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1 Introduction

We fix a prime number p throughout the paper. The automorphism
groups of finite p-groups have been widely studied. One line of in-
vestigation was related to the divisibility conjecture, to the effect that
if G is a finite non-cyclic p-group of order larger than p2, then |G| di-
vides |Aut(G)|. While this holds true for several classes of p-groups, it
has recently been shown to be false in general [7]. A thorough survey
of this conjecture can be found in [4]. A second avenue of research
is connected to the conjecture that every finite non-abelian p-group
has a non-inner automorphism of order p. We refer the reader to [5]
and references therein for the status of this conjecture. A third fo-
cus of attention has been the actual structure of Aut(G) when G is
a finite p-group of one type or another. This has been the case, in
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particular for metacyclic groups, as found in [1],[2],[3],[6],[8],[9],[12],
for instance.

The present paper gives a presentation as well as a structural de-
scription of the automorphism group of a family of 3-generator fi-
nite p-groups, with p odd.

We assume henceforth that p is odd and that i,n 2 N satisfy n > 2
and 1 6 i 6 n - 1. Given an integer d that is not a multiple of p,
the inverse of 1+ dp modulo pn is also of the form 1+ ep for some
integer e not divisible by p, so we have

p - d, p - e, (1.1)

and
(1+ dp)(1+ ep) ⌘ 1 mod pn. (1.2)

Let ⌃ be the group with the following presentation, depending on
whether 2i 6 n or 2i > n:

⌃ = ha, b, c | ap
i

= bp
n-i

= cp
n-1

= 1, [a, b] = cp
n-i-1

,

cac-1 = a1+ep, cbc-1 = b1+dpi,
(1.3)

or

⌃ = ha, b, c | ap
n-i

= bp
n-i

= cp
n-1

= 1, [a, b] = cp
i-1

,

cac-1 = a1+ep, cbc-1 = b1+dpi.
(1.4)

This is a quotient of the finite Wamsley group [10] defined on 3 gen-
erators with 3 relations.

In this paper, we give a presentation of Aut(⌃) and its normal Sy-
low p-subgroup ⇧, and provide a structural description of these
groups.

There is a noteworthy connection between ⌃ and automorphism
groups. Let ⌥ be the semidirect product of a cyclic group Cpn of or-
der pn by the unique subgroup of order pn-i of the cyclic
group Aut(Cpn). Thus

⌥ = hx,y | xp
n

= 1,yp
n-i

= 1,yxy-1 = x1+p
i

i. (1.5)

Then ⌃ is isomorphic to the normal Sylow p-subgroup of Aut(⌥). A
presentation for Aut(G) when G is a split metacyclic p-group can be
found in [1]. This includes, in particular, the case when G = ⌥.
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Consider the group  with the following presentation, depending
on whether 2i 6 n or 2i > n:

 = ha, b, d | ap
i

= bp
n-i

= dp
i

= 1, [a, b] = d, ad = da, bd = dbi,

 = ha, b, d | ap
n-i

= bp
n-i

= dp
n-i

= 1, [a, b] = d, ad = da, bd = dbi.

Then  is a p-group of Heisenberg type, and ⌃ is an extension of  
by a cyclic factor. Moreover, ⌃ cannot be generated by fewer than 3
elements, except in the extreme case n = 2, when ⌃ is the Heisen-
berg group of order p3. Furthermore, ⌃ is a non-split extension of  ,
except when n = 2, in which case ⌃ =  .

The fact that ⌃ requires 3 generators makes the computation
of Aut(⌃) particularly challenging. An appreciation of the obstacles
involved can perhaps be gleaned from the following: ⇧ requires 6
generators and 21 relations when 2i > n but i 6= n- 1, while if 2i < n
we utilize 8 generators and 38 relations for this purpose (although we
could manage with slightly fewer). We feel that the groups ⌃ consti-
tute a non-trivial addition to the reservoir of p-groups for which the
automorphism group is known.

Our work begins in Section 2, where we describe properties of ⌃
and  . Once this background information has been collected, Sec-
tions 3 and 4 describe Aut(⌃) and ⇧. In Section 3 we assume
that 2i > n; in this case,  is a characteristic subgroup of ⌃ and our
analysis of the image of the restriction homomorphism

Aut(⌃) ! Aut( )

allows us in Theorem 3.2 to obtain the desired presentations of Aut(⌃)
and ⇧ when i < n- 1. Considerable effort is spent in Theorem 3.2
in finding suitable generators for ⇧, and we show that no smaller
amount of generators is possible. In addition, Theorem 3.2 gives a
presentation of Out(⌃), and shows that ⇧ is the kernel of the canoni-
cal homomorphism

Aut(⌃) ! Aut(⌃/⌃p).

The case i = n - 1 is essentially different and is handled in Theo-
rem 3.4, which gives presentations of Bruhat type for Aut(⌃)
and Aut( ). In Section 4 we suppose that 2i < n; this case is con-
siderably harder, as  is not a characteristic subgroup of ⌃. Let G be
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the subgroup of Aut(⌃) preserving  . Theorem 4.3 shows that

Aut(⌃) = GhUi,

where U is a suitable automorphism of ⌃, and finds generators for G
and so for Aut(⌃). Presentations and further descriptions of Aut(⌃)
and ⇧ can be found in Theorem 4.4 (which omits some relations from
the case n = 2i+ 1). It turns out that ⇧ = �hUi, where � is the kernel
of the canonical homomorphism Aut(⌃) ! Aut(⌃/⌃p). Moreover, ⇧
requires at least 7 generators.

An appendix contains a study of Aut(⌥), independent of [1], and
establishes the foregoing connection between ⌃ and Aut(⌥). In partic-
ular, we somewhat simplify the presentation of Aut(⌥) derived in [1]
for an arbitrary split metacyclic p-group.

Given a finite p-group P, we write z(P) for the minimum number
of generators of P, that is, z(P) is the dimension of the Z/pZ-vec-
tor space P/�(P), where �(P) is the Frattini subgroup of P. If G is
an arbitrary finite group, we let s(G) denote a Sylow p-subgroup
of G. Thus z(⌥) = 2, s

�
Aut(⌥)

�
= ⌃ and z(⌃) = 3 when n > 2;

also s
�
Aut(⌃)

�
= ⇧ with z(⇧) = 6 if 2i > n, i 6= n- 1, and z(⇧) = 7

if 2i < n. On the other hand, if P is an elementary abelian group
of order pm, then z(P) = m and z

�
s
�
Aut(P)

��
= m- 1. Prompted by

these examples and others, and inspired by the divisibility conjecture,
we wonder if it might be of interest to determine what classes of
finite p-groups G satisfy z

�
s
�
Aut(G)

��
/z(G) > 1, including further

information about this ratio.
Given a group G, we write

[a,b] = aba-1b-1, a,b 2 G,

and let � : G ! Inn(G) stand for the homomorphism a 7! �a, where

�a(b) =
ab = aba-1, a,b 2 G.

The image of � 2 Aut(G) under the natural projection

Aut(G) ! Out(G)

will be denoted by �. Observe that

[ab, c] = a[b, c][a, c], [a,b]-1 = [b,a], [c,ab] = [c,a]a[c,b].
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In particular, if [G,G] is included in the center of G, then the bracket
is a group homomorphism in each variable. We will repeatedly and
implicitly use these facts throughout the paper.

2 Background material on ⌃ and  

Proposition 2.1 The group ⌃ cannot be generated by fewer than 3 ele-
ments, unless n = 2.

Proof — Let E be an elementary abelian p-group of order p3 and
let a,b, c be generators of E. Consider the assignment

a 7! a, b 7! b, c 7! c. (2.1)

The given presentation of ⌃ ensures that, except when n = 2, we can
extend (2.1) to an epimorphism ⌃ ! E. Since E cannot be generated
by fewer than 3 elements, neither can ⌃. ut

Proposition 2.2 The derived subgroup of ⌃ is generated by ap, bp, cpn-i-1

if 2i 6 n, and by ap, cp, cpi-1 if 2i > n.

Proof — Let T be the subgroup of ⌃ generated by the stated ele-
ments. The given presentation of ⌃ and (1.1) ensure that T ✓ [⌃,⌃], T
is normal in ⌃, and ⌃/T is abelian, whence T = [⌃,⌃]. ut

Given a ring R with 1 6= 0 and a right module M, the Heisenberg
group Heis(R,M) consists of all matrices

0

@
1 u v
0 1 r
0 0 1

1

A , r 2 R,u, v 2 M,

under the usual matrix multiplication, with the understanding that
1 · u = u for u 2 M. If M = R, we simply write Heis(R) = Heis(R,M).

Proposition 2.3 We have  ' Heis
�
Z/pn-iZ, Z/piZ

�
if 2i 6 n and

 ' Heis
�
Z/pn-iZ

�
if 2i > n. In particular,  has order pn+i if 2i 6 n

and p3(n-i) if 2i > n, and any element of  can be written in one and
only one way in the form ABD, where A 2 hai, B 2 hbi, and D 2 hdi.
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Proof — Note that the annihilator of the Z-module Z/piZ
is piZ; if 2i 6 n then pn-iZ is contained in piZ, so Z/piZ be-
comes a Z/pn-iZ-module. The given presentation of  yields the
decomposition  = haihbihdi, and ensures that the assignment

a 7!

0

@
1 1 0
0 1 0
0 0 1

1

A , b 7!

0

@
1 0 0
0 1 1
0 0 1

1

A , d 7!

