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1 Introduction

We fix a prime number p throughout the paper. The automorphism
groups of finite p-groups have been widely studied. One line of in-
vestigation was related to the divisibility conjecture, to the effect that
if G is a finite non-cyclic p-group of order larger than p?, then |G| di-
vides [Aut(G)|. While this holds true for several classes of p-groups, it
has recently been shown to be false in general [7]. A thorough survey
of this conjecture can be found in [4]. A second avenue of research
is connected to the conjecture that every finite non-abelian p-group
has a non-inner automorphism of order p. We refer the reader to [5]
and references therein for the status of this conjecture. A third fo-
cus of attention has been the actual structure of Aut(G) when G is
a finite p-group of one type or another. This has been the case, in
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particular for metacyclic groups, as found in [1],[2],[3],[6],[8],[9],[12],
for instance.

The present paper gives a presentation as well as a structural de-
scription of the automorphism group of a family of 3-generator fi-
nite p-groups, with p odd.

We assume henceforth that p is odd and that i, n € N satisfy n > 2
and 1 < i < n—1. Given an integer d that is not a multiple of p,
the inverse of 1+ dp modulo p™ is also of the form 1+ ep for some
integer e not divisible by p, so we have

pfd, pfe, (1.1)

and
(T+dp)(1+ep)=1 mod p™. (1.2)

Let X be the group with the following presentation, depending on
whether 21 <nor2i > n:

n—i n—1 n—i—1

Zz(a,b,clapi:bp =cP =1,[a,b] =cP ’ (1.3)
cac ! =a' TP, b = b TIP), 7

or
T =g, bclaP’  =bP" =PV =1, (a6l =P, (1.0)
cac! = a' TP, che! = p! TP, 4

This is a quotient of the finite Wamsley group [10] defined on 3 gen-
erators with 3 relations.

In this paper, we give a presentation of Aut(X) and its normal Sy-
low p-subgroup T1, and provide a structural description of these
groups.

There is a noteworthy connection between L and automorphism
groups. Let Y be the semidirect product of a cyclic group Cpn of or-
der p™ by the unique subgroup of order p™ ' of the cyclic
group Aut(Cpn). Thus

Y =ylxP =190 =1y =xTPY, (1.5)
Then X is isomorphic to the normal Sylow p-subgroup of Aut(Y). A

presentation for Aut(G) when G is a split metacyclic p-group can be
found in [1]. This includes, in particular, the case when G =Y.
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Consider the group ¥ with the following presentation, depending
on whether 2i <nor 2i > n:

n—i

Y =(a,b,0]a" =bP"  =0P =1,[a,b] =0,ad = da, bd = db),

i n—i n—i

Y =(q,b,0|aP"  =bP"  =0oP =1,[a,b] =0,a0 = da, bd = b).

Then V¥ is a p-group of Heisenberg type, and X is an extension of ¥
by a cyclic factor. Moreover, X cannot be generated by fewer than 3
elements, except in the extreme case n = 2, when X is the Heisen-
berg group of order p3. Furthermore, I is a non-split extension of V¥,
except when n = 2, in which case £ =V.

The fact that I requires 3 generators makes the computation
of Aut(X) particularly challenging. An appreciation of the obstacles
involved can perhaps be gleaned from the following: TT requires 6
generators and 21 relations when 2i > nbuti #n—1, whileif 2i <n
we utilize 8 generators and 38 relations for this purpose (although we
could manage with slightly fewer). We feel that the groups L consti-
tute a non-trivial addition to the reservoir of p-groups for which the
automorphism group is known.

Our work begins in Section 2, where we describe properties of
and V. Once this background information has been collected, Sec-
tions 3 and 4 describe Aut(X) and TI. In Section 3 we assume
that 2i > n; in this case, ¥ is a characteristic subgroup of X and our
analysis of the image of the restriction homomorphism

Aut(X) — Aut(V¥)

allows us in Theorem 3.2 to obtain the desired presentations of Aut(X)
and TT when i < n— 1. Considerable effort is spent in Theorem 3.2
in finding suitable generators for T, and we show that no smaller
amount of generators is possible. In addition, Theorem 3.2 gives a
presentation of Out(X), and shows that IT is the kernel of the canoni-
cal homomorphism

Aut(Z) — Aut(Z/ZP).

The case i = n —1 is essentially different and is handled in Theo-
rem 3.4, which gives presentations of Bruhat type for Aut(X)
and Aut(¥). In Section 4 we suppose that 2i < n; this case is con-
siderably harder, as V¥ is not a characteristic subgroup of X. Let G be



8 F. Szechtman

the subgroup of Aut(X) preserving ¥. Theorem 4.3 shows that
Aut(X) = G(U),

where U is a suitable automorphism of X, and finds generators for G
and so for Aut(X). Presentations and further descriptions of Aut(X)
and IT can be found in Theorem 4.4 (which omits some relations from
the case n = 2i+1). It turns out that TT = ®(U), where @ is the kernel
of the canonical homomorphism Aut(X) — Aut(X/ZP). Moreover, T1
requires at least 7 generators.

An appendix contains a study of Aut(Y), independent of [1], and
establishes the foregoing connection between X and Aut(Y'). In partic-
ular, we somewhat simplify the presentation of Aut(Y) derived in [1]
for an arbitrary split metacyclic p-group.

Given a finite p-group P, we write z(P) for the minimum number
of generators of P, that is, z(P) is the dimension of the Z/pZ-vec-
tor space P/®(P), where ®(P) is the Frattini subgroup of P. If G is
an arbitrary finite group, we let s(G) denote a Sylow p-subgroup
of G. Thus z(Y) = 2, s(Aut(Y)) = £ and z(X) = 3 when n > 2;
also s(Aut(Z)) =TMMwithz(IM) =6if2i >n,1#n—1,and z(IT) =7
if 2i <n. On the other hand, if P is an elementary abelian group
of order p™, then z(P) = m and z(s (Aut(P))) =m— 1. Prompted by
these examples and others, and inspired by the divisibility conjecture,
we wonder if it might be of interest to determine what classes of
finite p-groups G satisfy z(s (Aut(G )))/Z(G ) = 1, including further
information about this ratio.

Given a group G, we write

[a,b] =aba "', abegG,
and let 4 : G = Inn(G) stand for the homomorphism a — 64, where
Sa(b) =%b=aba!, abeG.
The image of vy € Aut(G) under the natural projection
Aut(G) — Out(G)
will be denoted by y. Observe that

[ab, c] = %[b, cla,cl, [a,b]~" =[b,d, [c,abl = [c, a] *[c, b].
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In particular, if [G, G] is included in the center of G, then the bracket
is a group homomorphism in each variable. We will repeatedly and
implicitly use these facts throughout the paper.

2 Background material on * and ¥

Proposition 2.1 The group ¥ cannot be generated by fewer than 3 ele-
ments, unless n = 2.

ProOF — Let E be an elementary abelian p-group of order p3 and
let a, b, c be generators of E. Consider the assignment

a—~a, b—b, c—c. (2.1)

The given presentation of X ensures that, except when n = 2, we can
extend (2.1) to an epimorphism £ — E. Since E cannot be generated
by fewer than 3 elements, neither can . 0
Proposition 2.2 The derived subgroup of £ is generated by aP, b, cP™
if2i <n,and by aP,cP, P if2i >n.

Proor — Let T be the subgroup of £ generated by the stated ele-
ments. The given presentation of £ and (1.1) ensure that T C [L,X], T
is normal in £, and X/T is abelian, whence T = [£, Z]. O

Given a ring R with 1 # 0 and a right module M, the Heisenberg
group Heis(R, M) consists of all matrices

1T u v
0O 1 r |, reRuveM,
0 0 1

under the usual matrix multiplication, with the understanding that
1-u=uforue M. If M =R, we simply write Heis(R) = Heis(R, M).

