

Now $n-i-1 \ge 1$ because 2i < n, so (4.9) implies $[C,Q] \in \langle \mathfrak{d}^p \rangle$,

whence $[D, P] \in \langle \mathfrak{d}^p \rangle$. Since P generates $\langle \mathfrak{a} \rangle$, we infer

$$\mathsf{D} \in \langle \mathfrak{b}^{\mathsf{p}} \rangle. \tag{4.11}$$

Likewise, taking t = b, we must have

$$^{(CD\mathfrak{c})}ABS = \Omega(\mathfrak{c})\Omega(\mathfrak{b}) = \Omega(\mathfrak{c}\mathfrak{b}) = \Omega(\mathfrak{b}^{1+dp})$$

= $\Omega(\mathfrak{b})^{1+dp} = (ABS)^{1+dp}.$ (4.12)

Comparing the a-components in (4.12), we see that

$$A^{1+ep} = A^{1+dp}.$$

Since $d \not\equiv e \mod p$, this forces $A^p = 1$, whence

$$\mathsf{A} \in \big\langle \mathfrak{a}^{\mathfrak{p}^{i-1}} \big\rangle. \tag{4.13}$$

Comparing the ∂ -components in (4.12), we see that

$$[C,B]^{1+dp}[D,A]^{1+ep}S = [B,A][B,A]^2 \dots [B,A]^{dp}S^{1+dp}.$$
 (4.14)

Thus $[C, B][D, A] \in \langle \mathfrak{d}^p \rangle$. In view of (4.11), we have $[D, A] \in \langle \mathfrak{d}^p \rangle$. Since B generates $\langle \mathfrak{b} \rangle$, we infer

$$C \in \langle \mathfrak{a}^p \rangle. \tag{4.15}$$

Making use of (4.11) and (4.15) we see that if we replace Ω by $\delta_s \Omega$, where $\delta_s \in Inn(\Sigma)$ for a suitable $s \in \Psi$, we will have C = 1 = D in (4.7). Since $r \equiv 1 \mod p^{n-i-1}$, a further replacement of Ω by $V^l\Omega$ for a suitable l will maintain C = 1 = D and ensure r = 1 in (4.7). We then have

$$\mathfrak{d} = \Omega(\mathfrak{d}) = \Omega([\mathfrak{a}, \mathfrak{b}])$$

= [PQR, ABS] = [P, B][Q, A] = [P, B]. (4.16)

Here [Q, A] = 1 because (4.9) and (4.13) ensure that

$$[\mathbf{Q},\mathbf{A}] \in \langle \mathfrak{c}^{\mathfrak{p}^{(n-i-1)+(n-i-1)+(i-1)}} \rangle,$$

and $n - i - 1 \ge 1$ as just noted above. On the other hand, we have

$$P = \mathfrak{a}^{\alpha}, B = \mathfrak{b}^{j},$$

where a, j are relatively prime to p by Claim 2. By virtue of (4.16) we obtain the sharper statement

$$aj \equiv 1 \mod p^i. \tag{4.17}$$

Going back to (4.14) with C = 1 = D and using $A \in \langle \mathfrak{a}^{p^{i-1}} \rangle$, we deduce $S^{dp} = 1$ and hence

$$S \in \langle \mathfrak{d}^{\mathfrak{p}^{\mathfrak{i}-1}} \rangle.$$

Since $\mathfrak{a}^{p^{i-1}}$ commutes with \mathfrak{c} , replacing Ω by $\delta_s\Omega$, where $\delta_s \in \text{Inn}(\Sigma)$ for a suitable $s \in \langle \mathfrak{a} \rangle$, we obtain S = 1 in (4.7).

We next go back to (4.10) with C=1=D. Using $Q\in \langle \mathfrak{b}^{p^{n-i-1}}\rangle$, we infer $R^{ep}=1$ and therefore

$$\mathsf{R} \in \langle \mathfrak{d}^{p^{i-1}} \rangle. \tag{4.18}$$

We next replace Ω by $\delta_s Z^1\Omega$, $\delta_s \in Inn(\Sigma)$, for suitable $l \in \mathbb{Z}$ and $s \in \langle \mathfrak{c} \rangle$. This will keep C = 1 = D as well as r = 1; moreover, because of (4.17), we get $P = \mathfrak{a}$ and $B = \mathfrak{b}$ in (4.7). Taking into account (4.9), (4.13), and (4.18), we see that $W^a X^b Y^c \Omega = 1$ for suitable $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$. This proves (3.1), and completes the proof of the theorem. \Box

Theorem 4.4 *Keep the hypotheses and notation of* Theorem 4.3, *and take* h_0 *odd. Then*

$$|Aut(\Sigma)| = p^{2n+2}(p-1), [Aut(\Sigma):G] = p_{\lambda}$$

$$Inn(\Sigma) = \langle L, M, N \rangle \simeq$$

$$(\mathbb{Z}/p^{i}\mathbb{Z} \times \mathbb{Z}/p^{n-i-1}\mathbb{Z}) \rtimes \mathbb{Z}/p^{n-i-1}\mathbb{Z};$$
(4.19)

$$G/\langle L, M, N \rangle \simeq$$

$$\mathbb{Z}/p^{i}\mathbb{Z} \times \left[(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/(p-1)\mathbb{Z} \right],$$
(4.20)