0

@
1 0 1
0 1 0
0 0 1

1

A

extends to a group epimorphism  ! Heis
�
Z/pn-iZ, Z/piZ

�

if 2i 6 n and  ! Heis
�
Z/pn-iZ

�
if 2i > n. It is an isomorphism as

the presentation of  bounds its order, from above, by the order of
the corresponding Heisenberg group. Uniqueness follows from exis-
tence and | |. ut

Lemma 2.4 Let a,b, c, ` 2 Z, where a, c > 1 and b > 0. Then

(1+ `pa)cp
b

⌘ 1+ c`pa+b mod p2a+b. (2.2)

Proof — We assume first that c = 1 and show (2.2) by induc-
tion on b. If b = 0 there is nothing to do. Suppose (2.2) is true for
some b > 0. Then there exists s 2 Z such that

(1+ `pa)p
b

= 1+ `pa+b + sp2a+b = 1+ pa+b(`+ spa).

Set f = `+ spa. Then

(1+ `pa)p
b+1

= (1+ pa+bf)p

= 1+ pa+b+1f+

✓
p

2

◆
p2(a+b)f2 + . . .+

✓
p

p

◆
pp(a+b)fp.

Since p is odd, we have p|
�
p

2

�
, so there is some k 2 Z such that

✓
p

2

◆
p2(a+b)f2 = p2a+2b+1k.

Moreover, since a > 1, we have i(a+ b) > 2a+ b+ 1 for all 3 6 i 6 p.
Therefore,

(1+ `pa)p
b+1

⌘ 1+pa+b+1(`+ spa) ⌘ 1+ `pa+(b+1) mod p2a+(b+1).
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This proves (2.2) when c = 1. Now if c 2 N is arbitrary then the
previous case yields

(1+ `pa)cp
b

=
�
1+ pa+b(`+ hpa)

�c

for some h 2 Z. Since i(a+ b) > 2a+ b for all i > 2, the binomial
expansion implies
�
1+pa+b(`+hpa)

�c ⌘ 1+cpa+b(`+hpa) ⌘1+c`pa+b mod p2a+b.

This demonstrates (2.2) in general. ut
Proposition 2.5 The group ⌃ is an extension of  by C

pn-i-1 if 2i 6 n

and by C
pi-1 if 2i > n. In particular, ⌃ has order p2n-1 if 2i 6 n

and p3n-2i-1 if 2i > n, and any element of ⌃ can be written in one
and only one way in the form ABC, where A 2 hai, B 2 hbi, and C 2 hci.
Proof — By (1.1) and (1.2) there is an automorphism � of  such
that a 7! a1+ep, b 7! b1+dp and d 7! d. Setting j = n- i- 1 if 2i 6 n

and j = i - 1 if 2i > n, Lemma 2.4 implies that �pj

= 1 = �d.
As �(d) = d, there is an extension G =  hci of  with cyclic fac-
tor C

pj and such that conjugation by c acts on  via � (see [11], Chap-
ter III, Section 7). The given presentation of ⌃ yields an epimor-
phism ⌃! G, which is an isomorphism as |⌃| 6 |G|. That ⌃ = haihbihci
follows from G =  hci and Proposition 2.3, while uniqueness follows
from existence and the given order of ⌃. ut

We henceforth view  as a normal subgroup of ⌃, as indicated in
(the proof of) Proposition 2.5.

Lemma 2.6 Let A 2 hai, B 2 hbi, D 2 hdi, and C 2 hci. Then

(ABDC)p = A0B0D0C
p,

for some A0 2 hapi, B0 2 hbpi, and D0 2 hdpi.
Proof — We have

(ABDC)p = wCp,

where
w = AB ·C(AB) ·C

2

(AB) . . .C
p-1

(AB)Dp.

Now C = cr, with r 2 N, so setting

j = (1+ ep)r, k = (1+ dp)r,
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where d and e are as in (1.1) and (1.2), the defining relations of ⌃
then give

w = ABAjBkAj
2

Bk
2

. . . Aj
p-1

Bk
p-1

Dp.

Recalling the comments on commutators made in the Introduction,
we find that

w = A1+j+...+j
p-1

B1+k+...+k
p-1

DpD1,

where

D1 = [B,A]j[B,A](1+k)j2 . . . [B,A](1+k+...+k
p-2)jp-1

.

Since
j ⌘ 1 ⌘ k mod p,

we have

1+ j+ . . .+ jp-1 ⌘ 0 ⌘ 1+ k+ . . .+ kp-1 mod p

and
j+ (1+ k)j2 + . . .+

�
1+ k+ . . .+ k(p-2)

�
jp-1

⌘ 1+ 2+ . . .+ (p- 1) ⌘ 0 mod p.

Thus w = A0B0D0, with A0 2 hapi, B0 2 hbpi, and D0 2 hdpi. ut
If G is a group, then Gp stands for the subgroup of G generated by

all elements gp, with g 2 G.

Proposition 2.7 Suppose n 6= 2 and let v 2 ⌃p. Then v = ABC for
unique elements A 2 hapi, B 2 hbpi, and C 2 hcpi.

Proof — As n 6= 2, we have d 2 hcpi. Let u 2 ⌃. Then Proposition 2.5
and Lemma 2.6 give

up = A0B0C0, (2.3)

where A0 2 hapi, B0 2 hbpi, and C0 2 hcpi. As ⌃ has finite order, v
is a finite product of elements of the form (2.3), and it is easy to see
that such a product will be also be of the stated form. This proves
existence, while uniqueness follows from Proposition 2.5. ut

Given a non-zero integer m, we write vp(m) for the p-valuation
of m, so that vp(m) = a, where a is the unique integer satis-
fying a > 0, pa|m, and pa+1 - m. We extend the use of vp to non-zero
rational numbers in the usual way.
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Proposition 2.8 Let ⌦ in Aut(⌃) and t in  . Set ` = i if 2i 6 n

and ` = n - i if 2i > n. Suppose that tp
`

= 1. Then ⌦(t) 2  . In
particular, if 2i > n then  is a characteristic subgroup of ⌃.

Proof — If n = 2 then  = ⌃, so we assume that n 6= 2.
Let ⌦ 2 Aut(⌃) and t 2  be arbitrary. Then tp 2 hap, bp, dpi

by Lemma 2.6. By Proposition 2.2, hap, bp, di = [⌃,⌃], which is a char-
acteristic subgroup of ⌃. Thus, setting u = ⌦(t), we have

up = ⌦(t)p = ⌦(tp) 2 hap, bp, di ⇢  .

On the other hand, by Proposition 2.5, we have

u = ABcr, r 2 Z, (2.4)

where A 2 hai and B 2 hbi. Thus Lemma 2.6 gives

up = A0B0D0c
rp,

where A0 2 hapi, B0 2 hapi, and D0 2 hdpi. From up 2  we
infer crp 2  . Since cp

n-`-1

= d 2  but cp
n-`-2

/2  , we deduce
vp(r) > n- `- 2, so

r = pn-`-2f, f 2 Z, (2.5)

and therefore
up = A0B0D0d

f.

We now suppose for the first time that tp` = 1, so that up
`

= 1. Then

(A0B0D0d
f)p

`-1

= 1,

that is
(A0B0D0)

p
`-1

dfp
`-1

= 1.

Referring to the normal form of the elements of  , the d-component
of (A0B0D0)

p
`-1 is equal to

Dp
`-1

0
[B0,A0][B0,A0]

2 . . . [B0,A0]
p
`-1-1 = 1.

Therefore dfp
`-1

= 1, which implies p|f. Thus vp(r) > n - ` - 1
and u 2  . ut
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Proposition 2.9 The group ⌃ is a non-split extension of  , unless n = 2
in which case  = ⌃.

Proof — We may assume n 6= 2. Suppose, if possible, that there
is an element u 2 ⌃ such that ⌃ =  o hui, so that u has order q,
with q = pn-i-1 if 2i 6 n and q = pi-1 if 2i > n. Now u = tcj,
where t 2  and j 2 Z. Here p - j, for otherwise c /2  o hui. Proposi-
tion 2.3 and a repeated application of Lemma 2.6 yield

1 = uq = A1B1D1c
jq = A1B1D1d

j,

where A1 2 hapi, B1 2 hbpi, and D1 2 hdpi. The normal form of the
elements of  forces D1d

j = 1. As p - j, we see that D1d
j generates

the non-trivial group hdi, a contradiction. ut

Proposition 2.10 Let (d0, e0) be a pair of integers satisfying (1.1)
and (1.2), and let ⌃0 be the group associated with it via (1.3) and (1.4).
Then ⌃ ' ⌃0.

Proof — Set j = i if 2i 6 n and j = n- i if 2i > n.
Let H be the Sylow p-subgroup of the unit group (Z/pn-1Z)⇥.

Then H is generated by the class of 1+ ep. Since the class of 1+ e0p
also generates H, there is an integer r, relatively prime to p, such that

(1+ ep)r ⌘ 1+ e0p mod pn-1.

Taking inverses modulo pn-1, we infer

(1+ dp)r ⌘ 1+ d0p mod pn-1.

Consider the elements A = ar,B = b,C = cr. They generate ⌃ and sat-
isfy

Ap
j

= Bp
n-i

= Cp
n-1

= 1, [A,B] = Cn-j-1,

CAC-1 = A1+e0p, CBC-1 = B1+d0p.

This readily gives an isomorphism ⌃0 ! ⌃. ut

For future reference note that (1.2) implies e ⌘ -d mod p. Since p
is odd and p - d, we deduce

e 6⌘ d mod p. (2.6)
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3 The automorphism group of ⌃ when 2i > n

We assume throughout this section that 2i > n. Using the matrix
description of  given in Proposition 2.3, we readily see that

Z( ) = hdi.

In particular, d = cp
i-1 is central in ⌃. More precisely, we have the

following result.

Lemma 3.1 The center of ⌃ is generated by cp
n-i-1 .

