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Abstract

The authors examine the relations between the properties of a group G and its
norm Né of Abelian non-cyclic subgroups. In this paper the properties of fi-
nite 2-groups with the cyclic center and the metacyclic non-Dedekind norm of Abe-
lian non-cyclic subgroups, are studied. The complete description of such groups is
obtained.
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1 Introduction

One of the productive directions in group theory is the study of
the influence of some characteristic subgroups (center, derived sub-
group, Frattini subgroup etc.) on the structure of the whole group.
Such characteristic subgroups include different Z-norms of a group.

Recall, that the intersection of the normalizers of all subgroups of
a system X, provided that £ contains all subgroups of a group G with
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some property (for example, I is a system of all Abelian, all non-Abe-
lian, all non-cyclic subgroups of a group) is called a Z-norm of a
group G. It is clear that every Z-norm of a group contains the center
of a group and normalizes all subgroups of the system X (assum-
ing ~ # @).

While studying of X-norms and their influence on the structure of a
group, a number of questions regarding to the choice of the system X
and the restrictions that these Z-norms satisfied arise. If the structure
of Z-norm and the nature of its embedding to a group are known, in
most of cases it is possible to describe the properties and structure
of a group itself. In the most researches such problem solved for the
groups which coincide with their -norms, that is, groups in which
each subgroup of I is a normal subgroup of a group [5, 12, 16, 24].

The first situation, when a X-norm is a proper subgroup of a group
was studied by R. Baer [1] in 1935 for the system X of all subgroups
of a group. He called it the norm of a group G and denoted by N(G).
It should be noted, that interest for the norm N(G) still has been not
decreased as evidenced by the findings [3, 11, 22, 26, 25].

Narrowing the system X of subgroups, it’s possible to get differ-
ent X-norms, which can be considered as generalizations of Baer’s
norm N(G). Among such generalized norms let’s point out the norm
of subnormal subgroups of a group or Wielandt subgroup [2, 27],
A-norm [10], the metanorm [6, 7] and the non-cyclic norm Ng of a
group [13, 17]. If I is the system of all Abelian non-cyclic subgroups,
then the X-norm is called the norm of Abelian non-cyclic subgroups of a
group G and denoted by N&.

In this article the authors continue the investigation of 2-groups
with the non-Dedekind norm of Abelian non-cyclic subgroups, initi-
ated in [18]-[21]. In particular, in [18] the complete description of infi-
nite locally finite 2-groups with such restriction on the norm N3 was
obtained. The structure of finite 2-groups in which the norm N¢ is a
non-metacyclic non-Dedekind subgroup was investigated in [19, 20].
Finally, the finite 2-groups with the non-cyclic center and the non-De-
dekind norm Né were characterized in [21].

The purpose of this paper is to study finite 2-groups with the cyclic
center and the metacyclic non-Dedekind norm N@.
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2 Preliminary results

The norm of Abelian non-cyclic subgroups of a group G (see [14]) is the in-
tersection of the normalizers of all Abelian non-cyclic subgroups of a
group G (assuming that the system of such subgroups is non-empty).

Clearly, all Abelian non-cyclic subgroups are normal in a group G
which contains at least one Abelian non-cyclic subgroup and coin-
cides with the norm N@. Non-Abelian groups with this property
were studied in [16] and were called HA-groups (HA,-groups in the
case of 2-groups). Therefore, if the norm N¢ of a finite 2-group is
non-Dedekind, then it is either HA;-group or non-Dedekind group
without Abelian non-cyclic subgroups. In the latter case, by Theo-
rem 1 of [15] the group also does not contain Abelian non-cyclic sub-
groups. Therefore, we assume that N2 contains an Abelian non-cy-
clic subgroup and is HA-group.

Taking into account the description of finite HA,-groups (see [16]),
we obtain the following characterization of metacyclic non-Dedekind
norm Né.