with

$$\begin{split} \mathbf{G} &= \langle \mathbf{L}, \mathbf{M}, \mathbf{N} \rangle \rtimes \langle \mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z} \rangle \text{ if } \mathfrak{i} > 1; \end{split} \tag{4.21} \\ \Phi &= \langle \mathbf{L}, \mathbf{M}, \mathbf{N}, \mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y} \rangle \end{split}$$

is the kernel of the natural homomorphism Γ : $Aut(\Sigma) \rightarrow Aut(\Sigma/\Sigma^p)$ *, and*

hence a normal subgroup of $Aut(\Sigma)$ *;*

$$\Pi = \langle L, M, N, U, V, W, X, Y \rangle = \langle M, N, U, V, W, X, Y \rangle = \Phi \langle U \rangle$$

is a normal Sylow p*-subgroup of* $Aut(\Sigma)$ *;*

$$\operatorname{Aut}(\Sigma) = \Pi \rtimes \langle Z \rangle = \Phi \langle U \rangle \rtimes \langle Z \rangle = \langle M, N, U, V, W, X, Y, Z \rangle.$$

Moreover, the following relations hold:

$$L^{p^{i}} = 1, M^{p^{n-i-1}} = 1, N^{p^{n-i-1}} = 1, NL = L^{1+ep}, NM = M^{1+dp},$$

$$LM = ML, U^{p} = L, V^{p^{i}} = 1, W^{p} = 1, X^{p} = 1, Y^{p} = 1, Z^{p-1} = 1,$$

$$VW = WV, VY = YV, VZ = ZV, VX = XV,$$

$$^{Z}L = L^{g_{0}}, ^{Z}M = h^{g_{0}}, ZN = NZ, ^{Y}L = L, ^{Y}M = M, YN = NY,$$

$$^{X}L = L, ^{X}M = L^{p^{i-1}}M, XN = NX, ^{W}L = L, ^{W}M = M, WN = NW,$$

$$^{V}L = L, ^{V}M = M, ^{V}N = N, ^{U}L = L, ^{U}M = MN^{p^{n-i-2}}, ^{U}N = L^{-e}N,$$

$$WX = XW, ^{Y}X = X \text{ if } i > 1, ^{Y}X = LX \text{ if } i = 1, WY = YW,$$

$$^{Z}W = W^{h_{0}^{2}}, ^{Z}X = X^{g_{0}^{2}}, ^{Z}Y = Y^{h_{0}},$$

as well as the following relations, subject to the indicated conditions:

Furthermore, suppose that $n \neq 2i + 1$ *. Then the above are defining relations* for Aut(Σ), as well as for Π , once all relations involving Z are removed; Π cannot be generated by fewer than 7 elements; G is not a normal subgroup of Aut(Σ).

PROOF — The verification of the stated relations is a routine calculation that will be omitted. We do mention, in connection with the relations involving conjugation by U, that U satisfies

$$\mathfrak{a} \mapsto \mathfrak{a}, \ \mathfrak{b}\mathfrak{a}^{-ep^{n-i-2}}\mathfrak{c}^{-p^{n-i-2}} \mapsto \mathfrak{b}, \ \mathfrak{a}^e\mathfrak{c} \mapsto \mathfrak{c},$$

so U^{-1} is given by

$$\mathfrak{a} \mapsto \mathfrak{a}, \ \mathfrak{b} \mapsto \mathfrak{b} \mathfrak{a}^{-ep^{n-i-2}} \mathfrak{c}^{-p^{n-i-2}}, \ \mathfrak{c} \mapsto \mathfrak{a}^e \mathfrak{c}.$$

It should be noted that if n > 2i + 1 then U^{-1} satisfies $b \mapsto bc^{-p^{n-i-2}}$.

We claim that G has index p in Aut(Σ). Indeed, the definition of U implies $U \notin G$. Thus, our relations $U^p = L$ and $L^{p^i} = 1$ imply that $\langle U \rangle$ is p-group satisfying $U \notin G$ but $U^p \in G$, which yields $G \cap \langle U \rangle = \langle U^p \rangle$. On the other hand, we have Aut(Σ) = $G \langle U \rangle$ by Theorem 4.3, and therefore

$$[\operatorname{Aut}(\Sigma): G] = [\langle U \rangle : G \cap \langle U \rangle] = [\langle U \rangle : \langle U^p \rangle] = p.$$

This proves the claim. Thus $|Aut(\Sigma)| = p^{2n+2} (p-1)$ is equivalent to $|G| = p^{2n+1} (p-1)$, which follows immediately from (4.19) and (4.20). Now (4.19) is a consequence of Lemma 4.1, and we proceed to prove (4.20). Our relations yield an epimorphism

$$\begin{split} \mathbb{Z}/p^{\mathbf{i}}\mathbb{Z} \times \left[(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \rtimes \mathbb{Z}/(p-1)\mathbb{Z} \right] \\ \to G/\langle L, M, N \rangle \simeq \langle \overline{V}, \overline{W}, \overline{X}, \overline{Y}, \overline{Z} \rangle, \end{split}$$

and we need to see that this is injective. This is equivalent to the following: if $v \in \langle V \rangle$, $w \in \langle W \rangle$, $x \in \langle X \rangle$, $y \in \langle Y \rangle$, $z \in \langle Z \rangle$, and $u = vwxyz \in Inn(\Sigma)$ then

$$v = w = x = y = z = 1.$$

Suppose then that such u is an inner automorphism of Σ , associated to an element t of Σ . Successively applying u to c, b, and a, we see that v = 1, x = 1 = z, and w = 1. Thus