Proposition 2.3 We have ¥ ~ Heis(Z/p™'Z,Z/p'Z) if 21 < n and
Y ~ Heis(Z/p™'Z) if 2i > n. In particular, ¥ has order p™ 1 if 2i < n
and p3 Y if 20 > m, and any element of W can be written in one and
only one way in the form ABD, where A € (a), B € (b), and D € (0).
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ProoF — Note that the annihilator of the Z-module Z/p'Z
is p'Z; if 2i < n then p"~'Z is contained in p'Z, so Z/p'Z be-
comes a Z/p™~'Z-module. The given presentation of ¥ yields the
decomposition ¥ = (a)(b)(9), and ensures that the assignment

110 1 00 1 0 1
a—|[ 01 0 |,b—=10T1TT1],o0~| 01020
0 0 1 0 01 0 0 1

extends to a group epimorphism ¥ — Heis(Z/p™ 'Z,Z/p'Z)
if 2i <n and ¥ — Heis (Z/p“_iZ) if 21 > n. It is an isomorphism as
the presentation of ¥ bounds its order, from above, by the order of
the corresponding Heisenberg group. Uniqueness follows from exis-
tence and [¥|. O

Lemma 2.4 Let a,b,c,{ € Z, where a,c > 1and b > 0. Then
(1+4p2)°P° =1+clp®® mod p2otP. (2.2)
Proor — We assume first that ¢ = 1 and show (2.2) by induc-
tion on b. If b = 0 there is nothing to do. Suppose (2.2) is true for
some b > 0. Then there exists s € Z such that
(14 0p9)P" =1+ 0patP 4 5p20+b — 1 L patb(p i gpay,

Set f =€+ sp®. Then

(1+ep)P"" = (14patPe)p

p p

-1 +pa+b+1f+ <E)P2(a+b)f2+--~+ (p>pp(a+b)fp'
P

Since p is odd, we have p|(5), so there is some k € Z such that

(];)pZ(a—b—b)fZ — p2a+2b+ly

Moreover, since a > 1, we have i(a+b) > 2a+b+1forall 3 <i<p.
Therefore,

(1+€pa)Pb+1E 1 +pa+b+1(€+spa) =1 +€pa+(b+1) mod p2a+(b+1).
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This proves (2.2) when ¢ = 1. Now if ¢ € IN is arbitrary then the
previous case yields

(14 ep®)°P°” = (1+p2P(L+hp))©

for some h € Z. Since i(a +b) > 2a+Db for all i > 2, the binomial
expansion implies

(T4paP (L +hp*)) = T+cp® Pl +hp®) =1+ctp®™® mod p2et®.

This demonstrates (2.2) in general.
Proposition 2.5 The group ¥ is an extension of ¥ by Cn—i1 if 21 <
and by Cniv if 2L 2 n. In particular, L has order p? i 24 <

and p3™ =271 if 20 > m, and any element of £ can be written in one
and only one way in the form ABC, where A € (a), B € (b), and C € (c).

O
n
n

Proor — By (1.1) and (1.2) there is an automorphism o of ¥ such
thata — a't¢P, b — b'1t4P and 0 — 0. Setting j =n —1—1 f2i<n
and j = i—11if 2i > n, Lemma 2.4 implies that o) = 1y = &.

As o(d) = 0, there is an extension G = ¥(c) of ¥ with cyclic fac-
tor C,; and such that conjugation by ¢ acts on ¥ via o (see [11], Chap-
ter III, Section 7). The given presentation of L yields an epimor-
phism X — G, which is an isomorphism as |Z| < |G|. That £ = (a)(b)(c)
follows from G = ¥(¢) and Proposition 2.3, while uniqueness follows
from existence and the given order of X. 0

We henceforth view ¥ as a normal subgroup of X, as indicated in
(the proof of) Proposition 2.5.

Lemma 2.6 Let A € (a), B € (b), D € (), and C € (c). Then
(ABDC)P = AyBoDoCP,

for some Ao € (aP), Bg € (bP), and Dy € (oP).

Proor — We have
(ABDC)P =wC(CP,

where 5 .
w=AB-AB)-“(AB)... " (AB)DP".

Now C = ¢", with r € N, so setting

j=0+ep)’, k=(1+dp)",
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where d and e are as in (1.1) and (1.2), the defining relations of X
then give

w = ABAIBKAI’BY .. AP 'BX" 'pP,

Recalling the comments on commutators made in the Introduction,
we find that

. p—T 1
W = A]+)+...+)p B]+k+...+kp DPD],

where
D; = [B, AP [B, A](1+K)I* | [B, A](1+kt kP27
Since
j=1T=%k mod p,
we have
T+j+...+P '=0=T+k+...+kP"" modp
and

J+(1+K)P2 4.+ (T k4. 4+ k(P=2))jpT
=1+2+...+(p—1)=0 modp.
Thus w = ApBpDy, with Ay € (aP), Bo € (bP), and Dy € (dP). g

If G is a group, then GP stands for the subgroup of G generated by
all elements gP, with g € G.

Proposition 2.7 Suppose n # 2 and let v € XP. Then v = ABC for
unique elements A € (aP), B € (bP), and C € (cP).

ProOOF — Asn # 2, we have d € (¢P). Letu € L. Then Proposition 2.5
and Lemma 2.6 give
uP = AoB()Co, (23)

where Ay € (aP), Bp € (bP), and Cp € (¢P). As X has finite order, v
is a finite product of elements of the form (2.3), and it is easy to see
that such a product will be also be of the stated form. This proves
existence, while uniqueness follows from Proposition 2.5. O

Given a non-zero integer m, we write vp(m) for the p-valuation
of m, so that v,(m) = a, where a is the unique integer satis-
fying a > 0, p¢/m, and pa+1 t m. We extend the use of v}, to non-zero
rational numbers in the usual way.
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Proposition 2.8 Let Q in Aut(X) and t in W. Set { = iif 2i < n

and £ = n—1if 21 > n. Suppose that t?' = 1. Then Q(t) € V. In
particular, if 21 > n then VY is a characteristic subgroup of X.

ProoF — If n =2 then ¥ = %, so we assume that n # 2.

Let Q € Aut(X) and t € ¥ be arbitrary. Then tP € (aP,bP,0P)
by Lemma 2.6. By Proposition 2.2, (aP, bP,9) = [X, X], which is a char-
acteristic subgroup of L. Thus, setting u = Q(t), we have

uP = Q)P =Q(tP) € (aP,bP,0) C V.
On the other hand, by Proposition 2.5, we have
u=ABc", recZ, (2.4)
where A € (a) and B € (b). Thus Lemma 2.6 gives
uP = AgBoDoc'P,

where Ay € (aP), Bg € (aP), and Dy € (oP). From uP € ¥ we
infer ¢ € V. Since ®" "' =0 € Whbut *" 7 ¢ ¥, we deduce

vp(r) >2n—{0—2,s0
r=p" 7%, fez, (2.5)
and therefore
ub = AoBoDobf.
We now suppose for the first time that tP' =1, so that uP' = 1. Then

1

(AoBoDod )P ' =1,

that is 1 e
(AgBoDg)P ofP =1.
Referring to the normal form of the elements of ¥, the d9-component
of (AOBODO)Y’Z*1 is equal to
—1

DY [Bo, AglBo, Agl?...[Bo, AglP 1 =1.

Therefore 2P = 1, which implies p|f. Thus vp(r) > n—{—1
and u e V. O
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Proposition 2.9 The group L is a non-split extension of ¥, unless n = 2
in which case ¥ = L.

Proor — We may assume n # 2. Suppose, if possible, that there
is an element u € I such that £ = ¥ x (u), so that u has order q,
with q = p“_i_1 if 2i < nand q = pi_1 if 20 > n. Now u = tdJ,
where t € ¥ and j € Z. Here p tj, for otherwise ¢ ¢ ¥ x (u). Proposi-
tion 2.3 and a repeated application of Lemma 2.6 yield

1=u9=ABD;J9=A,B;D;?,

where Ay € (aP), By € (bP), and Dy € (0F). The normal form of the
elements of ¥ forces D12’ = 1. As p { j, we see that D10’ generates
the non-trivial group (9), a contradiction. 0

Proposition 2.10 Let (do,eo) be a pair of integers satisfying (1.1)
and (1.2), and let Xy be the group associated with it via (1.3) and (1.4).
Then ¥ ~ ¥,.

ProOF — Setj=iif2i<nandj=n—1iif2i > n.

Let H be the Sylow p-subgroup of the unit group (Z/p™~'Z)*.
Then H is generated by the class of 14 ep. Since the class of 1+ epp
also generates H, there is an integer 7, relatively prime to p, such that

n—1

(1+ep)"=T+eyp modp
Taking inverses modulo p™ !, we infer
(1+dp)"=1+dop mod p™ .
Consider the elements A = a", B = b, C = ¢". They generate X and sat-

isfy

n—i n—1

AP =BP" =Pt =1, [A,Bl=CM T,
CAC™! =Alteor, CBC™! =BITdop,
This readily gives an isomorphism Xy — X. O
For future reference note that (1.2) implies e = —d mod p. Since p

is odd and p t d, we deduce

ezd mod p. (2.6)
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3 The automorphism group of ~ when 2i > n

We assume throughout this section that 2i > n. Using the matrix
description of ¥ given in Proposition 2.3, we readily see that

In particular, 0 = ®' "' is central in X. More precisely, we have the
following result.
Lemma 3.1 The center of £ is generated by cP" "
ProOOF — Letz € Z(X). Then z = ¢"t for some t € ¥ and r € N,
so (1.4) yields

ta=ad?®, th = 60"

for some a,b € Z, as well as

a=2a= c*(aba) _ a(1+ep)r0a’ b=7%p= cr(bab) _ b(1+d'p)TDb/

sote Z(¥) = (d) and ¢" commutes with a and b. Since ¢" commutes
with b, we see that (1 +dp)" =1 mod p™~'. As p { d, Lemma 2.4
ensures that 1+ dp has order p™~+~! modulo p™—, so p™~t1|r.
Buti—1>n—1i—1,s00€ (¢®" '), and by above Z(%) C (",
As the reverse inclusion is clear, the result follows. O

Theorem 3.2 Let p be an odd prime. Suppose i,n € IN satisfy n > 2,
1<i<n—1,and2i > n. Let d,e € Z be chosen so that (1.1) and (1.2)
hold, and let ¥ be the group with presentation (1.4).

