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Abstract
Let G be a finite group and let  (G) denote the sum of element orders of G; in
general  l(G) denotes the the sum of the l-th powers of the element orders G
where l is a positive integer. We further generalise this by introducing  l(G) for
negative integers l. Motivated by the recursive formula for  (G), we consider a finite
abelian group G and obtain a similar formula for  l(G) and  l(G) for l 2 (0,1)\Z
and l 2 (-1, 0)\ Z respectively.
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1 Introduction

Let G be a finite group. For any non-empty subset S of G, let  (S)
denote the sum of element orders of S that is

 (S) =
X

x2S

o(x)

where o(x) denotes the order of x in G. This has been introduced
in [2] and it is also proved that if C is a finite cyclic group of order
same as that of G, then  (G) 6  (C) and the equality holds if and
only if G is cyclic. In [4] and [6] explicit formulas for computing  (G)
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were obtained in case G is abelian. Later in [1] this has further been
generalised by introducing the function

 l(G) =
X

x2G

o(x)l (1.1)

for every positive integer l with  1 =  . In this paper we further
generalise this concept by considering l 2 (-1, 0) \ Z and modify-
ing (1.1) accordingly. For any non-empty subset S of G and l 2 Z \ {0},
we define

Rl(S) =
X

x2S

o(x)l

and if l 2 (-1, 0)\ Z then we write

 l(S) = |S|-lRl(S).

Note that l 2 (0,1) \ Z then Rl(S) =  l(S) as defined in [1]. If we
take l 2 (-1, 0)\Z, then for any subgroup S of G we find that  l(S)
is an integer since o(x) divides |S| for all x 2 S. Motivated by the
formulas in [4], in this paper we consider a finite abelian group G and
obtain a similar recursive formula for computing  l(G) and  l(G)
for l 2 (0,1)\ Z and l 2 (-1, 0)\ Z respectively.

Throughout this paper, p denotes a prime number and '(n) de-
notes the Euler totient function of the positive integer n. A cyclic
group of order n is denoted by Cn. For a group G, the notation
exp(G) denotes the exponent of G which is the smallest positive in-
teger z such that gz = 1G for all g 2 G where 1G is the identity
element of G; without any ambiguity we will denote this identity
element as 1. Unless mentioned otherwise,  l(G) will implicitly de-
note that l 2 (0,1) \ Z and similarly  l(G) will implicitly denote
that l 2 (-1, 0)\ Z.

2 Preliminaries

In this paper we first state some commonly used results; we also
generalise some of these results.
Lemma 1 (see [4], Lemma 1.1) Let n be any positive integer. Then Cn

has exactly '(d) elements of order d for each divisor d of n, and hence we
have  (Cn) =

P
d|n d'(d).
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Theorem 2 (see [3], Lemma 2.5) Let H and K be two finite groups. Then
we have  l(H ⇥ K) 6  l(H) l(K), with equality if and only
if gcd(|H|, |K|) = 1.

Note that Theorem 2 is a generalisation of [1, Lemma 2.1]. We
prove an analogous result in the next theorem for  l. Our proof is
motivated by the proof of [1, Lemma 2.1].

Theorem 3 Let H and K be two finite groups and l 2 Z \ {0}. Then

Rl(H⇥K) 6 Rl(H)Rl(K)

and the equality if and only if gcd(|H|, |K|) = 1.

Proof — Note that o((h, k)) 6 o(h)o(k) for (h, k) 2 H⇥K. Then

Rl(H⇥K) =
P

h2H

P
k2K

o((h, k))l

6 P
h2H

P
k2K

o(h)lo(k)l

=
�P

h2H
o(h)l

� �P
k2K

o(k)l
�

= Rl(K)Rl(K).

In order to see the equality, note that, gcd(|H|, |K|) = 1 if and only
if o

�
(g,h)

�
= o(g)o(h) for each h 2 H and k 2 K. In that case, fol-

lowing the previous part of the proof, it is straight forward to see
that Rl(H⇥K) = Rl(H)Rl(K) if and only if gcd(|H|, |K|) = 1. ut

3 Explicit formulas for finite abelian groups

In this section, we obtain explicit recursive formulas for  l(G)
and  l(G) where G is a finite abelian group. We present this in dif-
ferent cases. This format is inspired by Section 2 of [4]. We start from
a finite cyclic group which will lead to the direct product of a finite
cyclic p-group and a p-group. Finally, we will consider a the most
general case of finite abelian groups. We will conclude this section by
discussing the case  -1(G) as a consequence of our general results.
The proofs of our results in this section are motivated by the methods
used in [4]. We begin with the following result which is Lemma 2.6
of [4].
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Lemma 4 Let H ' Cp
r
1 ⇥Cp

r
2 ⇥ . . .⇥C

prn where 1 6 r1 6 rj for all j
with 2 6 j 6 n. Then for any i 2 {1, . . . , r1}, there are

�
pi
�n

-
�
pi-1

�n

elements of H of order pi.