$$u = y = Y^{l}$$

for some l. Hence $t=\mathfrak{a}^i\mathfrak{b}^j\mathfrak{c}^k$ must commute with \mathfrak{b} and $\mathfrak{c}.$ As t commutes with $\mathfrak{c},$ we infer $\nu_p(\mathfrak{j})\geqslant n-i-1.$ But $\mathfrak{b}^{p^{n-i-1}}\in Z(\Sigma)$ by Lemma 4.1, and we may assume that $t=\mathfrak{a}^i\mathfrak{c}^k.$ Since t commutes with $\mathfrak{b},$ we deduce

$$v_{\mathbf{p}}(\mathbf{k}) \geq \mathbf{n} - \mathbf{i} - \mathbf{1}.$$

But $\mathfrak{c}^{p^{n-i-1}} = \mathfrak{d} \in Z(\Sigma)$, so we may assume that $\mathfrak{t} = \mathfrak{a}^i$. Thus $\mathfrak{u}(\mathfrak{a}) = \mathfrak{a}$ and $\mathfrak{u}(\mathfrak{a}) = \mathfrak{a}\mathfrak{c}^{lp^{n-2}}$, whence $\nu_p(\mathfrak{l}) \ge 1$ and therefore $\mathfrak{y} = 1$, as re-

quired. This proves (4.20). Note that if i > 1 our relations show that

$$\langle \mathsf{V}, \mathsf{W}, \mathsf{X}, \mathsf{Y}, \mathsf{Z} \rangle = \langle \mathsf{V} \rangle \times \left[(\langle \mathsf{W} \rangle \times \langle \mathsf{X} \rangle \times \langle \mathsf{Y} \rangle) \rtimes \langle \mathsf{Z} \rangle \right],$$

and the above argument then proves that $\langle V, W, X, Y, Z \rangle \cap \langle L, M, N \rangle$ is trivial, whence (4.21) holds.

By (4.19) and (4.20), Φ has order p^{2n+1} , so it is normal in a Sylow p-subgroup of Aut(Σ) (having index p there). But Φ is also normalized by Z, so Φ is normal in Aut(Σ). It is in fact the kernel of Γ , being clearly included there, and using the fact that the index [Aut(Σ) : ker Γ] is divisible by p and p – 1 (look at U and Z). On the other hand, Sylow's theorem implies that Π is normal in Aut(Σ) (the only positive integer that is a factor of p – 1 and is congruent to 1 modulo p is 1).

Suppose next that $n \neq 2i + 1$. An abstract group generated by elements L, M, N, U, V, W, X, Y, Z satisfying the stated relations is easily seen to have order $\leq p^{2n+2}(p-1)$. This implies that the stated relations are defining relations for Aut(Σ). A similar argument applies to Π .

The given relations allow us to define an epimorphism $\Pi \rightarrow B$, where B is a 7-dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$, so Π cannot be generated by fewer than 7 elements.

The last stated relation implies $UZU^{-1} \notin G$, as $Z, N \in G$ but $U \notin G$ and $h_0 \not\equiv 1 \mod p$.

5 Appendix. The automorphism group of γ

Lemma 5.1 If $s \in \mathbb{N}$, $r \in \mathbb{Z}$, where $r \neq 0$ and $v_p(r) \ge 1$, then

$$v_{p}((1+r)^{s}-1) = v_{p}(r) + v_{p}(s).$$

PROOF — We have $r = \ell p^a$ and $s = cp^b$, where $a, b, c, \ell \in \mathbb{Z}$, $a, c \ge 1$, $b \ge 0$, $p \nmid c$ and $p \nmid \ell$. According to Lemma 2.4, there is some $k \in \mathbb{Z}$ such that

$$(1+r)^{s} - 1 = c\ell p^{a+b} + kp^{2a+b} = p^{a+b}(c\ell + kp^{a}).$$

Since $c\ell$ is relatively prime to p, we infer

$$\nu_{\mathfrak{p}}((1+\mathfrak{r})^{\mathfrak{s}}-1)=\mathfrak{a}+\mathfrak{b}=\nu_{\mathfrak{p}}(\mathfrak{r})+\nu_{\mathfrak{p}}(\mathfrak{s}).$$

The statement is proved.

Lemma 5.2 Let $a, b \ge 1$. Then the order of the element $z = x^a y^b$ of Υ is p^s , where

$$s = \max\{n - \nu_p(a), n - i - \nu_p(b), 0\}.$$

In particular, the order of z is p^n if and only if $p \nmid a$.

PROOF — Given $m \ge 1$, we have $z^m = x^k y^{\ell}$, where

$$k = a \frac{(1+p^{i})^{bm} - 1}{(1+p^{i})^{b} - 1}$$
 and $\ell = bm$.

By Lemma 5.1, we have

$$\nu_p\left(\frac{(1+p^i)^{b\mathfrak{m}}-1}{(1+p^i)^b-1}\right)=\nu_p(\mathfrak{m}),$$

so the smallest m such that $x^k = 1$ is m = 1 if $v_p(a) \ge n$ and $m = p^{n-\nu_p(a)}$ otherwise. On the other hand, the smallest m such that $y^{\ell} = 1$ is m = 1 if $v_p(b) \ge n - i$ and $m = p^{n-i-\nu_p(b)}$ otherwise.

