Sum of the Powers of the Orders of Elements in Finite Abelian Groups

Subhrajyoti Saha

(Received Nov. 21, 2020; Accepted June 1, 2021 — Communicated by V. Mikaelian)

Abstract

Let G be a finite group and let $\psi(G)$ denote the sum of element orders of G; in general $\psi^{l}(G)$ denotes the the sum of the l-th powers of the element orders G where l is a positive integer. We further generalise this by introducing $\Psi_{l}(G)$ for negative integers l. Motivated by the recursive formula for $\psi(G)$, we consider a finite abelian group G and obtain a similar formula for $\psi^{l}(G)$ and $\Psi_{l}(G)$ for $l \in(0, \infty) \cap \mathbb{Z}$ and $l \in(-\infty, 0) \cap \mathbb{Z}$ respectively.

Mathematics Subject Classification (2020): 20D60, 20Ko1
Keywords: finite group; abelian group; element order

1 Introduction

Let G be a finite group. For any non-empty subset S of G, let $\psi(S)$ denote the sum of element orders of S that is

$$
\psi(S)=\sum_{x \in S} o(x)
$$

where $o(x)$ denotes the order of x in G. This has been introduced in [2] and it is also proved that if C is a finite cyclic group of order same as that of G, then $\psi(G) \leqslant \psi(C)$ and the equality holds if and only if G is cyclic. In [4] and [6] explicit formulas for computing $\psi(G)$
were obtained in case G is abelian. Later in [1] this has further been generalised by introducing the function

$$
\begin{equation*}
\psi^{l}(G)=\sum_{x \in G} o(x)^{l} \tag{1.1}
\end{equation*}
$$

for every positive integer l with $\psi^{1}=\psi$. In this paper we further generalise this concept by considering $l \in(-\infty, 0) \cap \mathbb{Z}$ and modifying (1.1) accordingly. For any non-empty subset S of G and $l \in \mathbb{Z} \backslash\{0\}$, we define

$$
R_{l}(S)=\sum_{x \in S} o(x)^{l}
$$

and if $l \in(-\infty, 0) \cap \mathbb{Z}$ then we write

$$
\Psi_{l}(S)=|S|^{-l} R_{l}(S)
$$

Note that $l \in(0, \infty) \cap \mathbb{Z}$ then $R_{l}(S)=\psi^{l}(S)$ as defined in [1]. If we take $l \in(-\infty, 0) \cap \mathbb{Z}$, then for any subgroup S of G we find that $\Psi_{l}(S)$ is an integer since $o(x)$ divides $|S|$ for all $x \in S$. Motivated by the formulas in [4], in this paper we consider a finite abelian group G and obtain a similar recursive formula for computing $\psi^{l}(\mathrm{G})$ and $\Psi_{l}(\mathrm{G})$ for $l \in(0, \infty) \cap \mathbb{Z}$ and $l \in(-\infty, 0) \cap \mathbb{Z}$ respectively.

Throughout this paper, p denotes a prime number and $\varphi(n)$ denotes the Euler totient function of the positive integer n. A cyclic group of order n is denoted by C_{n}. For a group G, the notation $\exp (\mathrm{G})$ denotes the exponent of G which is the smallest positive integer z such that $g^{z}=1_{G}$ for all $g \in G$ where 1_{G} is the identity element of G ; without any ambiguity we will denote this identity element as 1 . Unless mentioned otherwise, $\psi^{l}(\mathrm{G})$ will implicitly denote that $l \in(0, \infty) \cap \mathbb{Z}$ and similarly $\Psi_{l}(G)$ will implicitly denote that $l \in(-\infty, 0) \cap \mathbb{Z}$.

2 Preliminaries

In this paper we first state some commonly used results; we also generalise some of these results.
Lemma 1 (see [4], Lemma 1.1) Let n be any positive integer. Then C_{n} has exactly $\varphi(\mathrm{d})$ elements of order d for each divisor d of n , and hence we have $\psi\left(C_{n}\right)=\sum_{d \mid n} d \varphi(d)$.