Proof — Let z 2 Z(⌃). Then z = crt for some t 2  and r 2 N,
so (1.4) yields

ta = ada, tb = bdb

for some a,b 2 Z, as well as

a = za = cr(ada) = a(1+ep)rda, b = zb = cr(bdb) = b(1+dp)rdb,

so t 2 Z( ) = hdi and cr commutes with a and b. Since cr commutes
with b, we see that (1+ dp)r ⌘ 1 mod pn-i. As p - d, Lemma 2.4
ensures that 1 + dp has order pn-i-1 modulo pn-i, so pn-i-1|r.
But i- 1 > n- i- 1, so d 2 hcpn-i-1i, and by above Z(⌃) ✓ hcpn-i-1i.
As the reverse inclusion is clear, the result follows. ut

Theorem 3.2 Let p be an odd prime. Suppose i,n 2 N satisfy n > 2,
1 6 i 6 n- 1, and 2i > n. Let d, e 2 Z be chosen so that (1.1) and (1.2)
hold, and let ⌃ be the group with presentation (1.4).

Let A,B,C 2 Inn(⌃) be the inner automorphisms of ⌃ associated with
a, b, c, respectively. Let D,E, F,G,H 2 Aut(⌃) be respectively the defined
by

a 7! a1+p
n-i-1

, b 7! b, c 7! c1+p
n-i-1

,

a 7! abp
n-i-1

, b 7! b, c 7! c,

a 7! a, b 7! ap
n-i-1

b, c 7! c,

a 7! ag0 , b 7! bh0 , c 7! c,

a 7! b, b 7! a, c 7! c-1,

where g0 is any integer of order p- 1 modulo pn-i, with inverse h0 mod-
ulo pn-i. Consider the homomorphism � : Aut(⌃) ! Aut(⌃/ ), whose
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existence is ensured by Proposition 2.8, as well as the normal sub-
group � = ker � of Aut(⌃). Moreover, suppose that i 6= n- 1. Then

Aut(⌃) = hA,B,C,D,E, F,G,Hi (3.1)

is a group of order 2p3n-2i+1(p- 1), and

� = hA,B,C,D,E, F,Gi,

Aut(⌃) = �o hHi = hA,B,C,D,E, Fio
�
hGio hHi

�
,

[Aut(⌃) : �] = 2,

� = Inn(⌃)o hD,E, F,Gi,

Inn(⌃) = hA,B,Ci ' (Z/pn-iZ ⇥ Z/pn-iZ)o Z/pn-i-1Z,

hD,E, F,Gi ' Z/piZ ⇥
⇥
(Z/pZ ⇥ Z/pZ)o Z/(p- 1)Z

⇤
.

Furthermore, the generators A,B,C,D,E, F,G,H of Aut(⌃) satisfy the defin-
ing relations

Ap
n-i

= 1, Bp
n-i

= 1, Cp
n-i-1

= 1, CAC-1 = A1+ep,

CBC-1 = B1+dp, AB = BA,Dp
i

= 1, Ep = 1, Fp = 1,

Gp-1 = 1, H2 = 1, DE = ED, DF = FD, DG = GD, EF = FE,

GEG-1 = Eh
2

0 , GFG-1 = Fg
2

0 ,HEH-1 = A-p
n-i-1

F,

HFH-1 = Bp
n-i-1

E, HGH-1 = G-1,

DAD-1 = A1+p
n-i-1 , DB = BD, DC = CD,

EAE-1 = ABp
n-i-1 , EB = BE, EC = CE,

FA = AF, FBF-1 = Ap
n-i-1

B, FC = CF,

GAG-1 = Ag0 , GBG-1 = Bh0 , GC = CG,

HAH-1 = B, HBH-1 = A, HCH-1 = C-1, HDH-1 = DCvp
n-i-2 ,

where v 2 Z satisfies dv ⌘ 1 mod p, and the generators D,E, F,G,H of

Out(⌃) ' Z/piZ ⇥
⇥
(Z/pZ ⇥ Z/pZ)o (Z/(p- 1)Z o Z/2Z)

⇤
(3.2)
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satisfy the defining relations naturally arising from the above, and realiz-
ing (3.2).

In addition, ⇧ = hA,B,C,D,E, Fi is a normal Sylow p-subgroup
of Aut(⌃), with the above defining relations, excluding those involving G
or H, and ⇧ is the kernel of the natural homomorphism

� : Aut(⌃) ! Aut(⌃/⌃p).

Furthermore, ⇧ cannot be generated by fewer than 6 elements.

Proof — That the maps defining D,E, F,G,H actually extend to
automorphisms of ⌃ is a routine calculation involving the defining
relations (1.4) of ⌃ and will be omitted.

The stated relations among A,B,C,D,E, F,G,H are easily verified.
Moreover, any group generated by elements A through H subject to
the given relations has order 6 2p3n-2i+1(p- 1).

We claim that Inn(⌃) \ hD,E, F,Gi is trivial. Indeed, the defining
relations of ⌃ yield

Aj(c) = a-jepc, Bj(c) = b-jdpc, Aj(b) = bdj,

Bj(a) = ad-j, j 2 Z.

A general element of Inn(⌃) (resp. hD,E, F,Gi) has the form AjBkCm

(resp. DaGfEbFc) for some j, k,m 2 Z (resp. a,b, c, f 2 Z). Suppose
that AjBkCm = DaGfEbFc. We wish to show that this common ele-
ment is trivial. On the one hand, we have

(AjBkCm)(c) = b-kdpa-jepd-jkdpc

and on the other hand

(DaGfEbFc)(c) = c(1+p
n-i-1)a .

From the normal form of the elements of ⌃ deduce that pn-i-1| j
and pn-i-1|k. But then d-jkdp = 1 and a fortiori

c = c(1+p
n-i-1)a .

This forces Da = 1. Now

(GfEbFc)(a) = ag
f

0bh
f

0
bp

n-i-1

,
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while
(AjBkCm)(a) = a(1+ep)md-k(1+ep)m .

This implies that p|b, pn-i|k, and (1 + ep)m ⌘ gf
0

mod pn-i. The
first two conditions yield that Eb = 1 and Bk = 1. As for the third,
since the order of (1+ ep)m modulo pn-i is a p-power and that of gf

0

is a factor of p - 1, both orders are equal to 1. This forces Gf = 1

and Cm = 1. Finally, we have Fc(b) = acp
n-i-1

b, while Aj(b) = bdj.
Thus p|c and pn-i| j, whence Fc = 1 and Aj = 1. This proves the
claim.

We show below that (3.1) holds. Since hA,B,C,D,E, F,Gi ✓ �
and H /2 �, we infer

� = Inn(⌃)o hD,E, F,Gi, Aut(⌃) = �o hHi, [Aut(⌃) : �] = 2.

On the other hand, the very definitions of D,E, F,G yield

hD,E, F,Gi ' Z/piZ ⇥
⇥
(Z/pZ ⇥ Z/pZ)o Z/(p- 1)Z

⇤
,

while Lemma 3.1 gives

Inn(⌃) ' ⌃/Z(⌃) ' (Z/pn-iZ ⇥ Z/pn-iZ)o Z/pn-i-1Z.

Thus |Aut(⌃)| = 2p3n-2i+1 (p- 1), consequently the given relations
among A,B,C,D,E, F,G,H must be defining relations, and

Aut(⌃) = hA,B,C,D,E, Fio
�
hGio hHi

�

holds. This decomposition of Aut(⌃) yields (3.2), whence the given
presentation of Aut(⌃) immediately gives one for Out(⌃).

That ⇧ is a normal Sylow p-subgroup of Aut(⌃) with the stated
defining relations follows directly from above. The very definition
of A,B,C,D,E, F places them in ker � . Thus ker � = ⇧ provided we
show that ker � \

�
hGio hHi

�
is trivial. To this end, let l 2 Z and sup-

pose, if possible, that GlH 2 ker � . This implies c22⌃p, whence c2⌃p,
against Proposition 2.7. Suppose next that Gl 2 ker � . This implies
that ag0

l 2 ⌃p, so ag0
l

= ak for some multiple k of p, by Proposi-
tion 2.7. The order of this common element is a factor of p - 1 as
well as a p-power, whence this element is 1, which implies Gl = 1.
This proves that ker � = ⇧. The defining relations of ⇧ make it clear
that [⇧,⇧] ✓ ⇧p, which yields an epimorphism ⇧ ! V , where V
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is 6-dimensional Z/pZ-vector space. Thus ⇧ cannot be generated by
fewer than 6 elements.

We proceed to show (3.1). Let ⌦ be an arbitrary automorphism
of ⌃. By Proposition 2.8,

⌦(a) = aabbdc, ⌦(b) = afbjdk, ⌦(c) = ambqcr, (3.3)

where a,b, c, f, j, k,m,q, r 2 N. Since ⌦ is an automorphism, we have

⌦(c)⌦(a) = ⌦(ca) = ⌦(a)1+ep,
⌦(c)⌦(b) = ⌦(cb) = ⌦(b)1+dp.

(3.4)

Using (3.3) and comparing the a-components of each side of (3.4)
yields

a(1+ep)ra = a(1+ep)a, a(1+ep)rf = a(1+dp)f. (3.5)

By Proposition 2.8, ⌦ induces an automorphism in  /Z( ).
Let M 2 GL2(Z/pn-iZ) be the matrix of this automorphism with re-
spect to the basis formed by a, b when taken modulo Z( ). Then (3.3)
gives

M =

✓
a b
f j

◆
,

where the bar indicates the passage from Z to Z/pn-iZ. Since M is
invertible, one of a, f is not divisible by p, whence by (3.5)

(1+ ep)r ⌘ 1+ ep mod pn-i or (1+ ep)r ⌘ 1+dp mod pn-i.

Thus by (1.2)

(1+ ep)r-1 ⌘ 1 mod pn-i or (1+ ep)r+1 ⌘ 1 mod pn-i.

Since p - e, Lemma 2.4 ensures that 1+ ep has order pn-i-1 mod-
ulo pn, whence

r ⌘ 1 mod pn-i-1 or r ⌘ -1 mod pn-i-1.