Lemma 5.3 Let $a, b \ge 1$, where $p \nmid a$, and set $z = x^a y^b \in \Upsilon$. Then $\langle z \rangle$ is a normal subgroup of Υ if and only if $x^{p^i} \in \langle z \rangle$. Equivalently, $\langle z \rangle$ is normal if and only if $v_p(b) \ge n - 2i$.

PROOF — Since y and z generate Υ , it follows that $\langle z \rangle$ is normal if and only if $yzy^{-1} \in \langle z \rangle$, which translates as $x^{\alpha(1+p^i)}y^b \in \langle z \rangle$ or, alternatively, $x^{\alpha p^i}z \in \langle z \rangle$, that is, $x^{\alpha p^i} \in \langle z \rangle$, where x^{p^i} is a power of $x^{\alpha p^i}$.

Suppose next $\langle z \rangle$ is normal. Then, by above, $x^{p^i} = z^m$ for some $m \ge 1$. Now $z^m = x^k y^\ell$, where k, ℓ are as in the proof of Lemma 5.2. Since $v_p(p^i) = i$, it follows that $v_p(m) = i$. As $y^\ell = 1$, we infer that $v_p(b) \ge n - 2i$.

Assume conversely that $v_p(b) \ge n-2i$. Set $m = p^i$. Then $z^m = x^k y^\ell$, where k, ℓ are as in the proof of Lemma 5.2, so that $v_p(k) = i$. Since $y^{p^{n-i}} = 1$ and $v_p(b) \ge n-2i$, we have that $y^\ell = 1$. All in all, $z^m = x^{cp^i}$, where $p \nmid c$. Since $x^{p^i} \in \langle x^{cp^i} \rangle$, we deduce that x^{p^i} belongs to $\langle z \rangle$.

Lemma 5.4 *The assignment*

$$y \mapsto y, \ x \mapsto \begin{cases} xy^{p^{n-2i}} & \text{if } 2i \leq n, \\ xy & \text{if } 2i \geq n, \end{cases}$$
(5.1)

extends to an automorphism, say α , of γ having order p^i if $2i \leq n$ and p^{n-i} *if* $2i \ge n$.

PROOF — Set $m = 1 + p^i$ as well as $b = p^{n-2i}$ if $2i \le n$, and b = 1if $2i \ge n$. Taking into account Lemma 5.2, it suffices to verify that

$$\mathbf{y}(\mathbf{x}\mathbf{y}^{\mathbf{b}})\mathbf{y}^{-1} = (\mathbf{x}\mathbf{y}^{\mathbf{b}})^{\mathbf{m}}.$$

On the one hand, we have $y(xy^b)y^{-1} = x^my^b$, and on the other $(xy^b)^m = x^k y^\ell$, where

$$k = 1 + m^b + m^{2b} + \ldots + m^{p^{\nu}b}$$
 and $\ell = bm$.

Since $y^{p^{n-i}} = 1$, it follows that $y^{\ell} = y^{b}$. Set j = n-i if $2i \leq n$ and j = i if $2i \ge n$. Then Lemma 2.4 yields

$$k \equiv 1 + p^{i} + p^{j}(1 + 2 + ... + p^{i}) \equiv 1 + p^{i} + p^{j}p^{i}(p^{i} + 1)/2 \mod p^{n}.$$

Since $i + j \ge n$ and p is odd, it follows that $k \equiv 1 + p^i \mod p^n$, as required. П

Since Aut(C_{p^n}) is abelian, it is clear that Υ is a normal subgroup of the holomorph of C_{p^n} , namely the semidirect product

$$\operatorname{Hol}(C_{p^n}) = C_{p^n} \rtimes \operatorname{Aut}(C_{p^n})$$

of C_{p^n} by its full automorphism group. Thus, for any integer r relatively prime to p there is an automorphism, say Ω_r , of Υ defined by

$$x \mapsto x^r, \ y \mapsto y,$$
 (5.2)

namely the restriction to Υ of a suitable inner automorphism of $C_{p^n} \rtimes \operatorname{Aut}(C_{p^n})$.

We proceed to select integers g, h, t, d and e for further use within this section. It is well known that the group of units $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is

cyclic and we fix throughout

an integer g that has order
$$p^{n-1}(p-1)$$
 modulo p^n . (5.3)

We accordingly set

$$\beta = \Omega_g, \tag{5.4}$$

and let h be an odd positive integer satisfying

$$gh \equiv 1 \mod p^n. \tag{5.5}$$

By Lemma 2.4, $1 + p^i$ has order p^{n-i} modulo p^n . Since $g^{p^{i-1}(p-1)}$ also has order p^{n-i} modulo p^n , there is an integer t, relatively prime to p, such that

$$g^{p^{i-1}(p-1)t} \equiv 1 + p^i \mod p^n.$$
 (5.6)

Thus

$$\beta^{p^{i-1}(p-1)t} = \delta_u. \tag{5.7}$$

Now $g^{(p-1)t}$ and $h^{(p-1)t}$ have order p^{n-1} modulo p^n , so there exist integers d and *e* satisfying

$$g^{(p-1)t} = 1 + dp, h^{(p-1)t} = 1 + ep$$
 (5.8)

as well as (1.1) and (1.2).

Proposition 5.5 We have $\operatorname{Aut}(\Upsilon) = \operatorname{Inn}(\Upsilon) \langle \alpha, \beta \rangle$.