Lemma 2.1 The norm NQ of Abelian non-cyclic subgroups of a fi-
nite 2-group G is metacyclic and non-Dedekind if and only if N@ is a group
of one of the following types:

1) NA = (@)X (b), la| =2™, [b|=2™,n>2,m>1,[a,b] =a®" ;
2) NA = (a)(b), |a| =2",n>2,[b| =8 b* =a?" ', b~ lab=a".

Further we need the description of finite non-metacyclic 2-groups
whose proper subgroups are metacyclic. Finite p-groups with such a
property are studied in [4]. As a corollary of the main result in [4],
we obtain the following statement.

Lemma 2.2 Let G be a finite non-metacyclic 2-group. Each proper sub-
group of G is metacyclic if and only if G is a group of one of the following
types:

1) G = (a) x (b) x (c),|la| =|b| =|c| =2;
2) G=Hx(b), H=(hy, h2),[hi| = [hz| = 4,|b| = 2hi = hi=[hy, hy];
3) G = ({a) x (b)) N (

)X (c),lal =4,]bl =lc| =2, [a,c] =1,[b,c] = a?;
4) G = ((a) x (b)){(c),la] = |b|] = lc|] = 4,c¢2 = a?b?, [c,a] = a?,

Let’s consider some properties of the norm N2 of Abelian non-cy-
clic subgroups in some 2-groups.
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Lemma 2.3 If a locally finite 2-group G contains a normal cyclic sub-
group (g) of order 4 and does not contain an elementary Abelian subgroup
of order 8, then g € Né.

Proor — Let A be an arbitrary Abelian non-cyclic subgroup of G. By
the condition of lemma a group G doesn’t contain an elementary Abe-
lian subgroup of order 8 and g? € Z(G). Therefore g*> € A. Then

[g.x] € (g°) CA

for an arbitrary element x € A. Hence A is g-admissible subgroup
and g € NQ. The lemma is proved. 0

Lemma 2.4 (see [15], Lemma 4) If the norm N¢ of Abelian non-cyclic
subgroups of a finite 2-group G is non-Dedekind, then G does not contain
any elementary Abelian subgroups of order 8.

The next statement is the direct corollary of Lemmas 2.3 and 2.4.

Corollary 2.5 Let G be a finite 2-group with the non-Dedekind norm N3
of Abelian non-cyclic subgroups. If G contains a normal generalized quater-
nion group

H=(hy, hy), Iyl =2" n>3lhyl=4h"" =h3h;"hih, =h;',
zn—Z
then h3 c Né.

Further we need the following result by M. Drushlyak [8].

Lemma 2.6 Let G be a locally finite 2-group with non-Dedekind norm N3
of Abelian non-cyclic subgroups. If the center Z(NQ) of the norm N is
cyclic, then the central involution a belongs to every cyclic subgroup of
composite order of a group G.

Let’s denote the lower layer of G (the subgroup generated by all
elements of a prime order of a group G) by w(G).

Lemma 2.7 Let G be a finite 2-group with metacyclic and non-Dedekind
norm N@ of Abelian non-cyclic subgroups. If the norm N is different
from a group of the type 1) of Lemma 2.1 for m = 1, then N@ contains all
involutions of G and w(NQ) = w(G).
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ProorF — Suppose, contrary to the condition of the lemma, that G
contains the involution x ¢ w(Né). If the center Z(G) of a group G is
non-cyclic, then (x) w(Ng) is an elementary Abelian group of order 8,
which contradicts Lemma 2.4. Therefore the center of G is cyclic.

Let N@ be a group of one of the type 1) for m > 1 or 2) of Lem-
ma 2.1. By the condition

(09, w(NB)] € (xa®" ') ING = (a®" ),
where a2"' € N@ is the central involution of a group, we have
[(x), (N3)?] = E. But then [(x), w(N@)] = E and G contains an ele-
mentary Abelian subgroup of order 8, which contradicts Lemma 2.4.
The lemma is proved. 0

Let us consider another property of finite 2-groups that will be
used later.