Theorem 2 (see [3], Lemma 2.5) Let H and K be two finite groups. Then we have $\psi^{\mathrm{l}}(\mathrm{H} \times \mathrm{K}) \leqslant \psi^{\mathrm{l}}(\mathrm{H}) \psi^{\mathrm{l}}(\mathrm{K})$, with equality if and only if $\operatorname{gcd}(|\mathrm{H}|,|\mathrm{K}|)=1$.

Note that Theorem 2 is a generalisation of [1, Lemma 2.1]. We prove an analogous result in the next theorem for Ψ_{l}. Our proof is motivated by the proof of [1, Lemma 2.1].

Theorem 3 Let H and K be two finite groups and $\mathrm{l} \in \mathbb{Z} \backslash\{0\}$. Then

$$
R_{l}(H \times K) \leqslant R_{l}(H) R_{l}(K)
$$

and the equality if and only if $\operatorname{gcd}(|\mathrm{H}|,|\mathrm{K}|)=1$.
Proof - Note that $o((h, k)) \leqslant o(h) o(k)$ for $(h, k) \in H \times K$. Then

$$
\begin{gathered}
R_{l}(H \times K)=\sum_{h \in H} \sum_{k \in K} o((h, k))^{l} \\
\leqslant \sum_{h \in H} \sum_{k \in K} o(h)^{l} o(k)^{l} \\
=\left(\sum_{h \in H} o(h)^{l}\right)\left(\sum_{k \in K} o(k)^{l}\right) \\
=R_{l}(K) R_{l}(K) .
\end{gathered}
$$

In order to see the equality, note that, $\operatorname{gcd}(|\mathrm{H}|,|\mathrm{K}|)=1$ if and only if $o((g, h))=o(g) o(h)$ for each $h \in H$ and $k \in K$. In that case, following the previous part of the proof, it is straight forward to see that $R_{l}(H \times K)=R_{l}(H) R_{l}(K)$ if and only if $\operatorname{gcd}(|H|,|K|)=1$.

3 Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formulas for $\psi^{l}(G)$ and $\Psi_{l}(\mathrm{G})$ where G is a finite abelian group. We present this in different cases. This format is inspired by Section 2 of [4]. We start from a finite cyclic group which will lead to the direct product of a finite cyclic p-group and a p-group. Finally, we will consider a the most general case of finite abelian groups. We will conclude this section by discussing the case $\Psi_{-1}(G)$ as a consequence of our general results. The proofs of our results in this section are motivated by the methods used in [4]. We begin with the following result which is Lemma 2.6 of [4].

Lemma 4 Let $\mathrm{H} \simeq \mathrm{C}_{\boldsymbol{p}^{r_{1}}} \times \mathrm{C}_{\mathrm{p}^{r_{2}}} \times \ldots \times \mathrm{C}_{\mathrm{p}^{\mathrm{n}}}$ where $1 \leqslant \mathrm{r}_{1} \leqslant \mathrm{r}_{\mathrm{j}}$ for all j with $2 \leqslant \mathfrak{j} \leqslant n$. Then for any $\mathfrak{i} \in\left\{1, \ldots, r_{1}\right\}$, there are $\left(p^{i}\right)^{n}-\left(p^{i-1}\right)^{n}$ elements of H of order p^{i}.

3.1 Finite cyclic groups

Let G be a cyclic group of order n. Then we know that

$$
\mathrm{G} \simeq \mathrm{C}_{\mathrm{m}_{1}} \times \ldots \times \mathrm{C}_{\mathrm{m}_{k}},
$$

where the m_{1}, \ldots, m_{k} are coprime to each other and $n=m_{1} \ldots m_{k}$. The explicit formulas for $\psi(\mathrm{G})$ are obtained for two special cases in [4, Proposition 2.1 and Proposition 2.2]. We generalise these results for $\psi^{l}(G)$ and $\Psi_{l}(G)$. Recall that $\psi^{l}=R_{l}$ for $l \in(0, \infty) \cap \mathbb{Z}$.

Lemma 5 Let G be a cyclic group of order p^{n} where p is a prime number and n is a positive integer, then for any non-zero integer l we have
(i) $R_{l}(G)=1+\frac{p-1}{p} \sum_{r=1}^{n} p^{r(l+1)}$, and
(ii) $\Psi_{l}(G)=p^{-n l}\left(1+\frac{p-1}{p} \sum_{r=1}^{n} p^{r(l+1)}\right)$.