PROOF — Let $\gamma \in \text{Aut}(\Upsilon)$. By Lemma 5.2, we have $\gamma(x) = x^{\alpha}y^{b}$, where $p \nmid a$. Thus $\beta^{r}\gamma(x) = xy^{b}$ for some r. As $\langle x \rangle$ is normal in Υ , it follows from Lemmas 5.3 and 5.4 that $\alpha^{s}\beta^{r}\gamma(x) = x$ for some s. Since $\alpha^{s}\beta^{r}\gamma$ must preserve the relation $yxy^{-1} = x^{1+p^{i}}$, we see that

$$\alpha^{s}\beta^{r}\gamma(y) = x^{c}y$$

for some c. Here Lemma 5.2 implies that $v_p(c) \ge i$, so there is an integer t such that $\delta_x^t \alpha^s \beta^r \gamma$ fixes x and y. Since $Inn(\gamma)$ is normal in $Aut(\gamma)$, we infer that $\gamma \in Inn(\gamma) \langle \alpha, \beta \rangle$.

Lemma 5.6 Let r be any integer relatively prime to p, and let s be any odd positive integer satisfying

$$rs \equiv 1 \mod p^n$$
,

whose existence is guaranteed by the fact that p^n is odd. Let $\gamma = \Omega_r$ in Aut(γ), as defined in (5.2), and set

$$f = \begin{cases} p^{n-2i}(s-1)/2 & \text{if } 2i \leq n, \\ (s-1)/2 & \text{if } 2i \geq n. \end{cases}$$

Then $\gamma \alpha \gamma^{-1} = \delta_y^f \alpha^s$.

Proof — Set

$$\mathfrak{j} = \begin{cases} \mathfrak{i} & \text{if } 2\mathfrak{i} \leqslant \mathfrak{n}, \\ \mathfrak{n} - \mathfrak{i} & \text{if } 2\mathfrak{i} \geqslant \mathfrak{n}, \end{cases} \text{ and } \ell = \begin{cases} \mathfrak{p}^{\mathfrak{n} - 2\mathfrak{i}} & \text{if } 2\mathfrak{i} \leqslant \mathfrak{n}, \\ \mathfrak{l} & \text{if } 2\mathfrak{i} \geqslant \mathfrak{n}. \end{cases}$$

We then have $\gamma\alpha\gamma^{-1}(x)=\gamma\alpha(x^s)=\gamma(xy^\ell)^s=x^{rk}y^{\ell s}$, where

$$k = 1 + (1 + p^{i})^{\ell} + \ldots + (1 + p^{i})^{\ell(s-1)}$$

Here Lemma 2.4 yields

$$rk \equiv r[s + p^{n-j}(1 + 2 + ... + (s-1))]$$

$$\equiv 1 + p^{n-j}rs(s-1)/2 \equiv 1 + p^{n-j}(s-1)/2 \mod p^n.$$

On the other hand, we have

$$\delta_y^f \alpha^s(x) = \delta_y^f(xy^{\ell s}) = \delta_y^f(x)y^{\ell s} = x^{(1+p^i)^f}y^{\ell s},$$

where, according to Lemma 2.4,

$$(1+p^{i})^{f} \equiv 1+p^{n-j}(s-1)/2 \mod p^{n}.$$

The statement is proved.

Recalling the meanings of β and h from (5.4) and (5.5), respectively, Lemma 5.6 ensures that if $2i \leq n$, then

$$\beta \alpha \beta^{-1} = \delta_y^{p^{n-2i}(h-1)/2} \alpha^h, \tag{5.9}$$

while if $2i \ge n$ then

$$\beta \alpha \beta^{-1} = \delta_y^{(h-1)/2} \alpha^h.$$
(5.10)

Lemma 5.7 The order of $\overline{\beta} \in Out(\Upsilon)$ is $p^{i-1}(p-1)$.

Proposition 5.8 If $2i \leq n$ then $Out(\Upsilon)$ has order $p^{2i-1}(p-1)$ and presentation

$$\operatorname{Out}(\Upsilon) \simeq \langle \mathfrak{a}, \mathfrak{b} | \mathfrak{a}^{\mathfrak{p}^{\mathfrak{i}}} = 1, \mathfrak{b}^{\mathfrak{p}^{\mathfrak{i}-1}(\mathfrak{p}-1)} = 1, \mathfrak{b}\mathfrak{a}\mathfrak{b}^{-1} = \mathfrak{a}^{\mathfrak{h}} \rangle \simeq \operatorname{Hol}(\mathbb{Z}/\mathfrak{p}^{\mathfrak{i}}\mathbb{Z}),$$

while if $2i \ge n$ then $Out(\Upsilon)$ has order $p^{n-1}(p-1)$, presentation

$$\operatorname{Out}(\Upsilon) \simeq \langle a, b | a^{p^{n-i}} = 1, b^{p^{i-1}(p-1)} = 1, bab^{-1} = a^h \rangle,$$

and is isomorphic to

$$Hol(\mathbb{Z}/p^{i}\mathbb{Z})/(p^{n-i}\mathbb{Z}/p^{i}\mathbb{Z}) \simeq (\mathbb{Z}/p^{n-i}\mathbb{Z}) \rtimes (\mathbb{Z}/p^{i}\mathbb{Z})^{\times}$$