Lemma 2.8 Let G be a finite non-Abelian 2-group in which all elements
of order not exceeding 4 are contained in the normal subgroup

H = (a) x (b),

where |a| =4, |bl =2, (a)9G and b & Z(G). Then G is HA,-group of one
of the following types:

1) G =(g) (b), Igl=2">8,[b|=2,[g,b] = 2" = a2
2) G=(g)(h),|g/=2">8,h=89*" =h*=a? hlgh=g"

Proor — Let G satisfies the conditions of the lemma. Then G has
no any quaternion subgroup and every non-cyclic subgroup of G
contains the subgroup w(G) = (a?) x (b).

Since the factor group G/w(G) has a unique involution, it is ei-
ther a cyclic or a quaternion 2-group. If G/w(G) is a cyclic group,
then G’ C w(G) and all Abelian non-cyclic subgroups are normal
in G. Therefore, G is a non-Hamiltonian HA-group. By the descrip-
tion of such groups (see [16]) G is a group of the type 1) of this
lemma.

Let G/w(G) be the quaternion group of order 8. It is easy to prove
that in this case all Abelian non-cyclic subgroups are normal in G
and G is a non-Hamiltonian HA,-group of the type 2) of lemma
forn = 3.
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Now let G/w(G) be a generalized quaternion group of order great-
er than 8. By Lemma 2.2 a group G does not contain non-metacyclic
subgroups, in which all proper subgroups are metacyclic. There-
fore, G is metacyclic and

G = (g)(h),(g) <G.

Suppose |g| < 8 or |h| < 8. Then in a generalized quaternion group
G/w(G) =G ~ (g)(h)

at least one of the elements g or h is of order 2, which is impossible.
Thus, |g| > 8 and |h| > 8.

If |h| > 8, then (h) < G by the structure of the factor group G. On
the other hand, by the proved above (g) 4G, which is impossible in a
generalized quaternion group of order greater than 8. Hence, |h| = 8.

Let |G| = 2™ > 16. Then |G| = 22, |g| = 2™ and h?* = gznil. In the
factor group G = G/w(G) the following equality takes place

h! ghw(G) = g*] w(G).

Considering that (g) <G, we have h™'gh = g%, where g~ 'w(G) is
equal to g*w(G) and gst! belongs to w(G).

If s = —1, then all Abelian subgroups are normal in a group G.
Hence G is a HA;-group of the type 2) of this lemma for n > 3.
Lets # —1. Then s = —1 +2n 1 and [g,hz] = 1. Since

R (gh?)h = (gh?) ",
we have

G = (gh?)(h),

21’171

where h* = (gh?)”.  So, G is a group of the type 2) of this lemma. O

3 The main results
In this section the finite 2-groups with the cyclic center and the meta-

cyclic non-Dedekind norm N2 of Abelian non-cyclic subgroups are
studied. Their structure is described in the following theorem.
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Theorem 3.1 An arbitrary finite 2-group with the cyclic center and the
non-Dedekind metacyclic norm N of Abelian non-cyclic subgroups is a
group of one of the following types:

A:G
G 7
2) G = (a)x(b),la| =2™,b| =2"™,n>2,m > 1,[a,b] = azn%,
N3 =G;
3) G = (y) x (b),lyl =8,[bl =2,[y, bl =y% Ng = (y?) X (b);

4) G = (Hx (0){a),H = (hy,hy), Iy = 2% > 4,n3"" = h3,
a2 =h3"%, hy"hyhy = hy'L bl = 2, [a,hy] = a%, [q,hy] = b,
[a,b] = a®; N& = (a) X (b);

5 G = (y)b), Ynd) =FE [y =25k >4 bl =2"m > 2,

—y2 2™ (5,2) = 1,1 €{0, 1} NA = (2™ ') X (b).

=

7

Proor — The sufficiency of the conditions of the theorem can be
verified directly. Let us prove their necessity. Let G and its norm
of Abelian non-cyclic subgroups satisfy the conditions of the theo-
rem. Then N3 is a group of one of the types 1) or 2) of Lemma 2.1.
If G = Ng, then G is a group of the type 1) or 2) of this theorem.