Proof - (i) Using Lemma 1 , we get $R_{l}(G)=1+\sum_{r=1}^{n} \varphi\left(p^{r}\right) p^{l r}$. We know that $\varphi\left(p^{r}\right)=p^{r}(1-1 / p)$, thus a straight forward calculation yields the required result.
(ii) This follows directly from the definition of Ψ_{l} and by using the previous part.

Lemma 6 Let G be a cyclic group of order $s=p_{1}^{r_{1}} \ldots p_{k}^{r_{k}}$ where the p_{i} are distinct primes with $\mathrm{r}_{\mathrm{i}} \geqslant 1$ for $\mathrm{i}=1, \ldots, k$. Then
(i) $R_{l}(G)=\prod_{i=1}^{k}\left(1+\frac{p-1}{p} \sum_{r=1}^{n} p^{r(l+1)}\right)$, and
(ii) $\Psi_{l}(G)=s^{-l} \prod_{i=1}^{k}\left(1+\frac{p-1}{p} \sum_{r=1}^{n} p^{r(l+1)}\right)$.

Proof - (i) We know that

$$
\mathrm{G} \simeq \mathrm{C}_{\mathrm{p}_{1}^{r_{1}}} \times \ldots \times \mathrm{C}_{\mathrm{p}_{\mathrm{k}}^{\mathrm{r}_{\mathrm{k}}}}
$$

and p_{i} are all distinct primes. Hence for any element

$$
x=\left(x_{1}, \ldots, x_{k}\right) \in G,
$$

we have $o(x)=o\left(x_{1}\right) \ldots o\left(x_{k}\right)$. So, by applying Lemma 5 and Theorem 3 repeatedly, we arrive at the required result.
(ii) This follows directly from the definition of Ψ_{l} and by using the previous part.

The next corollary immediately follows from a straight forward calculation using Lemmas 5 and 6 and putting $l=-1$.

Corollary 7 Let G be a cyclic group of order s.
(i) If $s=p^{n}$ where p is a prime number and n is a positive integer, then $\Psi_{-1}(G)=(n+1) p^{n}-n p^{n-1}$.
(ii) If $s=p_{1}^{r_{1}} \ldots p_{k}^{r_{k}}$ where the p_{i} are distinct primes with $r_{i} \geqslant 1$, then $\Psi_{-1}(G)=\prod_{i=1}^{k}\left(\left(r_{i}+1\right) p^{r_{i}}-r_{i} p_{i}^{r_{i}-1}\right)$.

3.2 Direct product of a cyclic p-group and a p-group

In this section, we obtain a recursive formula for $\psi^{l}(G)$ and $\Psi_{l}(G)$ where G is a direct product of a finite cyclic p-group and any p-group. We begin with the following result (see [4], Lemma 2.3).

Lemma 8 Let $\mathrm{G}=\mathrm{H} \times \mathrm{K}$ where H and K are p -groups. Then for any $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ in $\mathrm{G}, \mathrm{o}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)=\max \left\{\mathrm{o}\left(\mathrm{x}_{1}\right), \mathrm{o}\left(\mathrm{x}_{2}\right)\right\}$.

We now prove the following which is a generalisation of [4, Proposition 2.4]. We follow the same methods used in [4].

Proposition 9 Let $\mathrm{G}=\mathrm{C}_{\mathrm{p}^{r}} \times \mathrm{H}$ where $\mathrm{r} \geqslant 1$, and H is a p -group with $\exp (\mathrm{H}) \geqslant \mathrm{p}^{r}$. Let N_{j} be the number of elements in H that have order p^{j}. Then
(i)

$$
R_{l}(G)=\left\{\begin{array}{l}
p^{r} R_{l}(H)+\sum_{i=2}^{r}\left\{\left(p^{i}-p^{i-1}\right)\left[\left(p^{l i}-1\right)+\sum_{j=1}^{i-1}\left(p^{l i}-p^{l j}\right) N_{j}\right]\right\} \\
+(p-1)\left(p^{l}-1\right), \quad \text { if } r>1 \\
p R_{l}(H)+(p-1)\left(p^{l}-1\right), \quad \text { if } r=1
\end{array}\right.
$$