Proof — Let F be the free group on $\{a, b\}$ and consider the homomorphism $\Delta: F \to Out(\Upsilon)$

$$a \mapsto \overline{\alpha}, b \mapsto \overline{\beta}.$$

This is surjective by Proposition 5.5. Set j = i if $2i \leq n$ and j = n - i if $2i \geq n$. By Lemma 5.4, Lemma 5.7, and equations (5.9)–(5.10) we have $Y = \{a^{p^{j}}, b^{p^{i-1}(p-1)}, bab^{-1}a^{-h}\} \subset \ker \Delta$. Let N be the normal closure of Y in F and let $\Gamma : F/N \to Out(\Upsilon)$ be epimorphism associated to Δ . It is clear that $|F/N| \leq p^{i+j-1}(p-1)$. On the other hand, the definitions (5.1), (5.2), and (5.4) of α and β yield that $\beta^{k} = \alpha^{\ell} \delta_{u}$ implies $\alpha^{\ell} = 1$. In particular, α and $\overline{\alpha}$ have the same order, and $\langle \overline{\alpha} \rangle \cap \langle \overline{\beta} \rangle$ is trivial. Thus, Lemmas 5.4 and 5.7 give $|Out(\Upsilon)| = p^{i+j-1}(p-1)$, whence Γ is an isomorphism.

Lemma 5.9 We have $Z(\Upsilon) = \langle x^{p^{n-i}} \rangle$, so that $Inn(\Upsilon)$ has order $p^{2(n-i)}$ and presentation

$$\operatorname{Inn}(\Upsilon) = \langle \mathfrak{u}, \mathfrak{v} | \mathfrak{u}^{\mathfrak{p}^{n-i}} = 1, \mathfrak{v}^{\mathfrak{p}^{n-i}} = 1, \mathfrak{v}\mathfrak{u}\mathfrak{v}^{-1} = \mathfrak{u}^{1+\mathfrak{p}^{i}} \rangle \simeq C_{\mathfrak{p}^{n-i}} \rtimes C_{\mathfrak{p}^{n-i}}.$$

This is an abelian group if and only if $2i \ge n$.

PROOF — Since $\langle y \rangle$ acts faithfully on $\langle x \rangle$, the central elements of $\Upsilon = \langle x \rangle \rtimes \langle y \rangle$ are the elements of $\langle x \rangle$ that are fixed by all elements of $\langle y \rangle$, which are readily seen to be the powers of $x^{p^{n-i}}$.

Lemma 5.10 Let $G = \langle a, b, c \rangle$ be a group, where c normalizes $\langle a, b \rangle$, a and b commute with [a, b], and $[a, b] \in \langle c \rangle$. Then $G = \langle a \rangle \langle b \rangle \langle c \rangle$.

PROOF — By hypothesis, $G = \langle a, b \rangle \langle c \rangle$ and $\langle a, b \rangle = \langle a \rangle \langle b \rangle \langle [a, b] \rangle$. As $[a, b] \in \langle c \rangle$, the result follows.

Theorem 5.11 The order of $Aut(\Upsilon)$ is $p^{2n-1}(p-1)$ if $2i \leq n$, and $p^{3n-2i-1}(p-1)$ if $2i \geq n$. Moreover, if

$$\mu = \delta_x^\ell \beta \delta_x^{-\ell}, \tag{5.11}$$

then $Aut(\Upsilon)$ is generated by $\alpha, \delta_{\chi}, \mu$ for any $\ell \in \mathbb{Z}$, and the choice

$$2\ell \equiv 1 \mod p^n, \tag{5.12}$$

yields the following defining relations, depending on whether $2i \leq n$ or $2i \geq n$:

$$\begin{cases} \alpha^{p^{i}} = 1, \delta_{x}^{p^{n-i}} = 1, \mu^{p^{n-1}(p-1)} = 1, \\ \alpha \delta_{x} \alpha^{-1} = \delta_{x} \mu^{p^{n-i-1}(p-1)t}, \mu \delta_{x} \mu^{-1} = \delta_{x}^{g}, \\ \mu \alpha \mu^{-1} = \alpha^{h}, \end{cases}$$
(5.13)

or

$$\begin{cases} \alpha^{p^{n-i}} = 1, \delta_{x}^{p^{n-i}} = 1, \mu^{p^{n-1}(p-1)} = 1, \\ \alpha \delta_{x} \alpha^{-1} = \delta_{x} \mu^{p^{i-1}(p-1)t}, \mu \delta_{x} \mu^{-1} = \delta_{x}^{g}, \\ \mu \alpha \mu^{-1} = \alpha^{h}. \end{cases}$$
(5.14)

Moreover, if $\sigma \in Aut(\Upsilon)$, then $\sigma = ABC$ for unique elements $A \in \langle \alpha \rangle$, $B \in \langle \delta_x \rangle$, and $C \in \langle \mu \rangle$.

Proof — Set

$$\mathfrak{j} = \begin{cases} \mathfrak{i} & \text{if } 2\mathfrak{i} \leqslant \mathfrak{n}, \\ \mathfrak{n} - \mathfrak{i} & \text{if } 2\mathfrak{i} \geqslant \mathfrak{n}, \end{cases} \quad \mathfrak{k} = \begin{cases} \mathfrak{p}^{\mathfrak{n} - 2\mathfrak{i}} & \text{if } 2\mathfrak{i} \leqslant \mathfrak{n}, \\ 1 & \text{if } 2\mathfrak{i} \geqslant \mathfrak{n}. \end{cases}$$

By Proposition 5.8 and Lemma 5.9, we have

$$|Out(\Upsilon)| = p^{i-1+j}(p-1), |Inn(\Upsilon)| = p^{2(n-i)},$$

so

$$|\operatorname{Aut}(\Upsilon)| = p^{2(n-i)+i-1+j}(p-1),$$

as claimed.