Let A,B,C € Inn(X) be the inner automorphisms of L associated with

a,b,c, respectively. Let D,E,F,G,H € Aut(X) be respectively the defined
by
n—i—1

n—i—1
arsaltP b b, e TP ,

n—i—1

a— abP ,b—=b, c—eg,

i

n—i—1
a—a, b—aP b, c—c,

ar a9, b b, ¢,

a»—>b,b|—>a,c»—>c*],

where go is any integer of order p — 1 modulo p™ Y, with inverse hy mod-
ulo p™—*. Consider the homomorphism A : Aut(X) — Aut(X/¥), whose
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existence is ensured by Proposition 2.8, as well as the normal sub-
group A = ker A of Aut(X). Moreover, suppose that i #n — 1. Then

Aut(%) = (A,B,C,D,E,F,G,H) (3.1)

is a group of order 2p3™ =21 (p —1), and

A= (A,B,C,D,E,F,G),
Aut(Z) =Ax (H) =(A,B,C,D,E,F) x ((G) x (H)),
[Aut(X): A] =2,
A =Inn(Z) x (D, E,F,G),
Inn(Z) = (A,B,C) ~ (Z/p™ ' Z x Z/p" ' Z) x Z/p™ 17,
(D,E,F,G) ~Z/p'Z x [(Z/pZ x Z/pZ) x Z/(p —1)Z].

Furthermore, the generators A, B, C,D, E, F, G, H of Aut(X) satisfy the defin-
ing relations
AP =1, BPY =1, CPY =1, CACT! = Al+ep,
CBC~!'=B'+dP, AB=BA,DP' =1, EP =1, FP =1,
GP~1=1,H?=1, DE=ED, DF=FD, DG = GD, EF = FE,

n—i—1

GEG' = EM, GFG™' = F95, HEH' = A—P" " 'F,

HFH-' =BP" " 'E, HGH ' =G,
DAD~ ! =A'+?""' DB =BD, DC = CD,
EAE-!" = ABP" "', EB = BE, EC = CE,
FA = AF, FBF~' = AP" "B, FC = CF,
GAG~ ! =A%, GBG~! =B™, GC = CG,

n—i—2

HAH ' =B, HBH ' = A, HCH ' =C~ !, HDH! = DC"P ,

where v € Z satisfies dv =1 mod p, and the generators D, E, F, G, H of

Out(X) ~ Z/p'Z x [(Z/pZ x Z/pZ) x (Z/(p —1)Z x Z/2Z)] (3.2)
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satisfy the defining relations naturally arising from the above, and realiz-
ing (3.2).

In addition, T = (A,B,C,D,E,F) is a normal Sylow p-subgroup
of Aut(X), with the above defining relations, excluding those involving G
or H, and T1 is the kernel of the natural homomorphism

I:Aut(X) — Aut(Z/XP).
Furthermore, T1 cannot be generated by fewer than 6 elements.

Proor — That the maps defining D, E,F, G, H actually extend to
automorphisms of L is a routine calculation involving the defining
relations (1.4) of £ and will be omitted.

The stated relations among A,B,C,D,E,F, G, H are easily verified.
Moreover, any group generated by elements A through H subject to
the given relations has order < 2p3™ =211 (p —1).

We claim that Inn(X) N (D, E,F, G) is trivial. Indeed, the defining
relations of X yield

Al(c) =aJ¢eP¢, Bi(¢c) = b 19P¢, AJ(b) = bdJ,
Bl(a)=ad ), jeZ.

A general element of Inn(Z) (resp. (D, E, F, G)) has the form AIBkCm
(resp. DGTEPF®) for some j, k,m € Z (resp. a,b,c, f € Z). Suppose
that AJBKC™ = D2GFEPFC. We wish to show that this common ele-
ment is trivial. On the one hand, we have

(AJBC™)(c) = b *IPa TP kP,
and on the other hand
(DEGTEPFe)(¢) = TP T 7,

From the normal form of the elements of ¥ deduce that p i
and p™~+T|k. But then 0 7%4P =1 and a fortiori

n—i—Tya
¢ = c(1+p e

This forces D¢ = 1. Now

n—i—1

(GTEPF®)(a) = a90pM0bP



18 F. Szechtman

while
(AJ Bka)(a) — a(]—l—ep)ma—kﬂ +e‘p)m.

This implies that p/b, p™~ 'k, and (1 +ep)™ = gf mod p™~'. The
first two conditions yield that E® = 1 and B* = 1. As for the third,
since the order of (14 ep)™ modulo p™~! is a p-power and that of 98
is a factor of p — 1, both orders are equal to 1. This forces Gf =
and C™ = 1. Finally, we have F¢(b) = acp” ! b, while AJ(b) = bdJ.
Thus plc and p™~'|j, whence F¢ = 1 and A) = 1. This proves the
claim.

We show below that (3.1) holds. Since (A,B,C,D,E,F,G) C A
and H € A, we infer

A=1Inn(Z) x (D,E,F,G), Aut(X) =A x (H), [Aut(X): Al =2.
On the other hand, the very definitions of D, E, F, G yield
(D,E,F,G) ~Z/p'Z x ((Z/pZ x Z/pZ) x Z/(p —1)Z],
while Lemma 3.1 gives
Inn(L) ~ L/Z(Z) ~ (Z/p™ " Z x Z/p™"'2) x Z/p™ "+ 2.

Thus |Aut(Z)| = 2p3"—24+1 (p —1), consequently the given relations
among A,B,C,D, E,F, G, H must be defining relations, and

Aut(£) = (A,B,C,D,E,F) x ((G) x (H))

holds. This decomposition of Aut(X) yields (3.2), whence the given
presentation of Aut(X) immediately gives one for Out(X).

That TT is a normal Sylow p-subgroup of Aut(X) with the stated
defining relations follows directly from above. The very definition
of A,B,C,D,E,F places them in kerI". Thus kerT" = ITT provided we
show that ker ' ((G) x (H)) is trivial. To this end, let 1 € Z and sup-
pose, if possible, that G'H € ker T". This implies ¢? € ZP, whence c € IP,
against Proposition 2.7. Suppose next that G' € kerT. This implies

that a9 € P, so a%' = a* for some multiple k of p, by Proposi-
tion 2.7. The order of this common element is a factor of p —1 as
well as a p-power, whence this element is 1, which implies Gl = 1.
This proves that kerI' = TI. The defining relations of IT make it clear
that [IT,TT] C TP, which yields an epimorphism T — V, where V
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is 6-dimensional Z /pZ-vector space. Thus IT cannot be generated by
fewer than 6 elements.

We proceed to show (3.1). Let QO be an arbitrary automorphism
of X. By Proposition 2.8,

Q(a) = a®b®2¢, Q(b) = afBI0*, Q(c) = a™p9¢", (3-3)

where a,b, ¢, f,j, k, m, q,7 € IN. Since Q) is an automorphism, we have

S
o
=
!
®)

(‘a) = Q(a)'teP,

) — Co(5)1+ab. (3-4)

<
o
=
!
o)

Using (3.3) and comparing the a-components of each side of (3.4)
yields
T+ep)a _ a(]—!—ep)a’ a(H—ep)Tf _ a(H—dp)f.

al (3-5)

By Proposition 2.8, Q induces an automorphism in Y/Z(V¥).
Let M € GL,(Z/p™ 'Z) be the matrix of this automorphism with re-
spect to the basis formed by a, b when taken modulo Z(¥). Then (3.3)

gives _
M - < ? ) 7
)

where the bar indicates the passage from Z to Z/p™~'Z. Since M is
invertible, one of a, f is not divisible by p, whence by (3.5)

-1 0

(1+ep)"=T+ep modp™ ' or (14+ep)"=1+dp modp™ L
Thus by (1.2)
(T+ep)™ '=1 modp™* or (I+ep)'=1 modpnt.