(ii)

$$
\Psi_{l}(G)=\left\{\begin{array}{lc}
p^{2 r} \Psi_{l}(H) \\
+p^{r}|H| \sum_{i=2}^{r}\left\{\left(p^{i}-p^{i-1}\right)\left[\left(p^{l i}-1\right)+\sum_{j=1}^{i-1}\left(p^{l i}-p^{l j}\right) N_{j}\right]\right\} \\
+p^{r}|H|(p-1)\left(p^{l}-1\right), & \text { if } r>1 \\
p^{2} \Psi_{l}(H)+p|H|(p-1)\left(p^{l}-1\right), & \text { if } r=1
\end{array}\right.
$$

Proof - (i) G is a finite group whose elements are of the for (x, y) where $x \in C_{p r}$ and $y \in H$. We now partition G based on the order of the elements in the first component. In particular we have

$$
F_{k}=\left\{\left(x_{1}, x_{2}\right) \in G \mid o\left(x_{1}\right)=p^{k}\right\}
$$

and $G=\bigcup_{k=0}^{r} F_{k}$. Since $F_{i} \cap F_{j}=\emptyset$ for $i \neq j$, we have

$$
R_{\mathrm{l}}(G)=\sum_{\mathrm{k}=0}^{r} \mathrm{R}_{\mathrm{l}}\left(F_{\mathrm{k}}\right) .
$$

Now let $x_{1} \in C_{p^{r}}$ with $o\left(x_{1}\right)=p^{i}$ for some i with $0 \leqslant i \leqslant r$. For each such x_{1}, define $F_{i, x_{1}}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \in H\right\}$. Then we have

$$
F_{i}=\bigcup_{\substack{x_{1} \in C_{p^{r}} \\ o\left(x_{1}\right)=p^{i}}} F_{i, x_{1}} \quad \text { and } \quad R_{l}\left(F_{i}\right)=\sum_{\substack{x_{1} \in C_{p} \\ o\left(x_{1}\right)=p^{i}}} R_{l}\left(F_{i, x_{1}}\right)
$$

for $\mathfrak{i}=0,1, \ldots, r$. Lemma 4 shows that there are $\left(p^{i}-p^{i-1}\right)$ elements of order p^{i}. As a result,

$$
R_{l}\left(F_{i}\right)=\left(p^{i}-p^{i-1}\right) R_{l}\left(F_{i, x_{1}}\right) .
$$

Taking $i=0$, we have $F_{0}=F_{0,1}$ and thus, $R_{l}\left(F_{0}\right)=R_{l}(H)$. For $i=1$, each element (x_{1}, x_{2}) in $F_{1, x_{1}}$ has order same as $o\left(x_{2}\right)$ except for ($x_{1}, 1$) which has order p. Thus $R_{l}\left(F_{1, x_{1}}\right)=R_{l}(H)+p^{l}-1$. So

$$
R_{l}\left(F_{1}\right)=(p-1)\left(R_{l}(H)+\left(p^{l}-1\right)\right) .
$$

Case 1: $\mathrm{r}=1$.

Then $R_{l}(G)=R_{l}\left(F_{0}\right)+R_{l}\left(F_{1}\right)=p R_{l}(H)+(p-1)\left(p^{l}-1\right)$.
Case 2: $r>1$.
Let $i \in\{2, \ldots, r\}$. For $\left(x_{1}, x_{2}\right) \in F_{i, x_{1}}$ with $o\left(x_{2}\right)=p^{j}$, we have $o\left(\left(x_{1}, x_{2}\right)\right)=p^{i}$ if $j<i$ and $o\left(\left(x_{1}, x_{2}\right)\right)=p^{j}$ if $j \geqslant i$. If $r^{\prime}=\exp (H)$ then

$$
\begin{gathered}
R_{l}\left(F_{i, x_{1}}\right)=\sum_{j=0}^{i-1} p^{l i} N_{j}+\sum_{j=i}^{r^{\prime}} p^{l j} N_{j} \\
=\left(1+\sum_{j=1}^{i-1} p^{l i} N_{j}\right)+\sum_{j=i}^{r^{\prime}} p^{l j} N_{j}+\left(p^{l i}-1\right) \\
=\left(1+\sum_{j=1}^{r^{\prime}} p^{l j} N_{j}\right)+\left(p^{l i}-1\right)+\sum_{j=1}^{i-1}\left(p^{l i}-p^{l j}\right) N_{j} \\
=R_{l}(H)+\left(p^{l i}-1\right)+\sum_{j=1}^{i-1}\left(p^{l i}-p^{l j}\right) N_{j}
\end{gathered}
$$