3.1 Finite cyclic groups

Let G be a cyclic group of order n. Then we know that

G ' Cm1
⇥ . . .⇥Cmk

,

where the m1, . . . ,mk are coprime to each other and n = m1 . . .mk.
The explicit formulas for  (G) are obtained for two special cases
in [4, Proposition 2.1 and Proposition 2.2]. We generalise these results
for  l(G) and  l(G). Recall that  l = Rl for l 2 (0,1)\ Z.

Lemma 5 Let G be a cyclic group of order pn where p is a prime number
and n is a positive integer, then for any non-zero integer l we have

(i) Rl(G) = 1+ p-1

p

P
n

r=1
pr(l+1), and

(ii)  l(G) = p-nl(1+ p-1

p

P
n

r=1
pr(l+1)).

Proof — (i) Using Lemma 1, we get Rl(G) = 1+
P

n

r=1
'(pr)plr.

We know that '(pr) = pr(1- 1/p), thus a straight forward calcula-
tion yields the required result.

(ii) This follows directly from the definition of  l and by using
the previous part. ut

Lemma 6 Let G be a cyclic group of order s = pr1
1

. . . prk
k

where the pi
are distinct primes with ri > 1 for i = 1, . . . , k. Then

(i) Rl(G) =
Q

k

i=1

⇣
1+ p-1

p

P
n

r=1
pr(l+1)

⌘
, and

(ii)  l(G) = s-l
Q

k

i=1

⇣
1+ p-1

p

P
n

r=1
pr(l+1)

⌘
.

Proof — (i) We know that

G ' C
p
r
1

1

⇥ . . .⇥C
p
r
k

k

and pi are all distinct primes. Hence for any element

x = (x1, . . . , xk) 2 G,



Sum of the orders in finite abelian groups 5

we have o(x) = o (x1) . . . o (xk). So, by applying Lemma 5 and Theo-
rem 3 repeatedly, we arrive at the required result.

(ii) This follows directly from the definition of  l and by using
the previous part. ut

The next corollary immediately follows from a straight forward
calculation using Lemmas 5 and 6 and putting l = -1.

Corollary 7 Let G be a cyclic group of order s.

(i) If s = pn where p is a prime number and n is a positive integer, then
 -1(G) = (n+ 1)pn -npn-1.

(ii) If s = pr1
1

. . . prk
k

where the pi are distinct primes with ri > 1, then
 -1(G) =

Q
k

i=1

⇣
(ri + 1)pri - rip

ri-1

i

⌘
.

3.2 Direct product of a cyclic p-group and a p-group

In this section, we obtain a recursive formula for  l(G) and  l(G)
where G is a direct product of a finite cyclic p-group and any p-group.
We begin with the following result (see [4], Lemma 2.3).

Lemma 8 Let G=H⇥K where H and K are p-groups. Then for any (x1,x2)
in G, o

�
(x1, x2)

�
= max {o(x1), o(x2)}.

We now prove the following which is a generalisation of [4, Propo-
sition 2.4]. We follow the same methods used in [4].

Proposition 9 Let G = Cpr ⇥ H where r > 1, and H is a p-group
with exp(H) > pr. Let Nj be the number of elements in H that have or-
der pj. Then

(i)

Rl(G) =

8
>>>>>>>>><

>>>>>>>>>:

prRl(H) +
rX

i=2

8
<

:

⇣
pi - pi-1

⌘
2

4
⇣
pli - 1

⌘
+

i-1X

j=1

⇣
pli - plj

⌘
Nj

3

5

9
=

;

+ (p- 1)(pl - 1), if r > 1

pRl(H) + (p- 1)(pl - 1), if r = 1
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(ii)

 l(G) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

p2r l(H)

+ pr|H|

rX

i=2

8
<

:

⇣
pi - pi-1

⌘
2

4
⇣
pli - 1

⌘
+

i-1X

j=1

⇣
pli - plj

⌘
Nj

3

5

9
=

;

+ pr|H|(p- 1)(pl - 1), if r > 1

p2 l(H) + p|H|(p- 1)(pl - 1), if r = 1

Proof — (i) G is a finite group whose elements are of the for (x,y)
where x 2 Cpr and y 2 H. We now partition G based on the order of
the elements in the first component. In particular we have

Fk =
⌦
(x1, x2) 2 G | o(x1) = pk

↵

and G =
S

r

k=0
Fk. Since Fi \ Fj = ; for i 6= j, we have

Rl(G) =
rX

k=0

Rl (Fk) .