In the second case, we replace ⌦ by H⌦, so we may assume that the
first case occurs. Thus

r ⌘ 1 mod pn-i-1. (3.6)
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Taking into account (1.2), we deduce

(1+ ep)r ⌘ 1+ ep mod pn-i, and

(1+ dp)r ⌘ 1+ dp mod pn-i.
(3.7)

In view of (3.7), the automorphisms that conjugation by cr and c
induce on  /Z( ) are identical. Let N be the matrix of this automor-
phism relative to the same basis used above. Then

N =

 
1+ ep 0

0 1+ dp

!

.

Using once more that ⌦ is an automorphism of ⌃, we see that for
any t 2  , we have

⌦(c)⌦(t) = ⌦(ct). (3.8)

Since conjugation by cr and c induce the same automorphism
on  /Z( ), (3.3) and (3.8) give c⌦(t)Z( ) = ⌦(ct)Z( ). In matrix
terms, this means that NM = MN, which is equivalent to

b(e- d)p ⌘ 0 mod pn-i, f(e- d)p ⌘ 0 mod pn-i. (3.9)

It follows from (2.6) and (3.9) that

b ⌘ 0 ⌘ f mod pn-i-1. (3.10)

We now use for the first time the hypothesis i < n- 1. Since M is
invertible, (3.10) implies

a, j 2 (Z/pn-iZ)⇥. (3.11)

Using (3.3) and (3.7), and carefully comparing the d-components of
each side of (3.4) gives

d-(1+ep)aqd(1+dp)bmdc = d-abep(ep+1)/2dc(1+ep),

d-(1+ep)fqd(1+dp)jmdk = d-fjdp(dp+1)/2dk(1+dp).
(3.12)

We claim that
q ⌘ 0 ⌘ m mod p. (3.13)
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Indeed, using (3.10), that n-1 > i, and that e(ep+1) (resp. d(dp+1))
is even, we deduce from the first (resp. second) equality in (3.12)
that daq (resp. djm) is in hdpi. Thus (3.11) yields q ⌘ 0 mod p
(resp. m ⌘ 0 mod p). This proves the claim.

On the other hand, in view of (3.7), we have

acra-1 = a-epcr, bcrb-1 = b-dpcr. (3.14)

We deduce from (3.3), (3.13), and (3.14) that if we replace ⌦ by �s⌦,
where �s 2 Inn(⌃) for a suitable s 2  , the following will hold
in (3.3):

q = 0 = m. (3.15)

Making use of (3.6) and replacing ⌦ by Dl⌦ for a suitable l 2 Z,
we will have q = 0 = m and r = 1 in (3.3), so that

⌦(c) = c. (3.16)

Taking into account that daj-bf = [⌦(a),⌦(b)] = ⌦([a, b]) = ⌦(d) = d,
and appealing to (3.10), we infer

aj ⌘ 1 mod pn-i. (3.17)

Going back to (3.12) and making use of (3.15), we see that

dabep(ep+1)/2 = dcep, dfjdp(dp+1)/2 = dkdp.

But d(dp+ 1) and e(ep+ 1) are even, so (3.10) yields

dcep = 1 = dkdp.

Since d and e are not divisible by p, we deduce

c ⌘ 0 ⌘ k mod pn-i-1. (3.18)

Now ap
n-i-1 and bp

n-i-1 commute with c and with each other, so
replacing ⌦ by �s⌦, where �s 2 Inn(⌃) for a suitable s 2  , (3.10)
and (3.18) imply that (3.16) still holds and we further have c = 0 = k
in (3.3).

We next replace ⌦ by �sGl⌦, for a suitable l 2 Z and �s 2 Inn(⌃),
with s 2 hci. This will keep (3.16) and c = 0 = k, and, because



22 F. Szechtman

of (3.17), will further achieve a = 1 = j in (3.3). Taking into ac-
count (3.10), we see that EuFv⌦ = 1 for suitable u, v 2 Z. This
proves (3.1), completing the proof of the theorem. ut

Proposition 3.3 Let ⇤ : Aut(⌃) ! Aut( ) be the restriction homo-
morphism ensured by Proposition 2.8. Then ker⇤ is the cyclic group of
order pi-1 generated by

a 7! a, b 7! b, c 7! c1+p
n-i

.

Proof — Let ⌦ 2 ker⇤. Then ⌦(c) = tcs, where t 2  and s 2 N.
Since ⌦ is the identity on  ,

a1+ep = ⌦(a1+ep) = ⌦(cac-1)

= ⌦(c)⌦(a)⌦(c-1) = tcsac-st-1 = ta(1+ep)st-1.

Since conjugation by t sends a to itself times some power of d, this
forces

(1+ ep)s ⌘ (1+ ep) mod pn-i,

so
(1+ ep)s-1 ⌘ 1 mod pn-i.

As p - e, Lemma 2.4 yields

s ⌘ 1 mod pn-i-1.

We also deduce that t must commute with a1+ep and hence with a.
A like calculation with b instead of a forces t to commute with b,
whence t 2 Z( ) = hdi. Since d = cp

i-1 and i - 1 > n - i - 1, we
infer ⌦(c) = ck, where k ⌘ 1 mod pn-i-1. But ⌦ must fix d as well,
so in fact k ⌘ 1 mod pn-i. ut

Note that if i 6= n- 1 then, in the notation of Theorem 3.2, we have
ker⇤ = hDpi.

Theorem 3.4 Suppose i = n- 1, so that ⌃ be the group of order pn+1

generated by a, b, c, with defining relations

ap = 1, bp = 1, cp
n-1

= 1, [a, b] = cp
n-2

, ac = ca, bc = cb,

and  ' Heis(Z/pZ) is the subgroup of ⌃ of order p3 generated by a, b
and cp

n-2

= d.
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Let ⇤ : Aut(⌃) ! Aut( ) be the restriction homomorphism whose exis-
tence is ensured by Proposition 2.8. Then

Aut(⌃) ' ker⇤⇥ Im⇤,

where ker⇤ is a cyclic group of order pn-2 and Im⇤ = Aut( ) is an exten-
sion of Z/pZ � Z/pZ by GL2(Z/pZ). More precisely, let A,B be the in-
ner automorphisms of ⌃ associated with a, b, respectively. Let C,D,E, F,G
in Aut(⌃) be respectively defined by

a 7! a, b 7! ab, c 7! c,

a 7! b, b 7! a-1, c 7! c,

a 7! ar, b 7! bs, c 7! c,

a 7! ar, b 7! b, c 7! cr,

a 7! a, b 7! b, c 7! c1+p,

where r is any integer of order p- 1 modulo pn-1 (and hence modulo p),
with inverse s modulo pn-1 (and hence modulo p), both of which are
taken to be odd (as we are allowed to do), and further let t = r(r- 1)/2.
Then ker⇤ = hGi and Aut(⌃) is generated by A,B,C,D,E, F,G, with
defining relations

Ap = 1,Bp = 1,AB = BA,

Cp = 1,D2 = E(p-1)/2,Ep-1 = 1, Fp-1 = 1,Gp
n-2

= 1,

DED-1 = E-1,DFD-1 = E-1F,

EF = FE,ECE-1 = A-tCr
2 , FCF-1 = Cr,

A(rk-1)/2B-(sk+1)/2DCs
k

D = EkC-s
k

DC-r
k , 0 6 k < p- 1,

CAC-1 = A,CBC-1 = AB,DAD-1 = B,DBD-1 = A-1,

EAE-1 = Ar,EBE-1 = Bs, FAF-1 = Ar, FBF-1 = B,

AG = GA,BG = GB,CG = GC,DG = GD,EG = GE, FG = GF.

Moreover, Aut( ) is generated by the restrictions to  of A through F,
say A0 through F0, respectively, with the above defining relations, mutatis
mutandi (this means that we replace A through F by A0 through F0 and we
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remove all relations involving G). Furthermore,

|Aut(⌃)| = pn+1(p- 1)2(p+ 1), |Aut( )| = p3(p- 1)2(p+ 1).

Proof — That the maps defining A through G extend to automor-
phisms of ⌃ follows from the defining relations of ⌃.

We have ker⇤ = hGi, a group of order pn-2, by Proposition 3.3.
Let Z be the subgroup of Aut( ) generated by A0 through F0. We
claim that Z = Aut( ). Indeed, we have a homomorphism

� : Aut( ) ! Aut( /Z( ))

whose kernel is easily seen to be Inn( ). Relative to the
basis {aZ( ), bZ( )} of the Z/pZ-vector space  /Z( ), the matrices
of �(C0) through �(F0) are respectively given by

✓
1 1
0 1

◆
,
✓

0 -1
1 0

◆
,
✓

r 0
0 r-1

◆
,
✓

r 0
0 1

◆
.

As these matrices generate GL2(Z/pZ), we see that the restriction
of � to Z is surjective. Since Inn( ) ⇢ Z, it follows that Z = Aut( ).
We have shown, in particular, that Aut( ) is an extension of

ker � ' Z/pZ � Z/pZ

by Im� ' GL2(Z/pZ).
The verification of the given relations among A through G is a

routine calculation and will be omitted. We next show that these are
defining relations.

Let P be the abstract group generated by elements A through G
subject to the given relations. It suffices to show that

|P| 6 pn+1(p- 1)2(p+ 1).

In this respect, it is clear that hA,B,Gi is a normal subgroup of P
of order 6 pn. Let Q = P/hA,B,Gi and let c,u, v, f be the images
of C,D,E, F, respectively, under the canonical projection P ! Q. We
further let N = hc, v, fi. Then v, f commute and normalize hci,
so |N| 6 p(p- 1)2. We claim that Q = N[NuN. This means that

Y = N[NuN
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is a subgroup of Q. Now u-1 = u3 = uu2, with u2 2 N, so Y is closed
under inversion. That Y is closed under multiplication is respectively
equivalent to NuNuN ⇢ Y, uNu ⇢ Y, and uNu-1 ⇢ Y. Now u conju-
gates v, f back into N, and uhciu ⇢ Y by the given relations, so Y is
closed under multiplication. Since NuN = Nuhci, we have

|NuN| 6 |N||hci| = p2(p- 1)2,

and therefore

|Q| 6 |N|+ |NuN| 6 p(p- 1)2 + p2(p- 1)2 = p(p- 1)2(p+ 1),

whence

|P| = |hA,B,Gi||Q| 6 pnp(p- 1)2(p+ 1) = pn+1(p- 1)2(p+ 1),

as required. This shows that the stated relations are defining rela-
tions for Aut(⌃).

