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Abstract

Let G be a finite group and let (G) denote the sum of element orders of G; in
general PY(G) denotes the the sum of the 1-th powers of the element orders G
where 1 is a positive integer. We further generalise this by introducing ¥;(G) for
negative integers 1. Motivated by the recursive formula for \(G), we consider a finite
abelian group G and obtain a similar formula for PYHG) and Y1 (G) for L € (0,00) N Z
and 1 € (—oo,0) N Z respectively.
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1 Introduction

Let G be a finite group. For any non-empty subset S of G, let {(S)
denote the sum of element orders of S that is

B(S) = Y ox)

x€S

where o(x) denotes the order of x in G. This has been introduced
in [2] and it is also proved that if C is a finite cyclic group of order
same as that of G, then {(G) < P(C) and the equality holds if and
only if G is cyclic. In [4] and [6] explicit formulas for computing \(G)
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were obtained in case G is abelian. Later in [1] this has further been
generalised by introducing the function

PUG) = ) o(x)! (1.1)

x€G

for every positive integer | with P! = . In this paper we further
generalise this concept by considering 1 € (—o0,0) N Z and modify-
ing (1.1) accordingly. For any non-empty subset S of G and 1 € Z\ {0},

we define
Ri(S)= ) o(x)"
X€ES

and if 1 € (—oo, 0) N Z then we write
Yi(S) = IS Ry(S).

Note that 1 € (0,00) N Z then R(S) = P(S) as defined in [1]. If we
take 1 € (—o0,0) N Z, then for any subgroup S of G we find that ¥(S)
is an integer since o(x) divides S| for all x € S. Motivated by the
formulas in [4], in this paper we consider a finite abelian group G and
obtain a similar recursive formula for computing PYG) and ¥ (G)
forl € (0,00)NZ and 1 € (—o0,0) N Z respectively.

Throughout this paper, p denotes a prime number and @(n) de-
notes the Euler totient function of the positive integer n. A cyclic
group of order n is denoted by C,. For a group G, the notation
exp(G) denotes the exponent of G which is the smallest positive in-
teger z such that g* = 1¢g for all ¢ € G where 1g is the identity
element of G; without any ambiguity we will denote this identity
element as 1. Unless mentioned otherwise, {!(G) will implicitly de-
note that | € (0,00) NZ and similarly ¥;(G) will implicitly denote
thatl € (—oo,0) N Z.

2 Preliminaries

In this paper we first state some commonly used results; we also
generalise some of these results.

Lemma 1 (see [4], Lemma 1.1) Let n be any positive integer. Then Cy,
has exactly @(d) elements of order d for each divisor d of n, and hence we

have 1 (Cn) = 3 g1, dep(d).
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Theorem 2 (see [3], Lemma 2.5) Let H and K be two finite groups. Then
we have P'H x K) < PYH)WYK), with equality if and only
if ged([H], [K[) = 1.

Note that Theorem 2 is a generalisation of [1, Lemma 2.1]. We
prove an analogous result in the next theorem for W;. Our proof is
motivated by the proof of [1, Lemma 2.1].

Theorem 3 Let H and K be two finite groups and 1 € Z \ {0}. Then
Ri(H x K) < Ry (H)Ry(K)
and the equality if and only if gcd([H|, [K]) = 1.

ProorF — Note that o((h, k)) < o(h)o(k) for (h,k) € H x K. Then

Ri(H xK) =3 o ek o (b, kD!
<Y hen Lrek o(W)to(k)!

= (Znenom?b) (Xyek ok)h)
= Ry (K)Ry(K).

In order to see the equality, note that, gcd(|H|, [K|) = 1 if and only
if o((g,h)) = o(g)o(h) for each h € H and k € K. In that case, fol-
lowing the previous part of the proof, it is straight forward to see
that Ry (H x K) = R{(H)R(K) if and only if ged(|H|, [K]) = 1. a

3 Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formulas for PYG)
and ¥1(G) where G is a finite abelian group. We present this in dif-
ferent cases. This format is inspired by Section 2 of [4]. We start from
a finite cyclic group which will lead to the direct product of a finite
cyclic p-group and a p-group. Finally, we will consider a the most
general case of finite abelian groups. We will conclude this section by
discussing the case ¥_1(G) as a consequence of our general results.
The proofs of our results in this section are motivated by the methods
used in [4]. We begin with the following result which is Lemma 2.6

of [4].
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Lemma 4 LetH ~ Cpr1 X Cprz X ... X Cprn where 1 <11 < T forall j
with 2 < j < n. Then for any i € {1,...,11}, there are (p*)" — (p*= )"
elements of H of order p*.

3.1 Finite cyclic groups
Let G be a cyclic group of order n. Then we know that

G~Cmy x...XCyy,

where the my,..., my are coprime to each other and n = my...my.
The explicit formulas for \(G) are obtained for two special cases
in [4, Proposition 2.1 and Proposition 2.2]. We generalise these results
for PY'(G) and ¥{(G). Recall that ! =Ry for 1 € (0,00) N Z.