Now let x1 2 Cpr with o(x1) = pi for some i with 0 6 i 6 r. For each
such x1, define Fi,x1

= {(x1, x2) | x2 2 H}. Then we have

Fi =
[

x12Cpr

o(x1)=p
i

Fi,x1
and Rl(Fi) =

X

x12Cpr

o(x1)=p
i

Rl

�
Fi,x1

�

for i = 0, 1, . . . , r. Lemma 4 shows that there are (pi - pi-1) elements
of order pi. As a result,

Rl (Fi) = (pi - pi-1)Rl

�
Fi,x1

�
.

Taking i = 0, we have F0 = F0,1 and thus, Rl (F0) = Rl(H). For i = 1,
each element (x1, x2) in F1,x1

has order same as o(x2) except for (x1, 1)
which has order p. Thus Rl(F1,x1

) = Rl(H) + pl - 1. So

Rl(F1) = (p- 1)(Rl(H) + (pl - 1)).

Case 1: r = 1.
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Then Rl(G) = Rl (F0) + Rl (F1) = pRl(H) + (p- 1)(pl - 1).

Case 2: r > 1.
Let i 2 {2, . . . , r}. For (x1, x2) 2 Fi,x1

with o(x2) = pj, we have
o
�
(x1, x2)

�
= pi if j < i and o

�
(x1, x2)

�
= pj if j > i. If r 0 = exp(H)

then

Rl

�
Fi,x1

�
=

P
i-1

j=0
pliNj +

P
r
0

j=i
pljNj

=

0

@1+
i-1X

j=1

pliNj

1

A+
r
0X

j=i

pljNj +
⇣
pli - 1

⌘

=

0

@1+
r
0X

j=1

pljNj

1

A+
⇣
pli - 1

⌘
+

i-1X

j=1

⇣
pli - plj

⌘
Nj

= Rl(H) +
⇣
pli - 1

⌘
+

i-1X

j=1

⇣
pli - plj

⌘
Nj

Thus we have

rX

i=2

Rl (Fi) = (pr - p)Rl(H) +
rX

i=2

0

@
⇣
pli - 1

⌘
+

i-1X

j=1

⇣
pli - plj

⌘
Nj

1

A .

Now

Rl(G) = Rl (F0) + Rl (F1) +
rX

i=2

Rl (Fi)

and the result follows from a straight forward calculation using

Rl (F0) + Rl (F1) = pRl(H) + (p- 1)(pl - 1).

(ii) This follows directly from the definition of  l and by using the
previous part. ut

3.3 Finite abelian groups

We can now state how to compute  l(G) and  l(G) for any finite
abelian group G. This result is analogous to [4, Proposition] and
we follow the same method. In view of Theorem 2 and 3, the fol-
lowing is a direct application of Proposition 9 and Lemma 4. Re-
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call that  l(G) = Rl(G) for l 2 (0,1) \ Z and  l(G) = |G|
-lRl(G)

for l 2 (-1, 0) \ Z. Further note from the introduction that  l(G)
will implicitly denote that l 2 (0,1) \ Z and similarly  l(G) will
implicitly denote that l 2 (-1, 0)\ Z.

Theorem 10 Let G be a finite abelian group with G ' H1 ⇥ . . .⇥Hk

where each Hi is an abelian pi-group and the pi are distinct primes
for i = 1, . . . , k. Then

 l(G) =  l (H1) . . . 
l (Hk) ,  l(G) =  l (H1) . . . l (Hk)

where  l (Hi) and  l (Hi) for i = 1, . . . , k are computed as follows:

(i) If Hi ' Cpn

i
then

 l(Hi) = 1+
pi - 1

pi

nX

r=1

p
r(l+1)
i

and

 l(G) = p-nl

i

 

1+
pi - 1

pi

nX

r=1

p
r(l+1)
i

!

.