Now, F normalizes hA,B,C,D,Ei, every element of this group
fixes c, while F(c) = cr and G(c) = c1+p. Since r has order p - 1
modulo pn-1 and 1+ p has order pn-2 modulo pn-1 (where pn-1

is the order of c), it follows that the intersection of

hA,B,C,D,E, Fi = hA,B,C,D,Eio hFi

with hGi is trivial, so the restriction of ⇤ to hA,B,C,D,E, Fi is an
isomorphism and, since G is central, we have

Aut(⌃) = hGi ⇥ hA,B,C,D,E, Fi.

The statement is proved. ut

4 The automorphism group of ⌃ when 2i < n

We assume throughout this section that 2i < n.

Lemma 4.1 The center of ⌃ is generated by d and bp
n-i-1 .

Proof — Let z 2 Z(⌃). Then z = crt, where t 2  . The first
part of the proof of Lemma 3.1 shows that t 2 Z( ), that cr com-
mutes with a and b, and that pn-i-1|r. In this case, Z( ) = hd, bpii.
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As d = cp
n-i-1 , we infer Z(⌃) ✓ hbpi , di. Here d actually belongs

to Z(⌃), so Z(⌃) = hbpj , di, where j > i is large enough so that c com-
mutes with bp

j , that is, j > n- i- 1. Since n- i- 1 > i, the proof is
complete. ut

Lemma 4.2 Let a,b 2 N and z 2 Z be such that

zp
a

⌘ 1 mod pb. (4.1)

Then
1+ z+ z2 + . . .+ zp

a-1 ⌘ pa mod pb.

Proof — It follows from (4.1) that z ⌘ 1 mod p. Indeed, the order
of z modulo p must be a factor of both pa and p- 1 (which is the
order of (Z/pZ)⇥), so z has order 1 modulo p.

If z = 1 the result is obvious. If not, z = 1+ hps, where h 2 Z not
divisible by p and s > 1. Then by Lemma 2.4,

zp
a

⌘ (1+ hps)p
a

⌘ 1+ hps+a mod p2s+a,

so for some integer f, we have

zp
a

= 1+ hps+a + fp2s+a = 1+ ps+a(h+ fps).

Here p - (h+ fps), because s > 1. It follows from (4.1) that b 6 s+ a.
Now

1+ z+ z2 + . . .+ zp
a-1 ⌘ (zp

a

- 1)/(z- 1)

⌘ ps+a(h+ fps)/hps mod pb.

Here z - 1 divides zp
a

- 1, so hps divides ps+a(h + fps). But hps

also divides hps+a, so hps divides ps+afps, that is h divides ps+af.
Since h is relatively prime to p, we infer that h divides f. As b 6 s+a,
we conclude that

ps+a(h+ fps)/hps ⌘ pa + fps+a/h ⌘ pa mod pb.

This completes the proof of the lemma. ut

Theorem 4.3 Let p be an odd prime. Suppose i,n 2 N satisfy n > 2,
1 6 i 6 n- 1, and 2i < n. Let d, e 2 Z be chosen so that (1.1) and (1.2)
hold, and let ⌃ be the group with presentation (1.3).
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Let L,M,N 2 Inn(⌃) be the inner automorphisms of ⌃ associated
with a, b, c, respectively. Let U,V ,W,X, Y,Z 2 Aut(⌃) be respectively the
defined by

a 7! a, b 7! bcp
n-i-2 , c 7! a-ec,

a 7! a, b 7! b1+p
n-i-1 , c 7! c1+p

n-i-1 ,

a 7! abp
n-i-1 , b 7! b, c 7! c,

a 7! a, b 7! ap
i-1

b, c 7! c,

a 7! acp
n-2 , b 7! b, c 7! c,

a 7! ag0 , b 7! bh0 , c 7! c,

where g0 is any integer of order p- 1 modulo pn-i, with inverse h0 mod-
ulo pn-i. Let G be the subgroup of Aut(⌃) preserving  . Then

G = hL,M,N,V ,W,X, Y,Zi (4.2)

and
Aut(⌃) = GhUi = hUiG.

Proof — Let ⌦ 2 Aut(⌃). Since ap
i

= 1, Proposition 2.8 ensures
that ⌦(a) 2  , so ⌦(a) = PQR for some P 2 hai, Q 2 hbi, and R 2 hdi.
Now the order of b is pn-i, with n- i > i, but equation (2.5) from Pro-
position 2.8 still gives ⌦(b) = t0c0, where t0 2  and c02hcpn-i-2i.
Using the normal form of elements of  , it follows that

⌦(b) = ABcsp
n-i-2

for some A 2 hai, B 2 hbi, and s 2 N. As ⌦(c) 2 ⌃, we have

⌦(c) = CDcr

for some C 2 hai, D 2 hbi, and r 2 N. Thus

⌦(b) = ABcsp
n-i-2

, ⌦(a) = PQR, ⌦(c) = CDcr. (4.3)

Since ⌦(b),⌦(a),⌦(c) must generate ⌃, we see that p - r.
Claim 1. Q 2 hbpn-2ii.

Since 1 = ⌦(ap
i

) = (PQR)p
i

= Pp
i

Qp
i

Ru, u 2 Z, and the order
of b is pn-i, the result follows.
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Claim 2. P generates hai, B generates hbi and ⌦(d) generates hdi.
Set f = pn-i-2s. We then have

⌦(d) = ⌦([a, b]) = [⌦(a),⌦(b)] = [PQR,ABcf].

Here
[PQR,ABcf] = [PQR,A] · A[PQR,Bcf]

= [PQR,A] · A[PQR,B] · AB[PQR, cf],

where
[PQR,A] · A[PQR,B] = [Q,A][P,B],

[cf,PQR] = [cf,P] · P[cf,QR] = [cf,P] · P[cf,Q].

Using Lemma 2.4, Pp
i

= 1, and n- i- 1 > i, we see that

[cf,P] = P(1+ep)fP-1 = P1+sep
n-i-1

P-1 = 1.

Moreover, by Claim 1, Qp
i

= 1. Using again Lemma 2.4 and the fact
that n- i- 1 > i, we obtain

[cf,Q] = Q(1+dp)fQ-1 = Q1+sdp
n-i-1

Q-1 = 1.

Therefore,
⌦(d) = [PQR,ABcf] = [Q,A][P,B] 2 hdi.

This shows that hdi is a characteristic subgroup of ⌃, whence ⌦(d)

generates hdi. In particular, [Q,A][P,B] has order pi. But Q 2 hbpn-2ii
by Claim 1, so

[Q,A] 2 hdp
n-2i

i

has order < pi. Since [P,B] commutes with [Q,A], it follows that [P,B]
has order pi. Thus hPi = hai and hBi = hbi.
Claim 3. r ⌘ 1 mod pn-i-1.

We have ⌦(c)⌦(b) = ⌦(b)1+dp. Setting f = pn-i-2s, this translates
into

CDcr(ABcf) = (ABcf)1+dp.

The b-component of the left hand side is equal to B(1+dp)r . As for
the b-component of the right hand side, we have

(ABcf)p = ABA(1+ep)fB(1+dp)f . . . A(1+ep)f(p-1)
B(1+dp)f(p-1)

ds.
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Using Lemma 4.2 with z = (1+ dp)f, a = 1 and b = n- i we see
that the b-component of (ABcf)p is Bp and that the a-component
of (ABcf)p is Ap. Reordering the factors, it follows that

(ABcf)p = ApBpdu, u 2 Z.

Thus
(ABcf)dp = ApdBpddq, q 2 Z.

so
(ABcf)1+dp = (ABcf)(ABcf)dp = ABcfApdBpddq,

and therefore

(ABcf)1+dp = AA(1+ep)fpdBB(1+dp)fpdcfdl, l 2 Z.

Now by Lemma 2.4,

(1+ dp)fpd ⌘ pd mod pn-i,

so the b-component of (ABcf)1+dp is B1+dp. All in all, we deduce

B(1+dp)r = B1+dp.

Since B has order pn-i by Claim 2, we infer from p - d and Lem-
ma 2.4 that

r ⌘ 1 mod pn-i-1.

Claim 4. The map defining U extends to an automorphism of ⌃.

It is clear that the images of c, a, b generate ⌃. We need to verify
that the defining relations of ⌃ are preserved. We proceed to do this,
labeling each step with the corresponding relation of ⌃.
• bp

n-i

= 1. Set f = pn-i-2 and z = (1+ dp)f. Then

(bcf)p = bud,

where
u = 1+ z+ . . .+ zp-1 mod pn-i.

But zp ⌘ 1 mod pn-i, so Lemma 4.2 implies u ⌘ p mod pn-1,
whence

(bcf)p = bpd. (4.4)
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This element has order pn-i-1, since the factors commute, d has
order pi, and n- i- 1 > i.

• ap
i

= 1. This step is clear.

• [a, b] = cp
n-i-1 . We need to verify that

⇥
a, bcp

n-i-2⇤
= (a-ec)p

n-i-1

.

On the one hand, we have

⇥
a, bcp

n-i-2⇤
= [a, b] · b

⇥
a, cp

n-i-2⇤
= [a, b] = cp

n-i-1

,

because cp
n-i-2 commutes with a, since (1+ep)p

n-i-2 ⌘ 1+epn-i-1

mod pn-i, n- i- 1 > i, and a has order pi. On the other hand,

(a-ec)p
n-i-1

= cp
n-i-1

(4.5)

applying Lemma 4.2 with z = 1+ ep, a = n- i- 1, and b = n- i,
and using n- i- 1 > i.