Thus we have

$$
\sum_{i=2}^{r} R_{l}\left(F_{i}\right)=\left(p^{r}-p\right) R_{l}(H)+\sum_{i=2}^{r}\left(\left(p^{l i}-1\right)+\sum_{j=1}^{i-1}\left(p^{l i}-p^{l j}\right) N_{j}\right)
$$

Now

$$
R_{l}(G)=R_{l}\left(F_{0}\right)+R_{l}\left(F_{1}\right)+\sum_{i=2}^{r} R_{l}\left(F_{i}\right)
$$

and the result follows from a straight forward calculation using

$$
R_{l}\left(F_{0}\right)+R_{l}\left(F_{1}\right)=p R_{l}(H)+(p-1)\left(p^{l}-1\right) .
$$

(ii) This follows directly from the definition of Ψ_{l} and by using the previous part.

3.3 Finite abelian groups

We can now state how to compute $\psi_{l}(G)$ and $\Psi_{l}(G)$ for any finite abelian group G. This result is analogous to [4, Proposition] and we follow the same method. In view of Theorem 2 and 3, the following is a direct application of Proposition 9 and Lemma 4. Re-
call that $\psi^{l}(G)=R_{l}(G)$ for $l \in(0, \infty) \cap \mathbb{Z}$ and $\psi^{l}(G)=|G|^{-l} R_{l}(G)$ for $l \in(-\infty, 0) \cap \mathbb{Z}$. Further note from the introduction that $\psi^{l}(G)$ will implicitly denote that $l \in(0, \infty) \cap \mathbb{Z}$ and similarly $\Psi_{l}(G)$ will implicitly denote that $l \in(-\infty, 0) \cap \mathbb{Z}$.

Theorem 10 Let G be a finite abelian group with $G \simeq H_{1} \times \ldots \times H_{k}$ where each H_{i} is an abelian p_{i}-group and the p_{i} are distinct primes for $\mathfrak{i}=1, \ldots, k$. Then

$$
\psi^{l}(\mathrm{G})=\psi^{\mathrm{l}}\left(\mathrm{H}_{1}\right) \ldots \psi^{\mathrm{l}}\left(\mathrm{H}_{\mathrm{k}}\right), \quad \Psi_{\imath}(\mathrm{G})=\Psi_{\imath}\left(\mathrm{H}_{1}\right) \ldots \Psi_{\imath}\left(\mathrm{H}_{\mathrm{k}}\right)
$$

where $\psi^{l}\left(\mathrm{H}_{\mathrm{i}}\right)$ and $\Psi_{l}\left(\mathrm{H}_{\mathrm{i}}\right)$ for $\mathfrak{i}=1, \ldots, \mathrm{k}$ are computed as follows:
(i) If $\mathrm{H}_{i} \simeq \mathrm{C}_{\mathrm{p}_{i}^{n}}$ then

$$
\psi^{l}\left(H_{i}\right)=1+\frac{p_{i}-1}{p_{i}} \sum_{r=1}^{n} p_{i}^{r(l+1)}
$$

and

$$
\Psi_{l}(G)=p_{i}^{-n l}\left(1+\frac{p_{i}-1}{p_{i}} \sum_{r=1}^{n} p_{i}^{r(l+1)}\right)
$$