Since p { e, Lemma 2.4 ensures that 1+ ep has order p™~~! mod-
ulo p™, whence

n—i—1

r=1 modp or r=-1 modp™ '

In the second case, we replace Q) by H(Q), so we may assume that the
first case occurs. Thus

r=1 mod p™ 1. (3.6)
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Taking into account (1.2), we deduce

(1+ep)"=1+ep modp™ !, and

. (3.7)
(T+dp)'=1+4+dp mod p" "

In view of (3.7), the automorphisms that conjugation by ¢" and ¢
induce on ¥/Z(V¥) are identical. Let N be the matrix of this automor-
phism relative to the same basis used above. Then

T+ep O
N = B I
0 1+dp

Using once more that () is an automorphism of £, we see that for
any t € ¥, we have

Q) = Q). (3.8)

Since conjugation by ¢" and ¢ induce the same automorphism
on Y/Z(¥), (3.3) and (3.8) give ‘Q(t) Z(¥) = Q(‘t) Z(V¥). In matrix
terms, this means that NM = MN, which is equivalent to

ble—d)p=0 modp™}, fle—d)p=0 mod p™ " (3.9)
It follows from (2.6) and (3.9) that
b=0=f modpn . (3.10)

We now use for the first time the hypothesis i < n —1. Since M is
invertible, (3.10) implies

aje(z/p™iz) . (3.11)

Using (3.3) and (3.7), and carefully comparing the d-components of
each side of (3.4) gives

a—(1+ep)aq0(1+dp)bmac _ a—abep(ep—H )/ZDC(1+€p)’

) _ (3.12)
07(1+ep)fq0(1+dp)]mak — D—f]dp(der] )/Zak(lerp)‘

We claim that
gq=0=m mod p. (3.13)



The automorphism group of certain 3-generator p-groups 21

Indeed, using (3.10), that n—1 > i, and that e(ep + 1) (resp. d(dp + 1))
is even, we deduce from the first (resp. second) equality in (3.12)
that 099 (resp. ™) is in (dP). Thus (3.11) yields ¢ = 0 mod p
(resp. m =0 mod p). This proves the claim.

On the other hand, in view of (3.7), we have
ac’a”! = aCP", b = p 9P (3.14)

We deduce from (3.3), (3.13), and (3.14) that if we replace Q by 80,
where 05 € Inn(X) for a suitable s € V¥, the following will hold

in (3.3):
q=0=m. (3.15)

Making use of (3.6) and replacing Q by D'Q for a suitable | € Z,
we will have ¢ =0 =m and r =1 in (3.3), so that

Qe) =c. (3.16)

Taking into account that 99 ~°f = [Q(a), Q(b)] = Q([a, b]) = Q(2) =1,
and appealing to (3.10), we infer

agj=1 mod p"t. (3.17)
Going back to (3.12) and making use of (3.15), we see that

aabep(e‘p+1)/2 — Ocep’ afjdp(dp+1)/2 _ akdp.

But d(dp + 1) and e(ep + 1) are even, so (3.10) yields

e =1 =pkdp,
Since d and e are not divisible by p, we deduce
c=0=k modp™ 1. (3.18)

Now aP™ " and 6P""' commute with ¢ and with each other, so
replacing Q by 6;Q, where &5 € Inn(X) for a suitable s € ¥, (3.10)
and (3.18) imply that (3.16) still holds and we further have c =0 =k
in (3.3).

We next replace ) by 8sGLQ, for a suitable 1 € Z and 6§, € Inn(X),
with s € (c). This will keep (3.16) and ¢ = 0 = k, and, because
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of (3.17), will further achieve a = 1 = j in (3.3). Taking into ac-
count (3.10), we see that EYFYQ = 1 for suitable w,v € Z. This
proves (3.1), completing the proof of the theorem. 0

Proposition 3.3 Let A : Aut(X) — Aut(VY) be the restriction homo-
morphism _ensured by Proposition 2.8. Then ker A is the cyclic group of
order pt~ generated by

aa b b, crs TP

ProorF — Let Q € ker A. Then Q(¢) = t¢5, where t € ¥ and s € IN.
Since Q is the identity on ¥,

a1+ep — _O_(aH—ep) — Q(cac_1)

=0Q()Q(a)Q(c ) = teSac St = talltep)®¢—1,

Since conjugation by t sends a to itself times some power of 9, this
forces _
(T+ep)*=(1+ep) modp™t

SO .
(14+ep)* '=1 modp™t

As p e, Lemma 2.4 yields

s=1 modp™ 1.
We also deduce that t must commute with a'€P and hence with a.
A like calculation with b instead of a forces t to commute with b,
whence t € Z(¥W) = (9). Since ? = cpl'_] andi—1>n—-1i—1, we
infer Q(¢) = ¢*, where k =1 mod p™ 1. But Q must fix d as well,
soin factk =1 mod p™ . O
Note that if i # n —1 then, in the notation of Theorem 3.2, we have
ker A = (DP).

Theorem 3.4 Suppose i = n—1, so that ¥ be the group of order p
generated by a, b, ¢, with defining relations

n+1

1

P =1,0P=1,P" =106 =cP" *, ac=ca,bc=ch,

and ¥ ~ Heis(Z/pZ) is the subgroup of L of order p> generated by a,b
and " =0,
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Let A : Aut(X) — Aut(V¥) be the restriction homomorphism whose exis-
tence is ensured by Proposition 2.8. Then

Aut(X) ~ ker A x ImA,

where ker A is a cyclic group of order p™~2 and ImA = Aut(V) is an exten-
sion of Z/pZ & Z/pZ by GL,(Z/pZ). More precisely, let A, B be the in-
ner automorphisms of L associated with a, b, respectively. Let C,D,E,F, G
in Aut(X) be respectively defined by

ar—a, b—ab, c—¢,

a+—>b,b+—>a*1,c+—>c,

ar—a’, b—bS, c—g,
a—~a’, b—b, c— ",

a—a bbb, c— TP,

where v is any integer of order p — 1 modulo p™~' (and hence modulo p),
with inverse s modulo p™~' (and hence modulo p), both of which are
taken to be odd (as we are allowed to do), and further let t = r(r —1)/2.
Then ker A = (G) and Aut(X) is generated by A,B,C,D,E,F, G, with
defining relations

AP =1,BP = 1,AB = BA,
CP=1,D2=EP-1/2 gp 1 =1, Fp 1 =1,G6P" " =1,
DED ' =t ',DFD ' =E'F,

EF = FE,ECE' = A~tC™ FCF' = CT,
AE=1)/2g=(s"+1)/2pcs*D = EkC—s"DC™, 0<k<p—1,
CAC™!'=A,CBC™!' =AB,DAD' =B,DBD' = A",
EAE~! = A", EBE~! =BS,FAF! = A",FBF ! =B,

AG = GA,BG = GB,CG = GC,DG = GD, EG = GE, FG = GF.

Moreover, Aut(V) is generated by the restrictions to ¥ of A through F,
say Ao through Fy, respectively, with the above defining relations, mutatis
mutandi (this means that we replace A through F by A through Fo and we
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remove all relations involving G). Furthermore,
Aut(E)] = p™ T (p—1)2(p+ 1), [Aut(¥)| = p3(p—1)2(p +1).

Proor — That the maps defining A through G extend to automor-
phisms of X follows from the defining relations of Z.

We have ker A = (G), a group of order p™~2, by Proposition 3.3.
Let Z be the subgroup of Aut(¥) generated by Ay through Fy. We
claim that Z = Aut(¥). Indeed, we have a homomorphism

I Aut(¥) — Aut(VY/Z(VY))

whose kernel is easily seen to be Inn(¥). Relative to the
basis {aZ(¥), bZ(V)} of the Z/pZ-vector space ¥/Z(V), the matrices
of I'(Cp) through I'(Fy) are respectively given by

11 0 —1 r 0 r 0
o1)\1 o J/Lo " )rLo 1)
As these matrices generate GL,(Z/pZ), we see that the restriction

of T to Z is surjective. Since Inn(¥) C Z, it follows that Z = Aut(¥).
We have shown, in particular, that Aut(¥) is an extension of

kerl'~Z/pZ & Z/pZ

by Iml" >~ GL,(Z/pZ).

The verification of the given relations among A through G is a
routine calculation and will be omitted. We next show that these are
defining relations.

Let P be the abstract group generated by elements A through G
subject to the given relations. It suffices to show that

PI<p™ T (p—1)2(p+1).