Let’s continue the proof in Lemmas 3.2-3.7, depending on the
structure of the norm Né.

Lemma 3.2 Ifa finite 2-group G has the norm N@ of Abelian non-cyclic
subgroups of the type

NG = (a)(b),

where |a] = 2™,n > 2,|b| =8, a2 = b4 b Tab = a !, then all Abe-
lian non-cyclic subgroups are normal in G and G = N@.

Proor — Let G have the norm N of Abelian non-cyclic subgroups
of the mentioned type. Then the lower layer of the norm

21172

w(NG) = {a®" ) x (™ "b?)

is an elementary Abelian group of order 4 with " =a € Z(NQ)
and a2 b2 = a ¢ Z(Né). The subgroup w(Né) contains all invo-
lutions of this group by Lemma 2.7. Let’s prove that N2 also contains
all the elements of order 4 of this group.
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Put
2n72

H= (a2 w(NA) = (a7 x (az).

Then H< G as the product of two characteristic subgroups of Ng.
Suppose that there exist an element y € G\H, [y| = 4. Since the cen-
ter of the norm N is cyclic, the central involution a; belongs to each
cyclic subgroup of composite order by Lemma 2.6. Thus y2 = a; € H.
Therefore, the group
Gi = (y)H

has order 16 and the factor groups Gj /w(Né) and Gq/ <a2n72> are
Abelian. Thus o
Gl Cw(NG)N (@ ) = (ar).

If [y, i 1, then Iyazndl = 2, which contradicts Lemma 2.7.
So,

n—2 2

ly,a =y~ =ay.

Let A = (y) w(Né). Then |A| = 8 and w(Né) contains all involu-
tions of this group by Lemma 2.7. Hence, the subgroup A is Abelian.
Since A is N¢-admissible subgroup,

[(y), N3l C ANNG = w(NQ).

So, a” 'ya = ya‘f‘a?, «, B €{0,1}. Then a—2ya? :ya%“aéﬁ =y and
ly, aznfz] =1, which contradicts the proved above. Hence,y € HC Né.
Then the subgroup H satisfies all the conditions of Lemma 2.8 and G
is HA-group of one of the types 1) or 2) of Theorem 3.1. In both
cases we have G = N¢ and G is a group of type 1) of Theorem 3.1.
The lemma is proved. O

Further we consider finite 2-groups with the norm of Abelian non-
cyclic subgroups of the type 1) of Lemma 2.1:

NA = (@)X (b),la] =2™,b| =2™,n >2,m > 1,[a,b] = a" ,

where w(Né) ¢ Z(G).

Clearly, that the center of a group G with such a norm N§ for
m > n > 2is non-cyclic. Therefore, we assume further thatn > m > 1
orn>m=1.

Lemma 3.3 If the norm NQ of Abelian non-cyclic subgroups of a fi-
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nite 2-group G is a group of the type
NG = (a) X (b),la] =4,|b| = 2, [a,b] = a?,
and NQ # G, then G is a group of the type 3) of Theorem 3.1.
ProoF — Let the norm N¢ of Abelian non-cyclic subgroups of G be
a group of order 8. Denote by C = Cg(N@Q) the centralizer of N@ in G.

It is known that the automorphism group of the dihedral group Dg
of order 8 is isomorphic to Dg, Aut(Dg) ~ Dg. So, [G: C] < 8.

Let’s consider the subgroup G = C-N2. Since N N C = (a?), we
obtain |G1/C| = 4. Hence, in the chain of subgroups

GDGDC

we get |G/C| < 8,/G1/C| =4,|G/G1] < 2. So,

G =Gi(y) = (C-Ng)(),

where y2 € G7. By Lemma 2.4 a group G does not contain any el-
ementary Abelian subgroups of order 8. So, C has a unique involu-
tion a? and it is a cyclic or a generalized quaternion 2-group.