(ii) If $\mathrm{H}_{\mathrm{i}} \simeq \mathrm{C}_{\mathrm{p}_{i}^{r_{1}}} \times \mathrm{C}_{\mathrm{p}_{i}^{r_{2}}} \times \ldots \times \mathrm{C}_{\mathrm{p}_{i}^{r_{n}}}$, where $1 \leqslant \mathrm{r}_{1} \leqslant \mathrm{r}_{2} \leqslant \ldots \leqslant \mathrm{r}_{\mathrm{n}}$, and $r_{1}+\ldots+r_{n}=r$ then $\psi^{l}\left(\mathrm{H}_{\mathrm{i}}\right)$ and $\Psi_{l}\left(\mathrm{H}_{\mathrm{i}}\right)$ can be determined recursively as follows
(iia) If $\mathrm{r}_{1}>1$ then

$$
\begin{aligned}
\psi^{l}\left(H_{i}\right) & =p_{i}^{r_{1}} R_{l}\left(C_{p_{i}^{r}}^{r_{2}} \times \ldots \times C_{p_{i}^{n_{n}}}\right) \\
& +\sum_{z=2}^{r_{1}}\left\{\left(p_{i}^{z}-p_{i}^{z-1}\right)\left[\left(p_{i}^{l z}-1\right)+\sum_{j=1}^{z-1}\left(p_{i}^{l z}-p_{i}^{l \mathfrak{l}}\right) N_{j}\right]\right\} \\
& +\left(p_{i}-1\right)\left(p_{i}^{l}-1\right), \quad N_{j}=\left(\left(p_{i}^{j}\right)^{n-1}-\left(p_{i}^{j-1}\right)^{n-1}\right),
\end{aligned}
$$

and

$$
\Psi_{l}\left(H_{i}\right)=p_{i}^{-r l}\left[\begin{array}{l}
p_{i}^{r_{1}} R_{l}\left(C_{p_{i}^{r_{2}}} \times \ldots \times C_{p_{i}^{r_{n}^{n}}}\right) \\
+\sum_{z=2}^{r_{1}}\left\{\left(p_{i}^{z}-p_{i}^{z-1}\right)\left[\left(p_{i}^{l z}-1\right)+\sum_{j=1}^{z-1}\left(p_{i}^{l z}-p_{i}^{l j}\right) N_{j}\right]\right\} \\
+\left(p_{i}-1\right)\left(p_{i}^{l}-1\right), \quad N_{j}=\left(\left(p_{i}^{\mathrm{j}}\right)^{n-1}-\left(p_{i}^{j-1}\right)^{n-1}\right),
\end{array}\right]
$$

(iib) If $r_{1}=1$ then

$$
\psi^{l}\left(H_{i}\right)=p_{i} \psi^{l}\left(C_{p_{i}^{r_{2}}} \times \ldots \times C_{p_{i}^{r n}}\right)+\left(p_{i}-1\right)\left(p_{i}^{l}-1\right)
$$

and

$$
\Psi_{l}\left(H_{i}\right)=p_{i}^{-r l}\left(p_{i} \psi^{l}\left(C_{p_{i}^{r_{2}}} \times \ldots \times C_{p_{i}^{r n}}\right)+\left(p_{i}-1\right)\left(p_{i}^{l}-1\right)\right)
$$

4 Further comments for $l=-1$

We conclude this paper by introducing some results related to Ψ_{-1}. We begin with some examples computed in GAP [5].

4.1 Some examples

We implement Theorem 10 in GAP [5] and checked the correctness of the formulas by running different examples against the results obtained by the brute force method where we run the sum over all elements in a group. We record the run time (measured in seconds on a MacBook Pro with 2.2 GHz 6 -Core Intel Core i7 processor and 16 GB of RAM) for computing Ψ_{-1} for some groups of size >100000 in Table 1.

Table 1: Runtime for computing $\Psi_{-1}(G)$

G	Size of the group	Runtime in seconds	
	Using Theorem 10	Using brute force method	
$\mathrm{C}_{590625} \times \mathrm{C}_{5}$	2953125	<1	20.845
$\mathrm{C}_{48600} \times \mathrm{C}_{120}$	5832000	<1	54.718
$\mathrm{C}_{1944} \times \mathrm{C}_{648} \times \mathrm{C}_{6}$	7558272	<1	69.003
$\mathrm{C}_{210912} \times \mathrm{C}_{338}$	71288256	<1	612.248

4.2 Some further comments

We begin with the following lemma.
Lemma 11 For any finite group G with $|\mathrm{G}|>1$, we have $\mathrm{R}_{-1}(\mathrm{G})<\psi(\mathrm{G})$.