In this respect, it is clear that (A,B, G) is a normal subgroup of P
of order < p™. Let Q = P/(A,B,G) and let c,u,v, f be the images
of C,D, E, F, respectively, under the canonical projection P — Q. We
further let N = (c,v,f). Then v,f commute and normalize (c),
so IN| < p(p —1)2. We claim that Q = N UNuN. This means that

Y = NUNuN
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is a subgroup of Q. Now u~! = u? = uu?, with u? € N, so Y is closed

under inversion. That Y is closed under multiplication is respectively
equivalent to NuNuN C Y, uNu C Y, and uNu~! Cc Y. Now u conju-
gates v, f back into N, and u(c)u C Y by the given relations, so Y is
closed under multiplication. Since NuN = Nu(c), we have

INUN| < [NJ[(c)| = p2(p— 1),
and therefore
QI < IN[+INuN[ < plp—1)2+p*(p—1)2 =p(p—12(p+1),
whence
Pl=1(A,B,GIQI<p™plp—1*(p+1)=p" (p—1)(p+1),

as required. This shows that the stated relations are defining rela-
tions for Aut(X).

Now, F normalizes (A,B,C,D,E), every element of this group
fixes ¢, while F(¢) = ¢™ and G(¢) = ¢'*P. Since r has order p — 1
modulo p™~ ! and 1+ p has order p™~2 modulo p™~! (where p™~!
is the order of ¢), it follows that the intersection of

(A,B,C,D,E,F) = (A,B,C,D,E) x (F)

with (G) is trivial, so the restriction of A to (A,B,C,D,E,F) is an
isomorphism and, since G is central, we have

Aut(Z) = (G) x (A, B,C,D, E, F.

The statement is proved. O

4 The automorphism group of X when 2i <n

We assume throughout this section that 2i < n.

n—i—1

Lemma 4.1 The center of L is generated by 0 and bP
ProoF — Let z € Z(X). Then z = ¢"t, where t € V. The first
part of the proof of Lemma 3.1 shows that t € Z(¥), that ¢" com-
mutes with a and b, and that p™ = !|r. In this case, Z(¥) = (,6P").
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Asd = ', we infer Z(£) C (bP',d). Here 9 actually belongs
to Z(X),s0 Z(X) = <bpj,b), where j > i is large enough so that ¢ com-
mutes with bpj, thatis,j >n—1—1.Sincen—1—1 > i, the proof is
complete. 0

Lemma 4.2 Let a,b € N and z € Z be such that

a

2P =1 mod p®. (4.1)

Then
T+z4+22+...+2° 1 =p* mod p®.

Proor — It follows from (4.1) that z=1 mod p. Indeed, the order
of z modulo p must be a factor of both p® and p — 1 (which is the
order of (Z/pZ)*), so z has order 1 modulo p.

If z =1 the result is obvious. If not, z = 1 + hp®, where h € Z not
divisible by p and s > 1. Then by Lemma 2.4,

a

2P = (1+hp*)P  =1+hp*™® mod p?s+e,
so for some integer f, we have
Zpa —1 +hps+a+fp25+a -1 +ps+a(h—|—fps).

Here p { (h+ fp®), because s > 1. It follows from (4.1) that b < s+ a.

Now . .
T+z+22 4. 420 T =(2P" = 1)/(z—1)

=pSTe(h+fp%)/hp® mod pP.
Here z — 1 divides zP“ — 1, so hp® divides p3*®(h + fp*). But hp®
also divides hps*?®, so hp® divides p*tafp?, that is h divides p**9f.

Since h is relatively prime to p, we infer that h divides f. Asb < s+aq,
we conclude that

ps+a(h+fps)/hps Epa_i__[:ps—o—a/tha mod pb'
This completes the proof of the lemma. 0
Theorem 4.3 Let p be an odd prime. Suppose i,n € N satisfy n > 2,

1<i<n—1,and 2i < n. Let d,e € Z be chosen so that (1.1) and (1.2)
hold, and let ¥ be the group with presentation (1.3).
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Let L, M,N € Inn(X) be the inner automorphisms of L associated
with a,b, ¢, respectively. Let U, V,W,X,Y,Z € Aut(X) be respectively the
defined by '

arsa, b beP 7 o ae,

n—i—1 n—i—1
a—a, b bl tP L el P ,

a—abP” ! b b, o,
a—a, bHapiqb, =
a—sacP” 2 b b, o,
a— ado, b bho, ¢ ¢,

where gg is any integer of order p — 1 modulo p™ Y, with inverse hg mod-
ulop™—*. Let G be the subgroup of Aut(X) preserving W. Then

G=(LMN,V,W,X)Y,Z) (4.2)
and
Aut(X) = G(U) = (U)G.
ProorF — Let Q € Aut(X). Since aP' = 1, Proposition 2.8 ensures

that Q(a) € ¥, so Q(a) = PQR for some P € (a), Q € (b), and R € (0).
Now the order of b is p™"~*, with n—1 > i, but equation (2.5) from Pro-
position 2.8 still gives Q(b) = toco, where to € W and ¢¢ € (cP
Using the normal form of elements of ¥, it follows that

n—i—2
).

n—i—2

Q(b) = AB¢®P
for some A € (a), B € (b), and s € N. As Q(¢) € X, we have
Q(¢) = CD¢"

for some C € (a), D € (b), and r € N. Thus

n—i-2

Q(b) = ABc®P , Q(a) = PQR, Q(¢) = CDc¢". (4-3)

Since Q(b), Q(a), Q(c) must generate X, we see that p { .
Cram 1. Q € (bP

Since T = Q(api) = (PQR)pi = PpiQpiR”, u € Z, and the order
of bis p™ ', the result follows.

n—2i
).
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CLAIM 2. P generates (a), B generates (b) and ()(d) generates ().
Set f = p™~t2s. We then have

Q(0) = Q([a, b]) = [Q(a), Q(b)] = [PQR, ABc'].
Here
[PQR,ABcf] = [PQR, A] - A[PQR, Bcf]
where
[PQR, A]- A[PQR,B] = [Q, Al[P, B,
[cf,PQR] =[cf,P]- P[cf, QR] = f, Pl Plef, Ql.
Using Lemma 2.4, pP' — 1,and n—1i—1 > 1, we see that

[Cf, P] = p(l+ep)fpf1 _ PPrsep“_i_1 p—1 1.

Moreover, by Claim 1, QI"L = 1. Using again Lemma 2.4 and the fact
thatn —1i—1 > 1, we obtain

[Cf, Q] _ Q(]erp)fQ—] _ Q]+Sd‘pn_i_1 Q—] —1.

Therefore,
Q(v) = [PQR,ABcf] = [Q, Al[P, B] € (d).

This shows that (d) is a characteristic subgroup of L, whence Q(?)

generates (d). In particular, [Q, Al[P, B] has order p'. But Q € (6?" )
by Claim 1, so

n—21i

[Q Al e (PP )
has order <.pi. Since [P, B] commutes with [Q, A], it follows that [P, B]
has order p*. Thus (P) = (a) and (B) = (b).
CramM 3. r=1 mod p™—+ 1.
We have @(Q(p) = Q(b) 1P, Setting f = p™ 125, this translates

into
CDCT(ABCf) — (ABCf)1+dp.

The b-component of the left hand side is equal to B{'+4P)" As for
the b-component of the right hand side, we have

(ABc")P = ABA(1Hep) gl1+dp)" - A(T4ep) P g (14dp) TP lys.
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Using Lemma 4.2 with z = (1+dp)f, a = 1 and b = n—1 we see
that the b-component of (ABcf)P is BP and that the a-component
of (ABcf)P is AP. Reordering the factors, it follows that

(ABcf)P = APBPOY, ue Z.

Thus
(ABc")IP = APIBPR9, g e Z.

SO
(ABcF)1HdP = (ABcF)(ABcF)4P = ABcFAPIBPdp1,

and therefore
(ABcf)Prdp _ AAU+ep)fdeB(1+dp)fpdchl’ le Z.
Now by Lemma 2.4,
(1+dp)fpd=pd mod p™t,
so the b-component of (ABcf)1+4P is B1+dP, All in all, we deduce

B(1+dp)r — B]—!—dp'

Since B has order p™—* by Claim 2, we infer from p { d and Lem-
ma 2.4 that

n—i—1

r=1 modp

CrAam 4. The map defining U extends to an automorphism of X.