Let C be a generalized quaternion 2-group of order greater than 8,
C= <h1 ’ h2>/

where |hy| = 2% n > 3,z = 4,03 = hZ = a2 h;"hyhy = Ryl
By Corollary 2.5 h2" " € N&. So

h2" e NANC=Z(ND),

which is impossible.
Suppose that C is the quaternion group of order 8. Then

G; =C-Ng

is the central gluing of the quaternion group and the dihedral group
of order 8. Let’s prove that C contains a cyclic subgroup of order 4
which is normal in G.

Let hy € C,|hq| = 4. Then it follows from the condition [hy,y] € C
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that C<G. If [hy,y] € (hy), then (hy) <G and by Lemma 2.3
h; € NgNC e Z(NQ),
which is impossible. So, [hy,y] ¢ (h;). Hence
Ilhy,yll=4 and [hy,yl =hy,

where [hy| = 4, hy € (hy). Thus, C = (hy,h,), where h% = h2,
hy; "hihy = hy! and y~Thyy = hhy.

Since y2 € C- N2, we have y 2hyjy? = h[", where (m,2) = 1. On
the other hand,

Yy ?hy? =y Thihoy =y Thiyy Thyy = hihoy ™ Thoy.

So, hT* = hyhyy~'hyy and y~'hoy = hy 'h* 1. Thus,
y_lhzy = hf or y_1h2y = hy.

In both cases (h;) <G and therefore h; € Z(Né), which contradicts
the condition. This means, that C cannot be the quaternion group of
order 8.

It remains to consider the case when C = (c) is a cyclic subgroup.
Suppose that |c] = 2™ > 4. By Lemmas 2.3 and 2.4 2" ¢ Na.
But in this case the element ¢2" * is contained in Z(Né), which is
impossible. So, |[C| = 2 and C = <a2). Further, by the conditions
C C N3, G=(C-N@){y) and y? e (C-N@), we have G = N2 - (y).
So,

G/C = Ng(y)/(a?) = ((@) x (b)) (y),

where 2 < [y| < 4. Taking into account that G/C is isomorphic
to some subgroup of the dihedral group of order 8, we conclude
that [y| = 2. Then from the condition |G/(a)| = 4 it follows that the
group G/(a) is Abelian and G’ C (a).

Let C; = Cg(a) be the centralizer of element a in G. Since b ¢ Cq,

G =Cy > (b).

Then by the conditions |C;| =8 and Z(C¢) O (a) we conclude, that C;
is an Abelian group.
Suppose, that C; is a non-cyclic subgroup. Then we can assume
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that
Ci1 ={a) x {x), x| = 2.

Taking into account that the subgroup (a?) x (x) is (b)-admissible,
we have
G’ C ({(a®) x (x)) NN@ = (a?).

Since every Abelian non-cyclic subgroup of G contains (a?), it is nor-
mal in G and therefore G = N2, which contradicts the condition.
So, Cy1 = (y) is a cyclic subgroup of order 8,

G =y x(b)y*=a

As G contains a cyclic subgroup of index 2, Theorem 12.5.1 [9] yields
that b~'yb = y3. Finally, we have

G = () (b),
where [y| = 8,[b| = 2,b~'yb = y3. Thus, G is a group of the type 3)
of Theorem 3.1. O
Lemma 3.4 If the norm NQ of Abelian non-cyclic subgroups of a fi-
nite 2-group G is a group of the type
NA = (a)y N (b),|la]| =2",n > 2,|b| = 2,b 'ab=qa""!

and G # NQ, then G is a group of the type 4) of Theorem 3.1.

Proor — Let G have the norm of the Abelian non-cyclic sub-
groups of the given in the condition of the lemma type.
Since w(NQ) = <a2n71> x (b) is a characteristic subgroup of N¢&, we
have w(N3) < G.

Denote by C = Cg(w(NQ)) the centraliser of w(Ng) in G.
Then C< G and [G: C] = 2. Since a ¢ C, we can assume that

G=C-(a),a? e C.
Consider the factor group
C =C/(b).