We have $\delta_y = \beta^{p^{i-1}(p-1)t}$ by (5.7), so α, δ_x, β generate Aut(Υ) by Proposition 5.5. We next verify the analogs of (5.13)–(5.14) for these generators. By Lemma 5.4, we have $\alpha^{p^j} = 1$. Since g has order $p^{n-1}(p-1)$ modulo p^n , it follows that $\beta^{p^{n-1}(p-1)} = 1$. On the other hand, Lemma 5.9 implies $\delta_x^{p^{n-i}} = 1$. Moreover, according to Lemma 5.4,

$$\alpha \delta_{x} \alpha^{-1} = \delta_{\alpha(x)} = \delta_{x} \delta_{y}^{k} = \delta_{x} \beta^{k p^{i-1}(p-1)t}, \qquad (5.15)$$

while the very definition of β yields

$$\beta \delta_{\mathbf{x}} \beta^{-1} = \delta_{\beta(\mathbf{x})} = \delta_{\mathbf{x}}^{\mathbf{g}}.$$

Furthermore, by (5.9) and (5.10), we have

$$\beta \alpha \beta^{-1} = \delta_y^{k(h-1)/2} \alpha^h. \tag{5.16}$$

This completes the required verification.

It is clear that for any integer ℓ , the elements α , μ , δ_x still generate Aut(Υ). We next show that (5.13)–(5.14) hold for a suitable choice of ℓ . It is evident that

$$\mu^{p^{n-1}(p-1)} = 1, \ \mu \delta_x \mu^{-1} = \delta_x^g,$$

Observe next that

$$\delta_{\mathbf{u}}^{\mathbf{k}} \in \mathsf{Z}\big(\mathsf{Aut}(\Upsilon)\big). \tag{5.17}$$

Indeed, we have

$$\delta_{y}^{k}\delta_{x}\delta_{y}^{-k} = \delta_{u}$$

where, by Lemma 2.4,

$$u = x^{(1+p^i)^k} = x^{1+p^{n-j}}$$

Since $x^{p^{n-j}} \in Z(\Upsilon)$, it follows that δ_y^k commutes with δ_x . As δ_y is a power of β , they commute. Since $\alpha(y) = y$, it follows that α and δ_y also commute. This proves (5.17).

Since δ_x^{ℓ} commutes with $\delta_y^k = \beta^{kp^{i-1}(p-1)t}$, it follows that

$$\mu^{kp^{i-1}(p-1)t} = \beta^{kp^{i-1}(p-1)t},$$
(5.18)

whence (5.15) gives

$$\alpha \delta_{x} \alpha^{-1} = \delta_{x} \mu^{k p^{i-1} (p-1)t}.$$
(5.19)

Suppose next that $2\ell \equiv 1 \mod p^n$. We claim that

$$\mu \alpha \mu^{-1} = \alpha^{h}$$

Indeed, conjugating each side of (5.16) by δ_x^{ℓ} and using that δ_u^k is central yields

$$\mu(\delta_x^\ell \alpha \delta_x^{-\ell})\mu^{-1} = \delta_y^{k(h-1)/2} (\delta_x^\ell \alpha \delta_x^{-\ell})^h.$$
(5.20)

To compute with (5.20), note that $[\delta_x^{-1}, \alpha] = \delta_y^k$ by (5.15). As δ_y^k is central, $[\delta_x, \alpha]^{-1} = \delta_y^k$, so $\delta_x \alpha \delta_x^{-1} = \delta_y^{-k} \alpha$, and therefore

$$\delta_x^r \alpha \delta_x^{-r} = \delta_y^{-rk} \alpha, \quad r \in \mathbb{Z}.$$
 (5.21)

Successively using (5.17), (5.21), (5.20), (5.21), and (5.17), we infer that

$$\begin{split} \delta_{\mathbf{y}}^{-\ell \mathbf{k}} \mu \alpha \mu^{-1} &= \mu \delta_{\mathbf{y}}^{-\ell \mathbf{k}} \alpha \mu^{-1} = \mu (\delta_{\mathbf{x}}^{\ell} \alpha \delta_{\mathbf{x}}^{-\ell}) \mu^{-1} \\ &= \delta_{\mathbf{y}}^{\mathbf{k}(\mathbf{h}-1)/2} (\delta_{\mathbf{x}}^{\ell} \alpha \delta_{\mathbf{x}}^{-\ell})^{\mathbf{h}} = \delta_{\mathbf{y}}^{\mathbf{k}(\mathbf{h}-1)/2} \delta_{\mathbf{y}}^{-\ell \mathbf{h} \mathbf{k}} \alpha^{\mathbf{h}}. \end{split}$$

Since $\ell(h-1) \equiv (h-1)/2 \mod p^n$, the claim follows.

Thus the generators α, μ, δ_x satisfy the relations (5.13) if $2i \leq n$ and (5.14) if 2i ≥ n.

Let G any group generated by elements α , μ , δ_x that satisfy (5.13) if $2i \leq n$ and (5.14) if $2i \geq n$. Set $\delta_y = \mu^{p^{i-1}(p-1)t}$. Then (5.13) and (5.14) imply that $\langle \delta_x, \delta_y \rangle$ is a normal subgroup of G having order $\leq p^{2(n-i)}$, with $|G/\langle \delta_x, \delta_y \rangle| \leq p^{i-1+j}(p-1)$, so that

$$|\mathsf{G}| \leq p^{2(n-i)+i-1+j}(p-1).$$

This shows that (5.13) and (5.14) are defining relations for $Aut(\Upsilon)$.