• cp
n-1

= 1. This step follows from (4.5).

• ca = a1+ep. This step is clear because a-e commutes with a.

• cb = b1+dp. Set f = pn-i-2. We need to verify that

a-ec(bcf) = (bcf)1+dp. (4.6)

Using (4.4) and the fact that d is central in ⌃, we have

(bcf)dp = bdpdd,

so
(bcf)1+dp = (bcf)(bcf)dp = bcfbdpdd.

Here cf and bdp commute, since dp(1+ dp)p
n-i-2 ⌘ dp mod pn-i

by Lemma 2.4. Thus

(bcf)1+dp = b1+dpcfdd.

On the other hand, since n- i- 1 > i, cf commutes with a, so

a-ec(bcf) = a-e

(b1+dpcf) = b1+dpd-e(1+dp)cf.
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Now from (1 + dp)(1 + ep) ⌘ 1 mod pn we infer e+ d+ edp ⌘ 0
mod pn-1, so d ⌘ -e(1 + dp) ⌘ pi. This completes the proof
of Claim 4.

Recall that hBi = b by Claim 2. Using (4.3), we see that Ul⌦ pre-
serves  for a suitable l. This proves that Aut(⌃) = hUiG. Since this
is a subgroup, it follows that hUiG = GhUi.

We proceed to prove (4.2). The verification that the maps defin-
ing V ,W,X, Y,Z extend to automorphisms of ⌃ is routine and will be
omitted.

Let ⌦ 2 G. Then

⌦(b) = ABS, ⌦(a) = PQR, ⌦(c) = CDcr. (4.7)

Here A,P,C 2 hai, B,Q,D2hbi, and R, S 2 hdi. We know from Claim 3
that r ⌘ 1 mod pn-i-1. Thus, replacing ⌦ by Vj⌦ for a suitable j,
we will have r = 1 in (4.7).

For any t 2  , we have

⌦(c)⌦(t) = ⌦(ct).

Taking t = a, we get

(CDc)PQR = ⌦(c)⌦(a) = ⌦(ca)

= ⌦(a1+ep) = ⌦(a)1+ep = (PQR)1+ep.
(4.8)

Comparing the b-components in (4.8), we see that

Q1+dp = Q1+ep.

It follows from (2.6) that Qp = 1 and therefore

Q 2
⌦
bp

n-i-1↵
. (4.9)

Comparing the d-components in (4.8), we find that

[C,Q]1+dp[D,P]1+epR = [Q,P][Q,P]2 . . . [Q,P]epR1+ep. (4.10)

This implies that
[C,Q][D,P] 2 hdpi.

Now n - i - 1 > 1 because 2i < n, so (4.9) implies [C,Q] 2 hdpi,
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whence [D,P] 2 hdpi. Since P generates hai, we infer

D 2 hbpi. (4.11)

Likewise, taking t = b, we must have

(CDc)ABS = ⌦(c)⌦(b) = ⌦(cb) = ⌦(b1+dp)

= ⌦(b)1+dp = (ABS)1+dp.
(4.12)

Comparing the a-components in (4.12), we see that

A1+ep = A1+dp.

Since d 6⌘ e mod p, this forces Ap = 1, whence

A 2
⌦
ap

i-1↵
. (4.13)

Comparing the d-components in (4.12), we see that

[C,B]1+dp[D,A]1+epS = [B,A][B,A]2 . . . [B,A]dpS1+dp. (4.14)

Thus [C,B][D,A]2hdpi. In view of (4.11), we have [D,A]2hdpi. Since B
generates hbi, we infer

C 2 hapi. (4.15)

Making use of (4.11) and (4.15) we see that if we replace ⌦ by �s⌦,
where �s 2 Inn(⌃) for a suitable s 2  , we will have C = 1 = D
in (4.7). Since r ⌘ 1 mod pn-i-1, a further replacement of ⌦ by Vl⌦
for a suitable l will maintain C = 1 = D and ensure r = 1 in (4.7). We
then have

d = ⌦(d) = ⌦([a, b])

= [PQR,ABS] = [P,B][Q,A] = [P,B].
(4.16)

Here [Q,A] = 1 because (4.9) and (4.13) ensure that

[Q,A] 2 hcp
(n-i-1)+(n-i-1)+(i-1)

i,

and n- i- 1 > 1 as just noted above. On the other hand, we have

P = aa, B = bj,
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where a, j are relatively prime to p by Claim 2. By virtue of (4.16) we
obtain the sharper statement

aj ⌘ 1 mod pi. (4.17)

Going back to (4.14) with C = 1 = D and using A 2 hapi-1i, we
deduce Sdp = 1 and hence

S 2 hdp
i-1

i.

Since ap
i-1 commutes with c, replacing ⌦ by �s⌦, where �s 2 Inn(⌃)

for a suitable s 2 hai, we obtain S = 1 in (4.7).
We next go back to (4.10) with C = 1 = D. Using Q 2 hbpn-i-1i, we

infer Rep = 1 and therefore

R 2 hdp
i-1

i. (4.18)

We next replace ⌦ by �sZl⌦, �s2 Inn(⌃), for suitable l 2 Z and s2hci.
This will keep C = 1 = D as well as r = 1; moreover, because of (4.17),
we get P = a and B = b in (4.7). Taking into account (4.9), (4.13),
and (4.18), we see that WaXbYc⌦ = 1 for suitable a,b, c. This
proves (3.1), and completes the proof of the theorem. ut

Theorem 4.4 Keep the hypotheses and notation of Theorem 4.3, and
take h0 odd. Then

|Aut(⌃)| = p2n+2(p- 1), [Aut(⌃) : G] = p;

Inn(⌃) = hL,M,Ni '

(Z/piZ ⇥ Z/pn-i-1Z)o Z/pn-i-1Z;
(4.19)

G/hL,M,Ni '

Z/piZ ⇥
⇥
(Z/pZ ⇥ Z/pZ ⇥ Z/pZ)o Z/(p- 1)Z

⇤
,

(4.20)

with
G = hL,M,Nio hV ,W,X, Y,Zi if i > 1; (4.21)

� = hL,M,N,V ,W,X, Yi

is the kernel of the natural homomorphism � : Aut(⌃) ! Aut(⌃/⌃p), and
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hence a normal subgroup of Aut(⌃);

⇧ = hL,M,N,U,V ,W,X, Yi = hM,N,U,V ,W,X, Yi = �hUi

is a normal Sylow p-subgroup of Aut(⌃);

Aut(⌃) = ⇧o hZi = �hUio hZi = hM,N,U,V ,W,X, Y,Zi.

Moreover, the following relations hold:

Lp
i

= 1,Mp
n-i-1

= 1,Np
n-i-1

= 1, NL = L1+ep, NM = M1+dp,

LM = ML,Up = L,Vp
i

= 1,Wp = 1,Xp = 1, Yp = 1,Zp-1 = 1,

VW = WV ,VY = YV ,VZ = ZV ,VX = XV ,

ZL = Lg0 , ZM = hg0 ,ZN = NZ, YL = L, YM = M, YN = NY,

XL = L, XM = Lp
i-1

M,XN = NX, WL = L, WM = M,WN = NW,

VL = L, VM = M, VN = N, UL = L, UM = MNp
n-i-2 , UN = L-eN,

WX = XW, YX = X if i > 1, YX = LX if i = 1,WY = YW,

ZW = Wh
2

0 , ZX = Xg
2

0 , ZY = Yh0 ,

as well as the following relations, subject to the indicated conditions:

UY = Vep
i-1

Y(i > 1), UY = Np
n-3

VeY(i = 1,n > 3),

UW = Mp
n-i-2

W(n > 2i+ 1), UV = V(n > 2i+ 1),

UX = X(n > 2i+ 1), UZ = ZNp
n-i-2(h0-1)/2Uh0-1(n > 2i+ 1).

Furthermore, suppose that n 6= 2i+ 1. Then the above are defining relations
for Aut(⌃), as well as for ⇧, once all relations involving Z are removed; ⇧
cannot be generated by fewer than 7 elements; G is not a normal subgroup
of Aut(⌃).
Proof — The verification of the stated relations is a routine calcu-
lation that will be omitted. We do mention, in connection with the
relations involving conjugation by U, that U satisfies

a 7! a, ba-ep
n-i-2

c-p
n-i-2

7! b, aec 7! c,
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so U-1 is given by

a 7! a, b 7! ba-ep
n-i-2

c-p
n-i-2

, c 7! aec.

It should be noted that if n > 2i+ 1 then U-1 satisfies b 7! bc-p
n-i-2 .

We claim that G has index p in Aut(⌃). Indeed, the definition of U
implies U /2 G. Thus, our relations Up = L and Lp

i

= 1 imply that hUi
is p-group satisfying U /2 G but Up 2 G, which yields G\ hUi = hUpi.
On the other hand, we have Aut(⌃) = GhUi by Theorem 4.3, and
therefore

[Aut(⌃) : G] = [hUi : G\ hUi] = [hUi : hUpi] = p.

This proves the claim. Thus |Aut(⌃)| = p2n+2 (p- 1) is equivalent
to |G| = p2n+1 (p - 1), which follows immediately from (4.19)
and (4.20). Now (4.19) is a consequence of Lemma 4.1, and we pro-
ceed to prove (4.20). Our relations yield an epimorphism

Z/piZ ⇥
⇥
(Z/pZ ⇥ Z/pZ ⇥ Z/pZ)o Z/(p- 1)Z

⇤

! G/hL,M,Ni ' hV ,W,X, Y,Zi,

and we need to see that this is injective. This is equivalent to
the following: if v 2 hVi, w 2 hWi, x 2 hXi, y 2 hYi, z 2 hZi, and
u = vwxyz 2 Inn(⌃) then

v = w = x = y = z = 1.