Proof - For any $x \in G$ with $x \neq 1$ we have $o(x)^{-1}<\mathrm{o}(x)$ and thus the result follows since $\sum_{x \in G} o(x)^{-1}<\sum_{x \in G} o(x)$ if $|G|>1$.

The following corollary is now immediate from Lemma 11 and the main theorem of [2].

Corollary 12 For all non cyclic groups G with $|\mathrm{G}|=\mathrm{n}>1$, we have $\Psi_{-1}(G)<n \psi\left(C_{n}\right)$.

Using our results in Section 3 we now prove the following.
Theorem 13 If G be an abelian group order n, then $\Psi_{-1}(G)<n \Psi_{-1}\left(C_{n}\right)$.
Proof - Let $G \simeq H_{1} \times \ldots \times H_{k}$ where each H_{i} is an abelian $p_{i^{-}}$ group and each p_{i} is distinct prime for $i=1, \ldots, k$. Let

$$
H_{i} \simeq C_{p_{i}}^{r_{i}, 1} \times C_{p_{i}}^{r_{i}, 2} \times \ldots \times C_{p_{i}^{i, r_{n}}}
$$

where $r_{i}=r_{i, 1}+r_{i, 2}+\ldots+r_{i, n_{i}}$ and $n=|G|=p_{i}^{r_{i}} \ldots p_{k}^{r_{k}}$. Letting $l=-1$ in Theorem 10 we see that

$$
\left(p_{i}^{-z}-1\right)+\sum_{j=1}^{z-1}\left(p_{i}^{-z}-p_{i}^{-j}\right) N_{j}<0 \quad \text { and } \quad\left(p_{i}-1\right)\left(p_{i}^{-1}-1\right)<0 .
$$

As a result, using Corollary 7, we can show inductively that

$$
R_{-1}\left(H_{i}\right)<p_{i}{ }^{r_{i}, 1}+\ldots+r_{i, n_{i}}\left(\left(r_{i, n_{i}}+1\right)-r_{i, n_{i}} p_{i}^{-1}\right) .
$$

A further direct calculation shows that

$$
R_{-1}\left(H_{i}\right)<p^{r_{i}}\left(\left(1-p_{i}^{-1}\right) r_{i, n_{i}}-1\right) .
$$

Since $r_{i, n_{i}} \leqslant r_{i}$, again using Corollary 7 , we have $R_{-1}\left(H_{i}\right)<\Psi_{-1}\left(C_{p^{r_{i}}}\right)$. Finally Theorem 10 shows that $\Psi_{-1}(G)<n \Psi_{-1}\left(C_{n}\right)$.

We conclude this paper with the following remark. Note that Theorem 13 is an analogous result of [2, Main Theorem] where it is shown that $\psi(G) \leqslant \psi\left(C_{n}\right)$ where $n=|G|$. However this does not hold for Ψ_{-1}. For example if we take $G=C_{3528} \times C_{24}$ which is a group of order 84672 then a direct computation (using Theorem 10) shows that $\Psi_{-1}(\mathrm{G})=14976864$ which is greater than $\Psi_{-1}\left(\mathrm{C}_{84672}\right)=2757888$.

REFERENCES

[1] H. Amiri - S.M.J. Amiri: "Sum of element orders on finite groups of the same order", J. Algebra Appl. 10 (2011), No. 2, 187-190.
[2] H. Amiri - S.M.J. Amiri - I.M. Isaacs: "Sums of element orders in finite groups", Comm. Algebra 37 (2009), No. 9, 2978-2980.
[3] S.M.J. Amiri - M. Amiri: "Sum of the products of the orders of two distinct elements in finite groups", Comm. Algebra 42 (2014), No. 12, 5319-5328.
[4] C.Y. Chew - A.Y.M. Chin - C.S. Lim: "A recursive formula for the sum of element orders of finite abelian groups", Results Math. 72 (2017), No. 4, 1897-1905.
[5] The GAP Group: "GAP - Groups, Algorithms, and Programming", Version 4.8.4 (2016).
[6] M. TĂrnăuceanu - D.G. Fodor: "On the sum of element orders of finite abelian groups", An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 60 (2014), No. 1, 1-7.

Subhrajyoti Saha
School of Mathematics
Monash University
Melbourne (Australia)
e-mail: subhrajyotimath@gmail.com