By Lemma 2.7 the subgroup w(Ng) contains all involutions of its

centralizer. Since the element a; = a2" ' belongs to every cyclic sub-
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group of composite order of a group G by Lemma 2.6, C contains
a unique involution. Therefore, the factor group C is a cyclic or a
generalized quaternion group.

1) Let C be a cyclic 2-group. Then C is an Abelian group with a
complementary subgroup (b) and C = (x) x (b). Since a? € C, it
follows that a? € Z(G) and

G =C-{a) = (09 x (b)) (a).
Consider the factor group
G = G/w(NR) ~ (x)(a),

where (@2) C (X). Since G has a central cyclic subgroup of in-
dex 2, G’ C (a" %) by Theorem 12.5.1 of [9].

If G’ = E, then G’ C w(N@) and [a,x] = aﬁ"bﬁ, where «, 3 € {0, 1}.
So, [a?,x] = a? =1, f = 0 and therefore [a,x] € (a;). Thus, in this
case G’ C (a7) and G = Né, which is impossible.

Now let G/ = <’dzn72>. Put [a,x] = azniz“bf’, where («,2) = 1
and B €{0,1}. Since a? € Z(G) and G’ ¢ w(Né), we have

(,2) = (B,2) =1 and [a,x] = at2" p.

On the other hand, x?b € Z(G), so x2b = a?.

If |a| = 8, then x?> = a?b, x| = 8 and G = (a,x) is a HA-group,
which is impossible, because G # Né. Therefore, |al > 8. Then |x| > §,
xa—1¥2" % = 2 and <a1,xa*1¢2n73) is an Abelian non-cyclic sub-
group. But,

n—3 n—2 n—3 n—3
a "xa 12" Ta=xa™?" Tba TP £ (ag,xa 1T )

and a € Ng (<a1, xa*1¢2n_3>), which contradicts the definition of
the norm Né. Therefore, this case is impossible.
2) Let C be a generalized quaternion group

C = (h1,hy),

_ _ S I S P
where [R7| = 2% > 4,[h,| = 4,7  =h3,h, hho=h; .
Denote the preimages of the elements h; and h; by hy and h;.
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Since hy and h; are of composite order,
(1) Nw(NG) = (h2) Nw(NG) = (a1)

by Lemma 2.6.

By the defining relations for C, we obtain hz1h1h2 = h1_1bm.
If m # 0, then the subgroup (hih;) is of order 4 and does not con-
tain aq, which contradicts Lemma 2.6. So, m = 0, h51h1 hy, = hT]
and

C=Hx (b),

where H = (hy, h;,) is a quaternion 2-group, |h;| = 2K > 4. Tt follows
from the conditions a? € C and (a?) = Z(N3) <G, that a®> = h{b".
Since
[a,h] € (N@ N (b, h)) = w(NQ)

for an arbitrary element h € H\(hy) and |h| = 4, [a, h;] € w(Né),
[a,hih,] € w(Né). Therefore, [(a), H] C w(Né).

If H is the quaternion group of the order 8, then |a| = 8 and
G’ C w(NQ). Since in this case every Abelian non-cyclic subgroup
of G contains w(Né), it is normal in G and G = Né, which contra-
dicts the condition.

A

So, we assume that [H| > 8, where |h1|=2% > 4. Since [a,h,] € w(N c)
we have [a?, h;] € (a7). On the other hand,

[a?, ha] = [h§b', hyl = [h], hy] = h 2.

Thus, s =0 (mod 2" 2), a? = h%kizs‘ bt and

-2 -1
2k S1bt)2 :h%k S1 :ail.
Finally, we have (s1,2) = 1 and |a| = 8 again.

Let us consider the action of the element h; on the element a. Since
[a,h1] € w(NQ),
hy'ahy = aafbP.