Lemma s Let G be a cyclic group of order p™ where p is a prime number
and n is a positive integer, then for any non-zero integer 1 we have

@) RUG) =1+t pr(1), and
(i) Wi(G) =p ™14+ T, pritel)),

ProoF — (i) Using Lemma 1, we get Ri(G) =1+ 3 ; o(p")p'".
We know that @(p") = p"(1 —1/p), thus a straight forward calcula-
tion yields the required result.

(ii) This follows directly from the definition of ¥; and by using
the previous part. 0

Lemma 6 Let G be a cyclic group of order s = py' ... p~ where the p;
are distinct primes with vy > 1 fori=1,...,k. Then

() Ru(G) =TTy (1475 Ty pr D) and

(i) Wi(G) = s TTEy (1+ 251 3, priteh)).
Proor — (i) We know that

G~C T1><...><C Tk
P P

k

and p; are all distinct primes. Hence for any element

x=(x1,...,%x) €G,
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we have o(x) = o (x1)...0(xk). So, by applying Lemma 5 and Theo-
rem 3 repeatedly, we arrive at the required result.

(ii) This follows directly from the definition of ¥; and by using
the previous part. O

The next corollary immediately follows from a straight forward
calculation using Lemmas 5 and 6 and putting 1 = —1.

Corollary 7 Let G be a cyclic group of order s.

(i) If s =p™ where p is a prime number and n is a positive integer, then
Y_1(G) = (n+1)p™ —np™ 1,

(i) If s = py' ... p.< where the p; are distinct primes with v; > 1, then
W1(6) = [T ((re+Dpm—ropf ).
3.2 Direct product of a cyclic p-group and a p-group

In this section, we obtain a recursive formula for P'(G) and ¥{(G)
where G is a direct product of a finite cyclic p-group and any p-group.
We begin with the following result (see [4], Lemma 2.3).

Lemma8 Let G=HxK where H and K are p-groups. Then for any (x1,x2)
in G, o( (x1,x2)) = max{o(x7),0(x2)}

We now prove the following which is a generalisation of [4, Propo-
sition 2.4]. We follow the same methods used in [4].

Proposition 9 Let G = Cpr x H where v > 1, and H is a p-group
with exp(H) > p". Let Nj be the number of elements in H that have or-
der p). Then

(i)
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(ii)
p2TYL(H)
T i—1

4P H Z {(pi _pi—l) {(I)u_]) 4 Z (p”—p”) Nj] }

we =4 TP 7
+p " Hlp—1)(p"—1), ifr>1
pPWi(H) +pHI(p—T)(p' —1),  ifr=1

ProorF — (i) G is a finite group whose elements are of the for (x,y)

where x € Cpr and y € H. We now partition G based on the order of
the elements in the first component. In particular we have

Fio = {(x1,x2) € G [ o(x1) = p*}

and G = [Ji_g Fk. Since F; N'Fj = () for 1 # j, we have
T
RUG) =) Ri(Fy).
k=0

Now let x1 € Cpr with o(x7) = p! for some i with 0 < i < r. For each
such x1, define F; ,, = {(x1,x2) | x2 € H}. Then we have

Fi = U Fix, and Ri(Fi) = Z Ry (Fim)
X]ECpT X]ECpr
o(x7)=p! olx1)=p

i

fori=0,1,...,r. Lemma 4 shows that there are (p* —pi*] ) elements

of order p'. As a result,
Ri(Fi) = (p' —p" Ry (Fix, ) -
Taking i = 0, we have Fy = Fp 1 and thus, Ry (Fp) = R{(H). Fori=1,

each element (x1,x;) in Fq , has order same as o(x;) except for (x1,1)
which has order p. Thus Ry(Fj x,) = Ry(H) +pt—1.50

Ri(F1) = (p— D(Ry(H) + (pt = 1)).

Case1:1r=1.
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Then Ri(G) =Ry (Fo) + Ry (F1) =pRi(H) + (p— D) (p* —1).

Case 2: v > 1. .