(ii) If Hi ' C
p
r
1

i

⇥C
p
r
2

i

⇥ . . .⇥C
p
rn

i

, where 1 6 r1 6 r2 6 . . . 6 rn,

and r1 + . . .+ rn = r then  l (Hi) and  l (Hi) can be determined
recursively as follows
(iia) If r1 > 1 then

 l(Hi) = pr1
i
Rl(Cp

r2
i

⇥ . . .⇥Cp
rn
i

)

+
r1X

z=2

8
<

:

⇣
pz
i
- pz-1

i

⌘
2

4
⇣
plz
i

- 1
⌘
+

z-1X

j=1

⇣
plz
i

- plj
i

⌘
Nj

3

5

9
=

;

+ (pi - 1)(pl
i
- 1), Nj =

✓⇣
pj
i

⌘n-1

-
⇣
pj-1

i

⌘n-1
◆

,

and

 l(Hi) = p-rl

i

2

666666664

pr1
i
Rl(Cp

r2
i

⇥ . . .⇥Cp
rn
i

)

+
r1X

z=2

8
<

:

⇣
pz
i
- pz-1

i

⌘
2

4
⇣
plz
i

- 1
⌘
+

z-1X

j=1

⇣
plz
i

- plj
i

⌘
Nj

3

5

9
=

;

+ (pi - 1)(pl
i
- 1), Nj =

✓⇣
pj
i

⌘n-1

-
⇣
pj-1

i

⌘n-1
◆

,

3

777777775
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(iib) If r1 = 1 then

 l(Hi) = pi 
l(C

p
r
2

i

⇥ . . .⇥C
p
rn

i

) + (pi - 1)(pl
i
- 1),

and

 l(Hi) = p-rl

i

⇣
pi 

l(C
p
r
2

i

⇥ . . .⇥C
p
rn

i

) + (pi - 1)(pl
i
- 1)

⌘

4 Further comments for l = -1

We conclude this paper by introducing some results related to  -1.
We begin with some examples computed in GAP [5].

4.1 Some examples

We implement Theorem 10 in GAP [5] and checked the correctness
of the formulas by running different examples against the results
obtained by the brute force method where we run the sum over
all elements in a group. We record the run time (measured in sec-
onds on a MacBook Pro with 2.2 GHz 6-Core Intel Core i7 proces-
sor and 16 GB of RAM) for computing  -1 for some groups of
size > 100000 in Table 1.

Table 1: Runtime for computing  -1(G)

G Size of the group Runtime in seconds
Using Theorem 10 Using brute force method

C590625 ⇥C5 2953125 < 1 20.845

C48600 ⇥C120 5832000 < 1 54.718

C1944 ⇥C648 ⇥C6 7558272 < 1 69.003

C210912 ⇥C338 71288256 < 1 612.248

4.2 Some further comments

We begin with the following lemma.

Lemma 11 For any finite group G with |G|>1, we have R-1(G) <  (G).
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Proof — For any x 2 G with x 6= 1 we have o(x)-1 < o(x) and thus
the result follows since

P
x2G

o(x)-1 <
P

x2G
o(x) if |G| > 1. ut

The following corollary is now immediate from Lemma 11 and the
main theorem of [2].

Corollary 12 For all non cyclic groups G with |G| = n > 1, we have
 -1(G) < n (Cn).

Using our results in Section 3 we now prove the following.

Theorem 13 If G be an abelian group order n, then  -1(G)<n -1(Cn).

Proof — Let G ' H1 ⇥ . . .⇥Hk where each Hi is an abelian pi-
group and each pi is distinct prime for i = 1, . . . , k. Let

Hi ' C
p
r
i,1

i

⇥C
p
r
i,2

i

⇥ . . .⇥C
p
i,rn

i

i

where ri = ri,1 + ri,2 + . . . + ri,ni
and n = |G| = pri

i
. . . prk

k
. Let-

ting l = -1 in Theorem 10 we see that

�
p-z

i
- 1
�
+

z-1X

j=1

⇣
p-z

i
- p-j

i

⌘
Nj < 0 and (pi - 1)(p-1

i
- 1) < 0.

As a result, using Corollary 7, we can show inductively that

R-1(Hi) < p
ri,1+...+ri,n

i

i

�
(ri,ni

+ 1)- ri,ni
p-1

i

�
.

A further direct calculation shows that

R-1(Hi) < pri
�
(1- p-1

i
)ri,ni

- 1
�
.

Since ri,ni
6ri, again using Corollary 7, we have R-1(Hi)< -1(Cp

r
i ).

Finally Theorem 10 shows that  -1(G) < n -1(Cn). ut

We conclude this paper with the following remark. Note that The-
orem 13 is an analogous result of [2, Main Theorem] where it is
shown that  (G) 6  (Cn) where n = |G|. However this does not hold
for  -1. For example if we take G = C3528 ⇥C24 which is a group
of order 84672 then a direct computation (using Theorem 10) shows
that  -1(G) = 14976864 which is greater than  -1(C84672)=2757888.
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