Then h]_1 a’hy = ctzag3 . On the other hand, we have h1_1 a’hy = a?,
so B = 0 and [a, hy] = af, « € {0,1}. Since (a_1h$k735‘)2 = ajbt,

k—3
where 1 € {0,1}, the subgroup <a_1h$ *1) has a composite order
and does not contain the involution a; for t # 0, which contra-
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dicts Lemma 2.6. Therefore, a? = h%kizs‘ , where (s1,2) = 1.
Considering that [a, h;] € w(Né), let [a,hy] = aT*b". Then by the
condition -
(a2, hy] = [R5 751 hol #1,

we have r # 0 and [a, hy] = b. Thus, in this case G is a group of the
type 4) of Theorem 3.1. O

From the proof of Lemma 3.4 we obtain the following statement.

Corollary 3.5 If the norm of Abelian non-cyclic subgroups N of a fi-
nite 2-group G is a group of the type

NA = (a) x (b),|a| =2™ > 8,[b| = 2,[a,b] = a?" ',
then Né = G.

Lemma 3.6 If the norm of Abelian non-cyclic subgroups NQ of a fi-
nite 2-group G is a group of the type

NQ = (a) X (b),lal = 4,|b| =4, [a,b] = a?,
then w(Né) C Z(G).

ProorF — Let the norm N satisfy the conditions of the lemma.
If Né = G, then the statement of the lemma is obvious. Therefore,
further assume that Né‘ # G.

By Lemma 2.7

W(NG) = (@) x (p2") = w(6)
and therefore w(Né) <G. Assume that w(Né) ¢ Z(G) and denote the
centralizer of the lower layer w(N@) ina group G by C = Cg (w(NQ)).
Then by Lemma 3 of [19]
G=C- <y>/

where yz € C, ly| > 4. Since Né C C and w(Né) C Z(C), by Lem-
ma 20 of [21] C =N@ = N2 and

G=C-(y)=NG-(y) = () » (b))(y),
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where [y| = 8. By the condition [y, b%] # 1 we have (y) (" w(G) = (a?).
Let’s consider the factor group

G =G/w(G) = ((@ x (b))(y).

Since UZ € C and G has three involutions, G is a metacyclic group,

G = (y1)(b1),
where [y =4 and (y;) < G. Thus, by Theorem 12.5.1 of [9] we have

— 1
by U

O“ \

1=y, or by 'yiby =17, .

In the first case G’ C w(G). Since all Abelian non-cyclic subgroups
contain w(G), NA G which is impossible. Therefore,

= —1_ =

b1 Yo =1y
and G is the dihedral group. But then [j1b;| = 2 and the preimage
of the element y;b; is of order 4. By Lemma 3 of [19] all elements

of order 4 are contained in C, which is impossible. Therefore, the
assumption is false and w(Né) C Z(G). O

Lemma 3.7 If the norm NQ of Abelian non-cyclic subgroups of a fi-
nite 2-group G is a group of the type

n—1

N2 = (a) % (b}, lal = 2™, [b| =2™,n > 2,n > m > 2,[a,b] = a2

and w(NQ) ¢ Z(G), then G is a group of the type 5) of Theorem 3.1.

ProoF — Let a group G and its norm N2 of Abelian non-cyclic sub-
groups satisfy the condition, w(N3) ¢ Z(G) and N¢& # G. By Lem-
ma 2.7

a" Y x 2™ = w(G) «G.

Since w(G) ¢ Z(G) an 2n7]>

d
1
we have a; = a?" €Z

Denote C = Cg(w(G)

G)and by = b2™ ' ¢ Z(G).

=
(a is the characteristic subgroup in N2,
(
). By Lemma 3 of [19]

G=C-(y),

where y? € C, ly| > 4 and N2 = N@. Since the subgroup C has
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the non-cyclic center and the non-Dedekind norm of Abelian non-
cyclic subgroups, by Theorem 16 of [21] either C is a HA-group

and C=N¢ = N}G\, or C is a group of the type 2) of this theorem.