It follows from Lemma 5.10 that

Aut(
$$\Upsilon$$
) = $\langle \alpha \rangle \langle \beta \rangle \langle \mu \rangle$.

As $|\operatorname{Aut}(\Upsilon)| = |\langle \alpha \rangle ||\langle \beta \rangle ||\langle \mu \rangle|$, we obtain the stated normal form for the elements of $Aut(\Upsilon)$. Let μ be defined as in (5.11) with ℓ chosen so that (5.12) holds. Recalling the meaning t from (5.6), we set

$$\nu = \mu^{(p-1)t}.\tag{5.22}$$

Proposition 5.12 Let Σ_0 be the subgroup of $\operatorname{Aut}(\Upsilon)$ generated by $\alpha, \delta_{\chi}, \nu$. Then Σ_0 is a normal Sylow p-subgroup of $\operatorname{Aut}(\Upsilon)$ with the following defining relations, depending on whether $2i \leq n$ or $2i \geq n$:

$$\begin{cases} \alpha^{p^{i}} = 1, \nu^{p^{n-1}} = 1, \delta_{x}^{p^{n-i}} = 1, \\ \alpha \delta_{x} \alpha^{-1} = \delta_{x} \nu^{p^{n-i-1}}, \nu \delta_{x} \nu^{-1} = \delta_{x}^{1+dp}, \\ \nu \alpha \nu^{-1} = \alpha^{1+ep}, \end{cases}$$
(5.23)

or

$$\begin{cases} \alpha^{p^{n-i}} = 1, \nu^{p^{n-1}} = 1, \delta_x^{p^{n-i}} = 1, \\ \alpha \delta_x \alpha^{-1} = \delta_x \nu^{p^{i-1}}, \nu \delta_x \nu^{-1} = \delta_x^{1+dp}, \\ \nu \alpha \nu^{-1} = \alpha^{1+ep}. \end{cases}$$
(5.24)

In particular, Σ_0 is isomorphic to Σ .

PROOF — Theorem 5.11 shows that Σ_0 is normal in Aut(Υ) and that

$$\operatorname{Aut}(\Upsilon)/\Sigma_0 \simeq \Sigma_0 \langle \mu \rangle / \Sigma_0 \simeq \langle \mu \rangle / (\Sigma_0 \cap \langle \mu \rangle) \simeq \langle \mu \rangle / \langle \nu \rangle \simeq C_{p-1},$$

so Σ_0 is a Sylow p-subgroup of Aut(Υ).

The relations (5.23)–(5.24) follow easily from (5.13)–(5.14). Set j = i if $2i \leq n$ and j = n - i if $2i \geq n$. That (5.23)–(5.24) are defining relations follows from the fact that any group G generated by elements α, ν, δ_x satisfying these relations has order less than or equal to $p^{2(n-i)+i-1+j}$, since $\langle \delta_x, \nu^{p^{i-1}} \rangle$ is normal in G of order $\leq p^{2(n-i)}$ with $|G/\langle \delta_x, \nu^{p^{i-1}} \rangle| \leq p^{i-1+j}$.

6 Acknowledgment

We are very indebted to the referee for a careful reading of the paper and valuable feedback. This research was partially supported by NSERC grant RGPIN-2020-04062

REFERENCES

- J.N.S BIDWELL M.J. CURRAN: "The automorphism group of a split metacyclic p-group", Arch. Math. (Basel) 87 (2006), 488–497.
- [2] M.J. CURRAN: "The automorphism group of a split metacyclic 2-group", Arch. Math. (Basel) 89 (2007), 10–23.
- [3] M.J. CURRAN: "The automorphism group of a nonsplit metacyclic p-group", Arch. Math.(Basel) 90 (2008), 483–489.
- [4] J. DIETZ: "The history of the divisibility conjecture for automorphism groups of finite p-groups", Adv. Group Theory Appl. 8 (2019), 49–84.
- [5] S.M. GHORAISHI: "On noninner automorphisms of finite p-groups that fix the center elementwise", *Int. J. Group Theory* 8 (2019), 1–9.
- [6] M. GOLASIŃSKI D. GONÇALVES "On automorphisms of split metacyclic groups", *Manuscripta Math.* 128 (2009), 251–273.
- [7] J. GONZÁLEZ-SÁNCHEZ A. JAIKIN-ZAPIRAIN: "Finite p-groups with small automorphism group", *Forum Math. Sigma* 3 (2015) e7, 11pp.
- [8] I. MALINOWSKA: "The automorphism group of a split metacyclic 2-group and some groups of crossed homomorphisms", *Arch. Math. (Basel)* 93 (2009) 99–109.
- [9] I. MALINOWSKA: "On the structure of the automorphism group of a minimal nonabelian p-group (metacyclic case)", *Glas. Mat.* 47(67) (2012), 153–164.
- [10] J.W. WAMSLEY: "A class of three-generator, three-relation, finite groups", Canad. J. Math. 22 (1970), 36–40.
- [11] H.J. ZASSENHAUS: "The Theory of Groups", *Dover*, New York (1999).
- [12] F. ZHOU H. LIU: "Automorphism groups of semidirect products", Arch Math. (Basel) 91 (2008), 193–198.

Fernando Szechtman Department of Mathematics and Statistics University of Regina SK S4S oA2, Regina (Canada) e-mail: fernando.szechtman@gmail.com