Suppose then that such u is an inner automorphism of ⌃, associated
to an element t of ⌃. Successively applying u to c, b, and a, we see
that v = 1, x = 1 = z, and w = 1. Thus

u = y = Yl

for some l. Hence t = aibjck must commute with b and c. As t com-
mutes with c, we infer vp(j) > n- i- 1. But bpn-i-1 2 Z(⌃) by Lem-
ma 4.1, and we may assume that t = aick. Since t commutes with b,
we deduce

vp(k) > n- i- 1.

But cpn-i-1

= d 2 Z(⌃), so we may assume that t = ai. Thus u(a) = a

and u(a) = aclp
n-2 , whence vp(l) > 1 and therefore y = 1, as re-
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quired. This proves (4.20). Note that if i > 1 our relations show that

hV ,W,X, Y,Zi = hVi ⇥
⇥
(hWi ⇥ hXi ⇥ hYi)o hZi

⇤
,

and the above argument then proves that hV ,W,X, Y,Zi \ hL,M,Ni is
trivial, whence (4.21) holds.

By (4.19) and (4.20), � has order p2n+1, so it is normal in a Sy-
low p-subgroup of Aut(⌃) (having index p there). But � is also
normalized by Z, so � is normal in Aut(⌃). It is in fact the kernel
of � , being clearly included there, and using the fact that the in-
dex [Aut(⌃) : ker � ] is divisible by p and p- 1 (look at U and Z). On
the other hand, Sylow’s theorem implies that ⇧ is normal in Aut(⌃)
(the only positive integer that is a factor of p- 1 and is congruent
to 1 modulo p is 1).

Suppose next that n 6= 2i+ 1. An abstract group generated by ele-
ments L,M,N,U,V ,W, X, Y,Z satisfying the stated relations is easily
seen to have order 6 p2n+2(p- 1). This implies that the stated rela-
tions are defining relations for Aut(⌃). A similar argument applies
to ⇧.

The given relations allow us to define an epimorphism ⇧ ! B,
where B is a 7-dimensional vector space over Z/pZ, so ⇧ cannot be
generated by fewer than 7 elements.

The last stated relation implies UZU-1 /2 G, as Z,N 2 G but U /2 G
and h0 6⌘ 1 mod p. ut

5 Appendix. The automorphism group of ⌥

Lemma 5.1 If s 2 N, r 2 Z, where r 6= 0 and vp(r) > 1, then

vp
�
(1+ r)s - 1

�
= vp(r) + vp(s).

Proof — We have r = `pa and s = cpb, where a,b, c, ` 2 Z, a, c > 1,
b > 0, p - c and p - `. According to Lemma 2.4, there is some k 2 Z
such that

(1+ r)s - 1 = c`pa+b + kp2a+b = pa+b(c`+ kpa).

Since c` is relatively prime to p, we infer

vp
�
(1+ r)s - 1

�
= a+ b = vp(r) + vp(s).
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The statement is proved. ut

Lemma 5.2 Let a,b > 1. Then the order of the element z = xayb of ⌥
is ps, where

s = max{n- vp(a),n- i- vp(b), 0}.

In particular, the order of z is pn if and only if p - a.

Proof — Given m > 1, we have zm = xky`, where

k = a
(1+ pi)bm - 1

(1+ pi)b - 1
and ` = bm.

By Lemma 5.1, we have

vp

✓
(1+ pi)bm - 1

(1+ pi)b - 1

◆
= vp(m),

so the smallest m such that xk = 1 is m = 1 if vp(a) > n and
m = pn-vp(a) otherwise. On the other hand, the smallest m such
that y` = 1 is m = 1 if vp(b) > n - i and m = pn-i-vp(b) other-
wise. ut

Lemma 5.3 Let a,b > 1, where p - a, and set z = xayb 2 ⌥. Then hzi is
a normal subgroup of ⌥ if and only if xpi 2 hzi. Equivalently, hzi is normal
if and only if vp(b) > n- 2i.

Proof — Since y and z generate ⌥, it follows that hzi is normal
if and only if yzy-1 2 hzi, which translates as xa(1+p

i)yb 2 hzi or,
alternatively, xapi

z 2 hzi, that is, xapi 2 hzi, where xp
i is a power

of xapi .
Suppose next hzi is normal. Then, by above, xpi

= zm for some
m > 1. Now zm = xky`, where k, ` are as in the proof of Lemma 5.2.
Since vp(pi) = i, it follows that vp(m) = i. As y` = 1, we infer
that vp(b) > n- 2i.

Assume conversely that vp(b) > n-2i. Set m= pi. Then zm= xky`,
where k, ` are as in the proof of Lemma 5.2, so that vp(k) = i.
Since yp

n-i

= 1 and vp(b) > n - 2i, we have that y` = 1. All in
all, zm = xcp

i , where p - c. Since xp
i 2 hxcpii, we deduce that xp

i

belongs to hzi. ut
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Lemma 5.4 The assignment

y 7! y, x 7!
�
xyp

n-2i if 2i 6 n,
xy if 2i > n,

(5.1)

extends to an automorphism, say ↵, of ⌥ having order pi if 2i 6 n and pn-i

if 2i > n.

Proof — Set m = 1+ pi as well as b = pn-2i if 2i 6 n, and b = 1
if 2i > n. Taking into account Lemma 5.2, it suffices to verify that

y(xyb)y-1 = (xyb)m.

On the one hand, we have y(xyb)y-1 = xmyb, and on the other
(xyb)m = xky`, where

k = 1+mb +m2b + . . .+mp
i
b and ` = bm.

Since yp
n-i

= 1, it follows that y` = yb. Set j = n - i if 2i 6 n
and j = i if 2i > n. Then Lemma 2.4 yields

k ⌘ 1+ pi + pj(1+ 2+ . . .+ pi) ⌘ 1+ pi + pjpi(pi + 1)/2 mod pn.

Since i+ j > n and p is odd, it follows that k ⌘ 1+ pi mod pn, as
required. ut

Since Aut(Cpn) is abelian, it is clear that ⌥ is a normal subgroup
of the holomorph of Cpn , namely the semidirect product

Hol(Cpn) = Cpn o Aut(Cpn)

of Cpn by its full automorphism group. Thus, for any integer r rel-
atively prime to p there is an automorphism, say ⌦r, of ⌥ defined
by

x 7! xr, y 7! y, (5.2)

namely the restriction to ⌥ of a suitable inner automorphism
of Cpn o Aut(Cpn).

We proceed to select integers g,h, t,d and e for further use within
this section. It is well known that the group of units (Z/pnZ)⇥ is
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cyclic and we fix throughout

an integer g that has order pn-1(p- 1) modulo pn. (5.3)

We accordingly set
� = ⌦g, (5.4)

and let h be an odd positive integer satisfying

gh ⌘ 1 mod pn. (5.5)

By Lemma 2.4, 1+ pi has order pn-i modulo pn. Since gp
i-1(p-1)

also has order pn-i modulo pn, there is an integer t, relatively prime
to p, such that

gp
i-1(p-1)t ⌘ 1+ pi mod pn. (5.6)

Thus
�p

i-1(p-1)t = �y. (5.7)

Now g(p-1)t and h(p-1)t have order pn-1 modulo pn, so there exist
integers d and e satisfying

g(p-1)t = 1+ dp,h(p-1)t = 1+ ep (5.8)

as well as (1.1) and (1.2).

Proposition 5.5 We have Aut(⌥) = Inn(⌥)h↵,�i.
Proof — Let � 2 Aut(⌥). By Lemma 5.2, we have �(x) = xayb,
where p - a. Thus �r�(x) = xyb for some r. As hxi is normal in ⌥,
it follows from Lemmas 5.3 and 5.4 that ↵s�r�(x) = x for some s.
Since ↵s�r� must preserve the relation yxy-1 = x1+p

i , we see that

↵s�r�(y) = xcy

for some c. Here Lemma 5.2 implies that vp(c) > i, so there is an
integer t such that �tx↵s�r� fixes x and y. Since Inn(⌥) is normal
in Aut(⌥), we infer that � 2 Inn(⌥)h↵,�i. ut
Lemma 5.6 Let r be any integer relatively prime to p, and let s be any
odd positive integer satisfying

rs ⌘ 1 mod pn,
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whose existence is guaranteed by the fact that pn is odd. Let � = ⌦r

in Aut(⌥), as defined in (5.2), and set

f =

�
pn-2i(s- 1)/2 if 2i 6 n,
(s- 1)/2 if 2i > n.

Then �↵�-1 = �fy↵
s.

Proof — Set

j =

�
i if 2i 6 n,
n- i if 2i > n,

and ` =

�
pn-2i if 2i 6 n,
1 if 2i > n.

We then have �↵�-1(x) = �↵(xs) = �(xy`)s = xrky`s, where

k = 1+ (1+ pi)` + . . .+ (1+ pi)`(s-1).

Here Lemma 2.4 yields

rk ⌘ r
⇥
s+ pn-j(1+ 2+ . . .+ (s- 1))

⇤

⌘ 1+ pn-jrs(s- 1)/2 ⌘ 1+ pn-j(s- 1)/2 mod pn.

On the other hand, we have

�fy↵
s(x) = �fy(xy

`s) = �fy(x)y
`s = x(1+p

i)fy`s,

where, according to Lemma 2.4,

(1+ pi)f ⌘ 1+ pn-j(s- 1)/2 mod pn.

The statement is proved. ut
Recalling the meanings of � and h from (5.4) and (5.5), respec-

tively, Lemma 5.6 ensures that if 2i 6 n, then

�↵�-1 = �
p
n-2i(h-1)/2

y ↵h, (5.9)

while if 2i > n then

�↵�-1 = �
(h-1)/2
y ↵h. (5.10)
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Lemma 5.7 The order of � 2 Out(⌥) is pi-1(p- 1).