It is clear that the images of ¢,a,b generate X. We need to verify
that the defining relations of X are preserved. We proceed to do this,
labeling each step with the corresponding relation of Z.

e bP" " =1.Setf=p"*"2and z=(1+dp)". Then
(bc")P =b'o,
where i
u=T+z+...42P7" modp™t

But zP = 1 mod p™~t, so Lemma 4.2 implies u = p mod p™~',
whence
(bc")P = bP2. (4-4)
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This elgment has order p“*iq, since the factors commute, ? has
order pt,andn—1i—1 > 1i.

e aP' = 1. This step is clear.

e [a,b]l =P

n—i—

" We need to verify that

nfifl] n—i—1

[a, beP = (a” “c)P

On the one hand, we have

n—i—2j| n—i—2:| n—i—1

[a, beP =[a,b]- b[a, P =[a,b] =P ,

because c‘_’THF2 commutes with a, since (1+ ep)P" " = 14 epn—i-l
mod p" ™', n—1—1 > 1, and a has order p*. On the other hand,

n—i—1 n—i—1

(a”Cc)?P =P (4-5)

applying Lemma 4.2 withz = 1+ep,a=n—i—1,and b = n—1i,
and usingn—i—12>1i.

o P" ' = 1. This step follows from (4.5).

e ‘a = a' TP This step is clear because a—¢ commutes with a.

e b =0'79P Set f = p" =2 We need to verify that
") = (beh) TP, (4.6)
Using (4.4) and the fact that 9 is central in X, we have
(bcF)P = pdPpd

SO

(bch)! TP = (bcf) (be") 4P = b b,
Here ¢f and 697 commute, since dp(1+ dp)P" ~ = dp mod p"—
by Lemma 2.4. Thus

(bcf)1+dp — b]+d’pcf0d.

f

On the other hand, sincen—1—1 > 1, ¢/ commutes with a, so

a_eC(bcf) _ a_e(b1+dpcf) _ b1+dpa—e(1+dp)cf_
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Now from (1 + dp)(1+ep) = 1 mod p™ we infer e+ d+edp =0
mod p™~ !, so d = —e(1 +dp) = p'. This completes the proof
of Claim 4.

Recall that (B) = b by Claim 2. Using (4.3), we see that U'Q pre-
serves ¥ for a suitable 1. This proves that Aut(X) = (U)G. Since this
is a subgroup, it follows that (U)G = G(U).

We proceed to prove (4.2). The verification that the maps defin-
ing V,W, X,Y, Z extend to automorphisms of X is routine and will be
omitted.

Let O € G. Then

Q(b) = ABS, Q(a) =PQR, Q(¢) = CDc". (4.7)
Here A,P,C € (a), B,Q,D & (b),and R, S € (2). We know from Claim 3
that r =1 mod p“_l_]. Thus, replacing Q by VIQ for a suitable j,

we will have r =1 in (4.7).
For any t € ¥, we have

Taking t = a, we get

(CDIPQR = Q) Q(a) = Q(%a)

— Q(a'eP) = Q(a)T+eP = (pQR)PO—ep' (4-8)
Comparing the b-components in (4.8), we see that
Ql+dr — Ql+ep,
It follows from (2.6) that QP = 1 and therefore
Qe (bP™ ). (4.9)

Comparing the d-components in (4.8), we find that
[C,QI"t4P[D, P]'+ePR = [Q, PI[Q, PI2...[Q,PIPR' TP, (4.10)

This implies that
[C,Q][D, P] € (dP).

Now n—1—1 > 1 because 2i < n, so (4.9) implies [C,Q] € (dP),
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whence [D, P] € (dP). Since P generates (a), we infer
D € (bP). (4.11)
Likewise, taking t = b, we must have

(CDc)ABS _ Q(C)Q(b) — Q(cb) —_ Q(b1+dp)

(4.12)
_ Q(b)H—dp — (ABS)H_dp.
Comparing the a-components in (4.12), we see that
A1+ep :A1+dp.
Since d # e mod p, this forces AP =1, whence
i—1
A€ {a? ). (4.13)

Comparing the 0-components in (4.12), we see that
[C,B]'T4P[D, A]'+¢PS = [B,Al[B,Al%...[B,Al9PSTHdP  (4.14)

Thus [C, B][D, A] € (0P). In view of (4.11), we have [D, A] € (0P). Since B
generates (b), we infer
C e (aP). (4.15)

Making use of (4.11) and (4.15) we see that if we replace Q) by 55Q,
where 65 € Inn(X) for a suitable s € ¥, we will have C =1 =D
in (4.7). Sincer = 1 mod p™~ ', a further replacement of Q by V!Q
for a suitable 1 will maintain C =1 =D and ensure r = 1 in (4.7). We

then have
0 =0(0) = Q([a, b])
(4.16)
= [PQR,ABS] = [P, B][Q,A] = [P, B].
Here [Q, A] = 1 because (4.9) and (4.13) ensure that

n—i—1)+(n—i—1)+({-1)

[Q Al € (¢P ),

and n—1i—1 > 1 as just noted above. On the other hand, we have

P=a% B="l,
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where a,j are relatively prime to p by Claim 2. By virtue of (4.16) we
obtain the sharper statement

aj=1 mod p'. (4.17)
i—1

Going back to (4.14) with C = 1 = D and using A € (aP
deduce S =1 and hence

), we

Since aP ' commutes with ¢, replacing Q by 65Q), where 65 € Inn(X)
for a suitable s € (a), we obtain S =1 in (4.7).

We next go back to (4.10) with C =1 =D. Using Q € (bP
infer R°P =1 and therefore

n—i—1 >, we

i—1

Re @P ). (4.18)

We next replace Q by 5s2'Q, 5 €Inn(X), for suitable 1 € Z and s € (c).
This will keep C =1 =D as well as r = 1; moreover, because of (4.17),
we get P = a and B = b in (4.7). Taking into account (4.9), (4.13),
and (4.18), we see that WeXPY¢Q) = 1 for suitable a,b,c. This
proves (3.1), and completes the proof of the theorem. 0

Theorem 4.4 Keep the hypotheses and notation of Theorem 4.3, and
take ho odd. Then

[Aut(Z)| =p*™ 2 (p—1), [Aut(%) : G] = p;

Inn(X) = (L,M,N) ~

(Z/pZ x Z/p" 1 Z) x Z/p" 1 Z; (419
G/(L,M,N) ~
i (4:20)
Z/p'Z x [(Z/pZ x Z/pZ x Z/pZ) x Z/(p —1)Z],
with
G=(LM,N)x(V,W,X,Y,Z) ifi > 1; (4.21)

O =(L,M,N,V,W,X,Y)
is the kernel of the natural homomorphism I : Aut(X) — Aut(X/XP), and
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hence a normal subgroup of Aut(X);
Mm=(LM,N,UV,WXY)=(MN,UVWXY) =)
is a normal Sylow p-subgroup of Aut(X);
Aut(Z) =TTx (Z) =0(U) x(Z) = (M, N, U, V,W,X,Y, Z).

Moreover, the following relations hold:

n—i—1 n—i—1

P =1,MP =1,NP =1,NL=L1+ep, NM = M1 +dp,
IM=MLUP =L, VP =1,WP =1,XP =1,YP =1,2P~ 1 =1,
VW =WV, VY =YV,VZ = ZV,VX = XV,
2L =19, M =h9,ZN=NZYL=1,YM =M, YN = NY,
XL=L,XM =T1P" "M, XN =NX, WL =L WM =M, WN = NW,
VL=LVM=M,VN=N,UL=T1,UM = MNP" "% UN = L—¢N,
WX =XW,YX =X ifi>1,YX=1Xifi=1,WY =YW,
Zyw — Whi, ZX = X95,2Y = Yho,
as well as the following relations, subject to the indicated conditions:

i—1

Yi>1),Yy = NP PVey(i=1,n>3),

n—i—2

Uy = verp

Uw = Mmp Whn>2i+1),Y%V=V(in>2i+1),

UX = X(n > 2i+1),4Z = zZNP™ T 2 (ho=1)/2yho—T (1 > 21+ 1).

Furthermore, suppose that n # 214 1. Then the above are defining relations
for Aut(X), as well as for T1, once all relations involving Z are removed; T1
cannot be generated by fewer than 7 elements; G is not a normal subgroup
of Aut(X).

Proor — The verification of the stated relations is a routine calcu-
lation that will be omitted. We do mention, in connection with the
relations involving conjugation by U, that U satisfies

n—i—2 n—i—2

ar—a, ba P P — b, a%c— g,
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so U~ is given by

n—i—2 n—i—2

a—a, b— ba €P ¢ P , c—aCc.
It should be noted that if n > 2i+ 1 then U~ satisfies b s beP" "~
We claim that G has index p in Aut(Z). Indeed, the definition of U
implies U ¢ G. Thus, our relations UP = L and LP" = 1 imply that (U)
is p-group satisfying U ¢ G but UP € G, which yields G N (U) = (UP).
On the other hand, we have Aut(X) = G(U) by Theorem 4.3, and
therefore

[Aut(Z) : Gl = [(U) : GN (W] = [(U) : (UP)] =p.
This proves the claim. Thus [Aut(X)| = p2nt2 (p—1)is equivalent
to |G| = p?™*! (p —1), which follows immediately from (4.19)
and (4.20). Now (4.19) is a consequence of Lemma 4.1, and we pro-
ceed to prove (4.20). Our relations yield an epimorphism

Z/p'Zx [(Z/pZxZ/pZ xZ/pZ)xZ/(p—1)Z]

— G/(L, M,N) ~ (V,W,X,Y, Z),

and we need to see that this is injective. This is equivalent to
the following: if v € (V), w € (W), x € (X),y € (Y), z € (Z), and
u =vwxyz € Inn(X) then

v=w=x=y=z=1.