Let i € {2,...,7}. For (x1,x2) € F;ix, with o(x2) = p’, we have
o((x1,x2)) =ptifj<iando((xy,x2)) =p) ifj>1i If ' =exp(H)
then

Rl(F1X1) Z] OpllN +Z) 1p N

i—1 i
= (1 +Zp“Nj) +) pUN;j+ (p“—1)
j=1 j=i
i—1

= (1 +TZ/P”NJ') +(P=1) ) (PPN

j=1 j=1

i—1

=Ri(H) + (p“ — 1) + Z (p“—p”) N;

j=1

Thus we have

ZRL =(p" —p)Ri(H Z(( >+

Now .
RiU(G) =Ry (Fo) +Ru(F1)+ ) Ri(Fy)
i=2

and the result follows from a straight forward calculation using
Ru (Fo) +Ru (Fy) = pRu(H) + (p—1)(p" —1).
(ii) This follows directly from the definition of ¥; and by using the
previous part. O
3.3 Finite abelian groups

We can now state how to compute (G) and ¥{(G) for any finite
abelian group G. This result is analogous to [4, Proposition] and
we follow the same method. In view of Theorem 2 and 3, the fol-
lowing is a direct application of Proposition 9 and Lemma 4. Re-
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call that P'(G) = Ry(G) for | € (0,00) N Z and YY(G) = |G|7'R{(G)
for 1 € (—o0,0) N Z. Further note from the introduction that Y!(G
will implicitly denote that 1 € (0,00) N Z and similarly ¥;(G) will
implicitly denote that 1 € (—o0,0) N Z.

Theorem 10 Let G be a finite abelian group with G ~ Hy x ... x Hy
where each Hy is an abelian pi-group and the p;y are distinct primes
fori=1,...,k Then

YHG) =Pt (Hy) ... 0t (Hy), Wi(G) =Wy (Hy) ... Wy (Hy)

where Pt (Hy) and Wy (Hy) fori=1,..., kare computed as follows:
(i) If Hj ~ Cp{t then

and

1 :

L
(ii) Iin:Cpn x C_ry x...xCprn,wherel <rp < <. <y,
i i i

and v1 + ...+ 1 = 1 then Yt (Hy) and Y| (H;) can be determined
recursively as follows

(iia) If vy > 1 then

YHH;) = PllRl(C 2 X X Cprn)
B { v ) [ 2 G v
+ =PI =1), N; = ((pi)“q - (p{*1)“4),

and

‘p11R1(C 2 X . XCpirn)

wirore 8 {0 ) e
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(iib) Ifrq1 =1 then
P(Hy) :‘Pill)l(szz X .o x Cprn) + (pr=1)p{—1),

and

4 Further comments for | = —1

We conclude this paper by introducing some results related to ¥_j.
We begin with some examples computed in GAP [5].

4.1 Some examples

We implement Theorem 10 in GAP [5] and checked the correctness
of the formulas by running different examples against the results
obtained by the brute force method where we run the sum over
all elements in a group. We record the run time (measured in sec-
onds on a MacBook Pro with 2.2 GHz 6-Core Intel Core iy proces-
sor and 16 GB of RAM) for computing Y_; for some groups of
size > 100000 in Table 1.

Table 1: Runtime for computing ¥_1(G)

G Size of the group - Runtime m seconds
Using Theorem 10 | Using brute force method
Cs90625 X Cs 2953125 <1 20.845
Caseo0 x Ci120 5832000 <1 54.718
C1944 x Ceas x Cq 7558272 <1 69.003
C210912 X C338 71288256 <1 612.248

4.2 Some further comments

We begin with the following lemma.

Lemma 11 For any finite group G with |G|>1, we have R_1(G) < P(G).
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Proor — For any x € G with x # 1 we have o(x)~ " < o(x) and thus

the result follows since } | g o(x)" 1< 2 xego(x)if |G > 1. O

The following corollary is now immediate from Lemma 11 and the
main theorem of [2].

Corollary 12 For all non cyclic groups G with |G| = n > 1, we have
Y_1(G) <np(Cr).

Using our results in Section 3 we now prove the following.
Theorem 13  If G be an abelian group order n, then ¥_1(G) <nW¥W_1(Cp).

ProoF — Let G =~ Hj x ... x Hy where each H; is an abelian pi-
group and each p; is distinct prime fori=1,...,k. Let

H; ~ Cpiru X Cp:i,z X...xC ing

1

where 1{ = 1i1+7Ti2+...+Tin, and n = |G| = pi'...p~. Let-
ting | = —1 in Theorem 10 we see that

z—1
(pi* =1+ Y (pi*—p!)Ny<0 and (pi—T)p;' =1 <0.
=

As a result, using Corollary 7, we can show inductively that

Ti,1 +...+Tilni

R_1(H;) < P; ((ri,ni +1)— rilnipi_1 )

A further direct calculation shows that
Ro1(H) < p"((1=py Drin, — 1)

Since i n; <Ti, again using Corollary 7, we have R_ (Hi) <¥_1(Cpri).
Finally Theorem 10 shows that ¥_{(G) < n¥_;(Cy). O

We conclude this paper with the following remark. Note that The-
orem 13 is an analogous result of [2, Main Theorem] where it is
shown that P(G) < P (Cy) where n = |G|. However this does not hold
for ¥_1. For example if we take G = Cz528 x C24 which is a group
of order 84672 then a direct computation (using Theorem 10) shows
that V_1(G) = 14976864 which is greater than W_1(Cgag72) =2757888.
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