Let us prove that a group G is metacyclic. In fact, otherwise it
contains a non-metacyclic subgroup H, in which all subgroups are
metacyclic. Then expH < 4 by Lemma 2.2. Since the centralizer C
contains all elements of order 4 of a group G, H C C. This contradic-
tion proves, that

G = (g)(h)

is a metacyclic group with three involutions and the non-central
lower layer. By the description of such groups (see Theorem 1.1.4
of [23]), we conclude that G is a group of one of the types:

1) G =(g)(h), lgl = 2%, || =2P, (g)N (h) =E, h - Tgh=g~ 12" ",
x>2,p>2,a—p>1,;

2) G = (g)(h), lg = 2%, || = 28, (g) N (h) =E, h~"gh = g'+2* ",
x>2,p>2,0—p>1;

3) G = (g)(h), Igl = 2% Ih| = 2B, h=Tgh = g'*+2", (g) N (h) = (g?"),
T<r<l<oa<B, Z(G)=(g*" "Y(h2" ).

1) Let G be a group of the first type. Then h2*' ¢ z(G),h e C
and g ¢ C. Taking into account the structure of the subgroup C, we
conclude that h € N&. If C = NQ, then C’ = (g%*""). On the other
hand, in a group of the type 1) we have G’ = (g?), C’ = (g*) and
therefore o = 3, which is impossible, because otherwise 3 = 1.

So, C is a group of the type 2) of Theorem 16 of [21]. In this case,
IC’| = 271 where r is the smallest integer such that (gz)zf € Né.
Then by the equality |C’| = (g% = 2%2, we have r+1 = «x—2
and the smallest power of the element g contained in Ng is the ele-
ment gf+1 = 92“72 of order 4, which is impossible.

2) Let G be a group of the type 2). As in the previous case we
conclude, that h2P ¢ Z(G),g ¢ Cand h € Né. Let’s denote the
smallest power of the element g contained in Né‘ by g% . If C = Né,

then g2 € C. Then by the condition C’ = <920H> = (a7) we have that

h~1g2h = gzngx—f5+1
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and 2% P+l =0 (mod 2% 7). So
x—B+1>2a—1,2—p=>0 and p <2
By the condition of lemma, it follows that 3 =2 and
h! gh = g1+2°¢*2.
Therefore, G is a group of the type 5) of Theorem 3.1 fory =g,b =h,

k=am=pf=2and t=0.

Let C # N@. Then C is a group of the type 2) of Theorem 16 of [21].
Since g2’ is the smallest power of the element g contained in Né

and (NQ)’ = (g2, [g%",h] € (g2*'). On the other hand, by the
defining relations of a group of the type 2) we obtain

h_1 gzrh _ 92T91+2T+(X76.

So, 27**=P = 0 (mod 2%~ ") and B <+ 1. Since by Theorem 16
of [21] 11 < B—2 and r1 = r—1 for the exponent of the small-
est power (92)2” of the element g contained in N3, r—1 < f—2
and 3 > r+ 1. Therefore, B = v+ 1 and G is a group of the type 5)
of Theorem 3.1 fory=g,b=h,k=am=p3=r+1and t=0.

3) Let G be a group of the type 3). In this case
w(G) = (g*" ") x (g2 TR,

By the cyclicity of the center Z(G) = (g?" ')(h?* ") and the condi-
tion B > o we conclude, that (g2" ') C (h2" ). Then

x—r>21l>r+1and « > 2r+ 1. On the other hand for & < 2r+1 we
have [g?',h] = 1 and g?' € Z(G), which is impossible because r < L.
Therefore, x =2r+1land l =1+ 1.

It is clear, that the group G can be represented as
2B
G =(h)(gh™*" "),

where (h) N (gh=2°"") = E, |h| = 2B,|gh—2""%| = 27+1. Let's de-
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notey=hand b= gh_zﬁ%. Then
_ T, _9oPB—oa+r B—o+r T p—r—1
L e | L
A norm N¢ of this group is the subgroup N3 = (y2") X (b) and G is

a group of the type 5) of Theorem 3.1 for k =  and m = r + 1.The
lemma is proved. 0

The proof of the theorem is complete.
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