Suppose then that such u is an inner automorphism of X, associated
to an element t of X. Successively applying u to ¢, b, and a, we see
thatv=1,x=1=7z and w = 1. Thus

u:y:Yl

for some 1. Hence t = a*b/¢* must commute with b and ¢. As t com-
mutes with ¢, we infer v (j) > n—1i—1. But P € Z(X) by Lem-
ma 4.1, and we may assume that t = a*c¥. Since t commutes with b,
we deduce

vp(k) 2n—i—1.

n—i—1

But ¢P =0 € Z(X), so we may assume that t = at. Thus u(a) = a
and u(a) = aclpnfz, whence vp(l) > 1 and therefore y = 1, as re-
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quired. This proves (4.20). Note that if i > 1 our relations show that
(V,W,X,Y,Z) = (V) x [((W) x (X) x (Y)) x(Z)],

and the above argument then proves that (V, W, X,Y, Z) N (L, M, N) is
trivial, whence (4.21) holds.

By (4.19) and (4.20), @ has order p , so it is normal in a Sy-
low p-subgroup of Aut(X) (having index p there). But @ is also
normalized by Z, so @ is normal in Aut(X). It is in fact the kernel
of I', being clearly included there, and using the fact that the in-
dex [Aut(X) : ker I is divisible by p and p — 1 (look at U and Z). On
the other hand, Sylow’s theorem implies that IT is normal in Aut(X)
(the only positive integer that is a factor of p — 1 and is congruent
to 1 modulo p is 1).

Suppose next that n # 2i + 1. An abstract group generated by ele-
ments L, M, N, U, V,W, X,Y, Z satisfying the stated relations is easily
seen to have order < p?™*2(p — 1). This implies that the stated rela-
tions are defining relations for Aut(X). A similar argument applies
to TT.

The given relations allow us to define an epimorphism T — B,
where B is a 7-dimensional vector space over Z/pZ, so Tl cannot be
generated by fewer than 7 elements.

The last stated relation implies Uzu-'¢ G,asZNeGbutU¢ G
and hg #1 mod p. O

2n+1

5 Appendix. The automorphism group of Y
Lemmas.x Ifs € N, v € Z, wherer # 0 and vy (r) > 1, then
Vp ((1 +71)° —1) =vp (1) +Vvp(s).
ProoF — We have r = {p® and s = cpb, where a,b,c,{ € Z,a,c > 1,
b>0,ptcand pt{ According to Lemma 2.4, there is some k € Z
such that
(] +T)S 1= Cepaer _|_kp2a+b — pa+b(cf+kpa).

Since c( is relatively prime to p, we infer

vp((1+7)°—=1) =a+b=vp(r) +vp(s).
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The statement is proved. 0

Lemma 5.2 Let a,b > 1. Then the order of the element z = x%y® of Y
is p®, where
s = max{n —vp(a),n—i—vp(b),0}

In particular, the order of z is p™ if and only if p { a.

ProorF — Given m > 1, we have z™ = xkye, where
(1+p9)°m—1

By Lemma 5.1, we have

(] + i.)bm -1
(i) ~wi)

so the smallest m such that x* = 1is m = 1 if vp(a) = n and
m =pn~Vr(a) otherwise. On the other hand, the smallest m such
that y' =1 is m =1 if vp(b) > n—iand m = p™ Ve () other-
wise. O

Lemmas.3 Leta,b> 1, wherep{ a, and setz = x%y® € Y. Then (z) is
a normal subgroup of Y if and only if xP" € (z). Equivalently, (z) is normal
if and only if vp(b) > n —21.

ProoF — Since y and z generate Y, it follows that (z) is normal
if and only if yzy~' € (z), which translates as xa“ﬂ’i)yb € (z) or,
alternatively, XaP'z € (z), that is, XaP' ¢ (z), where xP' is a power
of xaP". _

Suppose next (z) is normal. Then, by above, xP' = z™ for some
m > 1. Now z™ = xkyz, where k, { are as in the proof of Lemma 5.2.
Since vy, (pY) = i, it follows that vp(m) = i As y! = 1, we infer
that v (b) > n —2i.

Assume conversely that vy (b) > n—2i. Set m= pi. Then z™M = xkyz,
where k,{ are as in the proof of Lemma 5.2, so that v,(k) = i
Since ypnii = 1 and vp(b) > n—2i, we have that y* = 1. All in
all, z™ = x°P', where p 1 c. Since xP' € <chi>’ we deduce that xP'
belongs to (z). 0
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Lemma 5.4 The assignment

n—21i

xyP if 2
Xy if 2

4

<n
UHU/XH{ _— (5.1)

7

extends to an automorphism, say «, of Y having order pi if2i < nand p“*i
if 2i > n.

PROOF — Setm =T+ptaswellasb =p"2tif2i <n,and b =1
if 21 > n. Taking into account Lemma 5.2, it suffices to verify that

yxy®ly = (y?)™.

—1

On the one hand, we have y(xy®)y~' = x™y®, and on the other

(xy®)™ = x*y¢, where
k=T+mP+m?®+...+mP® and (=bm.

Since ypnfi = 1, it follows that y* = yb. Setj = n—1if 2i < n
and j =i if 2i > n. Then Lemma 2.4 yields

k=T+p+p(14+2+...4p ) =1+p +ppt(pt+1)/2 mod p™.

Since i4+j > n and p is odd, it follows that k = 1+p!' mod p™, as
required. 0

Since Aut(Cpn) is abelian, it is clear that Y is a normal subgroup
of the holomorph of Cyn, namely the semidirect product

Hol(Cpn) = Cpn x Aut(Cpn)

of Cpn by its full automorphism group. Thus, for any integer r rel-
atively prime to p there is an automorphism, say Q,, of Y defined
by

x—=x, ym—uy, (5.2)

namely the restriction to Y of a suitable inner automorphism
of Cpn x Aut(Cpn).

We proceed to select integers g, h, t, d and e for further use within
this section. It is well known that the group of units (Z/p™2Z)* is
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cyclic and we fix throughout
an integer g that has order p™ ' (p—1) modulo p™. (5.3)

We accordingly set
B =0Qqg, (5-4)
and let h be an odd positive integer satisfying

gh=1 modp™. (5.5)

By Lemma 2.4, 1 —|—'p"L has order p™~' modulo p™. Since gpi_] (p=1)
also has order p™~* modulo p™, there is an integer t, relatively prime
to p, such that

gP PNt =1 1 pt mod p™. (5.6)
Thus ,7]
pre Pt =5, (5.7)

Now ¢gP~Dt and h(P=1)t have order p™~! modulo p™, so there exist
integers d and e satisfying

gP It =1 4dp, RPNt =1 4ep (5.8)

as well as (1.1) and (1.2).
Proposition 5.5 We have Aut(Y) = Inn(Y)(«, ).

Proor — Let y € Aut(Y). By Lemma 5.2, we have y(x) = x%yb,
where p { a. Thus B™y(x) = xy® for some r. As (x) is normal in Y,
it follows from Lemmas 5.3 and 5.4 that a®f™y(x) = x for some s.
Since o® 3"y must preserve the relation yxy ' =x1*P", we see that
o® By (y) =xy

for some c. Here Lemma 5.2 implies that v, (c) > 1i, so there is an
integer t such that §{«®p"y fixes x and y. Since Inn(Y) is normal
in Aut(Y), we infer that y € Inn(Y)(«, ). O

Lemma 5.6 Let r be any integer relatively prime to p, and let s be any
odd positive integer satisfying

rs=1 mod p",



40 F. Szechtman

whose existence is guaranteed by the fact that p™ is odd. Let v = Q.
in Aut(Y'), as defined in (5.2), and set

. p (s —1)/2 if2i<n,
(s—1)/2 if2i > n.
Then yooy ™! = 65 o’
PrOOF — Set
f2i<n, ne2t§f2igm,
j = i 1 tsn, 4 = dP 1 i<n
n—1i if2i>n, 1 if2i>n

Here Lemma 2.4 yields

k=r[s+p™ I (1+2+...+(s—1))]
=14p"rs(s—1)/2=1+p"I(s—1)/2 mod p™.