Proof — This is the order of gh1+ pii 2 (Z/pnZ)⇥/h1+ pii. ut

Proposition 5.8 If 2i 6 n then Out(⌥) has order p2i-1(p - 1) and
presentation

Out(⌥) ' ha,b |ap
i

= 1,bp
i-1(p-1) = 1,bab-1 = ahi ' Hol(Z/piZ),

while if 2i > n then Out(⌥) has order pn-1(p- 1), presentation

Out(⌥) ' ha,b |ap
n-i

= 1,bp
i-1(p-1) = 1,bab-1 = ahi,

and is isomorphic to

Hol(Z/piZ)/(pn-iZ/piZ) ' (Z/pn-iZ)o (Z/piZ)⇥.

Proof — Let F be the free group on {a,b} and consider the homo-
morphism � : F ! Out(⌥)

a 7! ↵, b 7! �.

This is surjective by Proposition 5.5. Set j = i if 2i 6 n and j = n- i
if 2i > n. By Lemma 5.4, Lemma 5.7, and equations (5.9)–(5.10) we
have Y = {ap

j ,bpi-1(p-1),bab-1a-h} ⇢ ker�. Let N be the normal
closure of Y in F and let � : F/N ! Out(⌥) be epimorphism associ-
ated to �. It is clear that |F/N| 6 pi+j-1(p- 1). On the other hand, the
definitions (5.1), (5.2), and (5.4) of ↵ and � yield that �k = ↵`�u im-
plies ↵` = 1. In particular, ↵ and ↵ have the same order, and h↵i \ h�i
is trivial. Thus, Lemmas 5.4 and 5.7 give |Out(⌥)| = pi+j-1(p- 1),
whence � is an isomorphism. ut

Lemma 5.9 We have Z(⌥) = hxpn-ii, so that Inn(⌥) has order p2(n-i)

and presentation

Inn(⌥) = hu, v |up
n-i

= 1, vp
n-i

= 1, vuv-1 = u1+p
i

i ' C
pn-i oC

pn-i .

This is an abelian group if and only if 2i > n.

Proof — Since hyi acts faithfully on hxi, the central elements
of ⌥ = hxio hyi are the elements of hxi that are fixed by all elements
of hyi, which are readily seen to be the powers of xpn-i . ut
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Lemma 5.10 Let G = ha,b, ci be a group, where c normalizes ha,bi, a
and b commute with [a,b], and [a,b] 2 hci. Then G = haihbihci.
Proof — By hypothesis, G = ha,bihci and ha,bi = haihbih[a,b]i.
As [a,b] 2 hci, the result follows. ut
Theorem 5.11 The order of Aut(⌥) is p2n-1(p - 1) if 2i 6 n,
and p3n-2i-1(p- 1) if 2i > n. Moreover, if

µ = �`x��
-`
x , (5.11)

then Aut(⌥) is generated by ↵, �x,µ for any ` 2 Z, and the choice

2` ⌘ 1 mod pn, (5.12)

yields the following defining relations, depending on whether 2i 6 n
or 2i > n:

8
>>><

>>>:

↵p
i

= 1, �p
n-i

x = 1,µp
n-1(p-1) = 1,

↵�x↵
-1 = �xµ

p
n-i-1(p-1)t,µ�xµ-1 = �gx ,

µ↵µ-1 = ↵h,

(5.13)

or 8
>>><

>>>:

↵p
n-i

= 1, �p
n-i

x = 1,µp
n-1(p-1) = 1,

↵�x↵
-1 = �xµ

p
i-1(p-1)t,µ�xµ-1 = �gx ,

µ↵µ-1 = ↵h.

(5.14)

Moreover, if � 2 Aut(⌥), then � = ABC for unique elements A 2 h↵i,
B 2 h�xi, and C 2 hµi.
Proof — Set

j =

�
i if 2i 6 n,
n- i if 2i > n,

k =

�
pn-2i if 2i 6 n,
1 if 2i > n.

By Proposition 5.8 and Lemma 5.9, we have

|Out(⌥)| = pi-1+j(p- 1), |Inn(⌥)| = p2(n-i),

so
|Aut(⌥)| = p2(n-i)+i-1+j(p- 1),
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as claimed.
We have �y = �p

i-1(p-1)t by (5.7), so ↵, �x,� generate Aut(⌥)
by Proposition 5.5. We next verify the analogs of (5.13)–(5.14) for
these generators. By Lemma 5.4, we have ↵p

j

= 1. Since g has or-
der pn-1(p- 1) modulo pn, it follows that �p

n-1(p-1) = 1. On
the other hand, Lemma 5.9 implies �p

n-i

x = 1. Moreover, according
to Lemma 5.4,

↵�x↵
-1 = �↵(x) = �x�

k

y = �x�
kp

i-1(p-1)t, (5.15)

while the very definition of � yields

��x�
-1 = ��(x) = �gx .

Furthermore, by (5.9) and (5.10), we have

�↵�-1 = �
k(h-1)/2
y ↵h. (5.16)

This completes the required verification.
It is clear that for any integer `, the elements ↵,µ, �x still gener-

ate Aut(⌥). We next show that (5.13)–(5.14) hold for a suitable choice
of `. It is evident that

µp
n-1(p-1) = 1, µ�xµ

-1 = �gx ,

Observe next that
�ky 2 Z

�
Aut(⌥)

�
. (5.17)

Indeed, we have
�ky�x�

-k

y = �u,

where, by Lemma 2.4,

u = x(1+p
i)k = x1+p

n-j

.

Since xp
n-j 2 Z(⌥), it follows that �ky commutes with �x. As �y is a

power of �, they commute. Since ↵(y) = y, it follows that ↵ and �y
also commute. This proves (5.17).

Since �`x commutes with �ky = �kp
i-1(p-1)t, it follows that

µkp
i-1(p-1)t = �kp

i-1(p-1)t, (5.18)
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whence (5.15) gives

↵�x↵
-1 = �xµ

kp
i-1(p-1)t. (5.19)

Suppose next that 2` ⌘ 1 mod pn. We claim that

µ↵µ-1 = ↵h.

Indeed, conjugating each side of (5.16) by �`x and using that �ky is
central yields

µ(�`x↵�
-`
x )µ-1 = �

k(h-1)/2
y (�`x↵�

-`
x )h. (5.20)

To compute with (5.20), note that [�-1
x ,↵] = �ky by (5.15). As �ky is

central, [�x,↵]-1 = �ky, so �x↵�-1
x = �-k

y ↵, and therefore

�rx↵�
-r

x = �-rk

y ↵, r 2 Z. (5.21)

Successively using (5.17), (5.21), (5.20), (5.21), and (5.17), we infer that

�-`ky µ↵µ-1 = µ�-`ky ↵µ-1 = µ(�`x↵�
-`
x )µ-1

= �
k(h-1)/2
y (�`x↵�

-`
x )h = �

k(h-1)/2
y �-`hk

y ↵h.

Since `(h- 1) ⌘ (h- 1)/2 mod pn, the claim follows.
Thus the generators ↵,µ, �x satisfy the relations (5.13) if 2i 6 n

and (5.14) if 2i > n.
Let G any group generated by elements ↵,µ, �x that satisfy (5.13)

if 2i 6 n and (5.14) if 2i > n. Set �y = µp
i-1(p-1)t. Then (5.13)

and (5.14) imply that h�x, �yi is a normal subgroup of G having or-
der 6 p2(n-i), with |G/h�x, �yi| 6 pi-1+j(p- 1), so that

|G| 6 p2(n-i)+i-1+j(p- 1).

This shows that (5.13) and (5.14) are defining relations for Aut(⌥).
It follows from Lemma 5.10 that

Aut(⌥) = h↵ih�ihµi.

As |Aut(⌥)| = |h↵i||h�i||hµi|, we obtain the stated normal form for the
elements of Aut(⌥). ut
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Let µ be defined as in (5.11) with ` chosen so that (5.12) holds.
Recalling the meaning t from (5.6), we set

⌫ = µ(p-1)t. (5.22)

Proposition 5.12 Let ⌃0 be the subgroup of Aut(⌥) generated by ↵, �x,⌫.
Then ⌃0 is a normal Sylow p-subgroup of Aut(⌥) with the following defin-
ing relations, depending on whether 2i 6 n or 2i > n:

8
>>><

>>>:

↵p
i

= 1,⌫pn-1

= 1, �p
n-i

x = 1,

↵�x↵
-1 = �x⌫

p
n-i-1 ,⌫�x⌫-1 = �1+dp

x ,

⌫↵⌫-1 = ↵1+ep,

(5.23)

or 8
>>><

>>>:

↵p
n-i

= 1,⌫pn-1

= 1, �p
n-i

x = 1,

↵�x↵
-1 = �x⌫

p
i-1 ,⌫�x⌫-1 = �1+dp

x ,

⌫↵⌫-1 = ↵1+ep.

(5.24)

In particular, ⌃0 is isomorphic to ⌃.

Proof — Theorem 5.11 shows that ⌃0 is normal in Aut(⌥) and that

Aut(⌥)/⌃0 ' ⌃0hµi/⌃0 ' hµi/(⌃0 \ hµi) ' hµi/h⌫i ' Cp-1,

so ⌃0 is a Sylow p-subgroup of Aut(⌥).
The relations (5.23)–(5.24) follow easily from (5.13)–(5.14). Set j = i

if 2i 6 n and j = n - i if 2i > n. That (5.23)–(5.24) are defining
relations follows from the fact that any group G generated by ele-
ments ↵,⌫, �x satisfying these relations has order less than or equal
to p2(n-i)+i-1+j, since h�x,⌫pi-1i is normal in G of order 6 p2(n-i)

with |G/h�x,⌫pi-1i| 6 pi-1+j. ut
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