On the other hand, we have
i f
6; (XS(X) _ 6; (Xy(%S) — 6f (X)yes _ X(H—p ) y(’.s’
where, according to Lemma 2.4,
(T+pHYf =14+p™JI(s—1)/2 mod p™

The statement is proved. 0

Recalling the meanings of 3 and h from (5.4) and (5.5), respec-
tively, Lemma 5.6 ensures that if 2i <n, then

o n—21 h—1 2
Bap ! =sb" M2 (5.9)

while if 21 > n then

_ -1)/2
Bap ! =5 2aM, (5.10)
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Lemma 5.7 The order of B € Out(Y) isp*~'(p—1).
Proor — This is the order of g(1+p') € (Z/p™Z)*/(1+pb). 0

Proposition 5.8 If 2i < n then Out(Y) has order p>*~"(p — 1) and
presentation

Out(Y) ~ (a,bla? =1,bP P~V =1 bab~! = a™) ~ Hol(Z/p'Z),

while if 21 > n then Out(Y') has order P Tp—1), presentation

i

Out(Y) ~ (a,b| aP = pri*‘(p_]) —1,bab ' = ah>,

and is isomorphic to
Hol(Z/p'Z)/(p™ ' Z/p'Z) ~ (Z/p™ 'Z) % (Z/p'Z)*.

ProoF — Let F be the free group on {a, b} and consider the homo-
morphism A : F — Out(Y)

a—® b p.

This is surjective by Proposition 5.5. Set j =iif 2i <nandj=n—1i
if 21 > n. By Lemma 5.4, Lemma 5.7, and equations (5.9)—(5.10) we
have Y = {ap],bplf1 (P=1) bab—Ta ="} C ker A. Let N be the normal
closure of Y in F and let ' : F/N — Out(Y') be epimorphism associ-
ated to A. It is clear that [F/N| < p*t7=1 (p —1). On the other hand, the
definitions (5.1), (5.2), and (5.4) of « and B yield that B* = «*s,, im-
plies «! = 1. In particular, & and & have the same order, and () N ()
is trivial. Thus, Lemmas 5.4 and 5.7 give |Out(Y)| = p*i =T (p —1),
whence I" is an isomorphism. 0

Lemma 5.9 We have Z(Y) = <xpn71>, so that Inn(Y") has order p2(n—1)
and presentation

i

Inn(Y) = (w,v|uP" =1,vP"  =1,vuv ' =u!*P") ~ Cpn—i X Cpni.

This is an abelian group if and only if 21 > n.

ProoF — Since (y) acts faithfully on (x), the central elements
of Y = (x) x (y) are the elements of (x) that are fixed by all elements

1

of (y), which are readily seen to be the powers of xP" . 0
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Lemma 5.10 Let G = (a,b, c) be a group, where ¢ normalizes (a,b), a
and b commute with [a,b], and [a,b] € (c). Then G = (a)(b)(c).

ProorF — By hypothesis, G = (a,b)(c) and (a,b) = (a)(b)([a, b]).
As [a, b] € (c), the result follows. 0
Theorem 5.11 The order of Aut(Y) is plp—1) if 2L < n
and 1)3“_2‘_1 (p—1) if 21 > n. Moreover, if

4

=8R8, (5-11)
then Aut(Y') is generated by o, dx, W for any £ € Z, and the choice
20=1 mod p", (5.12)

yields the following defining relations, depending on whether 2i < n
or2i>mn:

o = 1,51;’“7i — Luv“*‘(p—ﬂ =1

4

adyo ! = 5prn_i_1 (P=1t s, u 1 =589, (5.13)

or _ ,
P =180 =1, e ) =)

byt = éxppF] P=Dt ns 1 =589, (5.14)

Moreover, if 0 € Aut(Y), then o = ABC for unique elements A € (x),
B € (0x), and C € (u).

Proor — Set

. )i if 2i < n, = p“*Zi if 2
)7 \n—i if2izn, i

By Proposition 5.8 and Lemma 5.9, we have
Out(V) =p™ I (p—1), Inn(Y)| = p*"~"),

SO
|Aut(Y)| = p2(MHFETH (),
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as claimed.
We have 6, = Bp (p—T)t by (5.7), so «,8x, generate Aut(Y)
by Proposition 5.5. We next verify the analogs of (5.13)-(5.14) for

these generators. By Lemma 5.4, we have P = 1 Since g has or-
der p"~'(p—1) modulo p™, it follows that pP"  (P=1) = 1. On

the other hand, Lemma 5.9 implies 62 - 1. Moreover, according
to Lemma 5.4,

DX = By = BxBK = 55 pRPT (PTIY, (5.15)
while the very definition of (3 yields

BoxB ™ =8p(x) = 02

Furthermore, by (5.9) and (5.10), we have

Bap ! =5r T/ 2 (5.16)

This completes the required verification.

It is clear that for any integer {, the elements o, 11,5y still gener-
ate Aut(Y). We next show that (5.13)—(5.14) hold for a suitable choice
of {. It is evident that

nfl(

WPt P =1, s =8¢,

Observe next that
5y € Z(Aut(Y)). (5.17)

Indeed, we have
5E8x8, % =58y,

where, by Lemma 2.4,

ik n—j
u=x1+P)" = x1+P"7

Since xP" e Z(Y), it follows that 65 commutes with 6. As &y is a
power of (3, they commute. Since «(y) =y, it follows that & and 9,
also commute. This proves (5.17).

Since 5% commutes with 6k ka "p—1) , it follows that

kpt T (p—T)t _ ka (P*Ut, (5.18)
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whence (5.15) gives
adxo ! = kPt (P (5.19)

Suppose next that 2£ =1 mod p™. We claim that

p.oqf] = oM

Indeed, conjugating each side of (5.16) by &% and using that 6‘; is
central yields

_ — —1)/2 _
n(ok o u" = oy 2 (5L s . (5-20)

To compute with (5.20), note that 657, o] = 6‘; by (5.15). As 61; is
central, [6, o' = 6’;, SO Ox 003 1= 65 kK, and therefore

drody " = égrkoc, reZ. (5.21)

Successively using (5.17), (5.21), (5.20), (5.21), and (5.17), we infer that

Sy Fpop ! = pdy Fap ! = p(8fad !

_ 65(*171)/2(6?(0(5;(5)}1 _ 6E(h*1)/zégehkah.

Since {(h—1) = (h—1)/2 mod p™, the claim follows.

Thus the generators «, u,dx satisfy the relations (5.13) if 2i <n
and (5.14) if 21 > n.

Let G any group generated by elements «, i1, 85 that satisfy (5.13)
if 2 < n and (5.14) if 21 > n. Set &y = uplq(p_”t. Then (5.13)
and (5.14) imply that (04, 8y) is a normal subgroup of G having or-
der < p2(m—Y), with |G/ (5, dy)l < pt=1Hi(p—1), so that

IG| < pz(n*i)+if1+i (p—1).

This shows that (5.13) and (5.14) are defining relations for Aut(Y).
It follows from Lemma 5.10 that

Aut(Y) = () (B) (1)

As |[Aut(Y)| = (o) ||{B)I[{i}|, we obtain the stated normal form for the
elements of Aut(Y). O
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Let n be defined as in (5.11) with { chosen so that (5.12) holds.
Recalling the meaning t from (5.6), we set

(p—1)t

v=p (5.22)

Proposition 5.12  Let L be the subgroup of Aut(Y') generated by o, dx, V.
Then L is a normal Sylow p-subgroup of Aut(Y') with the following defin-
ing relations, depending on whether 2i < nor 2i > n:

1 n—i

oaP =1,vP" T = 1,807 =1,
by = éxvpn471,véxv*1 = élfdp, (5-23)
vov~! =l tep,
or 4
" =1, 21,80 =,
abxo ! =8, vP T v v = 51 T9P, (5-24)
vav~! = «ltep,
In particular, Ly is isomorphic to L.
ProoF — Theorem 5.11 shows that £ is normal in Aut(Y") and that

Aut(Y)/Zo >~ Zo(u)/Zo = (1)/(Zo N (W) =~ (W)/(v) ~ Cp_1,

so0 Lo is a Sylow p-subgroup of Aut(Y).

The relations (5.23)—(5.24) follow easily from (5.13)—(5.14). Setj =1
if 2t < nand j = n—1if 2i > n. That (5.23)—(5.24) are defining
relations follows from the fact that any group G generated by ele-
ments «,V,dx satisfying these relations has order less than or equal
to p2(M—+1=145 gince (5, vP" ') is normal in G of order < p2(n—1)

with |G/(6x,vpiq ) < pto T O
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