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Abstract
A subgroup H of a group G is called contranormal in G if HG = G. A subgroup H
of a group G is called core-free in G if CoreG(H) = h1i. Obviously, these two types
of subgroups are the complete opposite of normal subgroups. In this paper, we will
obtain the structure of soluble and non-soluble groups whose non-normal subgroups
are contranormal. Moreover, we will obtain the structure of some periodic groups
whose non-normal subgroups are either contranormal or core-free.
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1 Introduction

Let G be a group. The following two normal subgroups are associ-
ated with any subgroup H of G: HG, the normal closure of H in G,
the least normal subgroup of G that contains H, and CoreG(H), the
normal core of H in G, the greatest normal subgroup of G which is
contained in a subgroup H.

We have
HG = hHx| x 2 Gi

* The first two authors are supported by the National Research Foundation of
Ukraine (project 2020.02/0066)
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and
CoreG(H) =

\

x2G

Hx.

A subgroup H is normal in G if and only if CoreG(H) = H. In this
sense, the subgroups H, for which CoreG(H) = h1i, are the complete
opposite to the normal subgroups. A subgroup H of a group G is
called core-free in G if CoreG(H) = h1i.

A subgroup H is normal in G if and only if HG = H. In this sense,
the subgroups H, for which HG = G, are the complete opposites to
the normal subgroups. A subgroup H of a group G is called contranor-
mal in G if HG = G. J.S. Rose has introduced the term “contranormal
subgroup” in the paper [20].

For each subgroup H of a group G we have the following two
extreme and opposite situations:

HG = H or HG = G,

and, respectively,

CoreG(H) = H or CoreG(H) = h1i.

The following extreme cases immediately appear. The first case:
every proper subgroup of G is normal. Such group is called a De-
dekind group. A description of Dedekind groups has been obtained
by R. Baer [1]. The second case: every proper subgroup of G is core-
free. In this case, G does not contain proper non-trivial normal sub-
groups, that is, G is a simple group. The third case: every proper
non-trivial subgroup of G is contranormal. In this case, G does not
contain proper non-trivial normal subgroups, so that again G is a
simple group.

In the last two cases we came only to simple groups. Note again
that a simple group has the only three following types of subgroups:
normal, core-free and contranormal.

Therefore, the following question natural appears: what we can say
about the groups whose subgroups are either normal, core-free or contranor-
mal?

We study groups whose subgroups are either normal or core-free,
and the groups whose subgroups are either normal or contranormal.
Note that groups having only two types of subgroups, which are
also antagonistic in some sense to each other, have been considered
by many authors. Here we provide a list of papers whose subject is
to some extent related to our topic: [5, 6, 7, 8, 11, 14, 16, 17, 18, 22].
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Groups whose subgroups are either normal or core-free have been
studied in the paper [15]. The study of groups whose subgroups are
either normal or contranormal was initiated in the paper [22]. In The-
orem 2 of [22], basis structural features of such groups were shown.
However, this theorem was not provided with a proof. Therefore, in
this paper we provide a more detailed description of such groups.

A group G is called quasisimple, if the central factor-group G/⇣(G)
is simple and G = [G,G].

It is not hard to show that every subgroup of quasisimple group is
either normal or contranormal.

Theorem A Let G be a group whose non-normal subgroups are contra-
normal. If G is not soluble, then G is simple or quasisimple.

Recall that an infinite generalized quaternion group is a group

Q1 = Ahbi

where A is a normal Prüfer 2-group, |b| = 4, b2 2 A and ab = a-1

for all a 2 A.

Theorem B Let G be a soluble group whose non-normal subgroups are
contranormal. Suppose that G is not a Dedekind group.

If G is a p-group for some prime p, then p = 2 and G is a group of one of
the following types:

(i) G = Dh hgi where D is a normal divisible abelian 2-subgroup, g has
order 2 or 4, dg = d-1 for every d 2 D;

(ii) G = Dhgi where D is a normal divisible abelian 2-subgroup, g has
order 2 or 4, dg = d-1 for every d 2 D, D = A⇥ B, where A is
a Prüfer 2-subgroup, g2 2 ⌦1(A) and hA, gi is an infinite general-
ized quaternion group.

If G is a periodic group and |⇧(G)| > 2, then G is a group of one of the
following types:

(iii) G = S h hgi where g is a p-element for some prime p, S is an
abelian Sylow p 0-subgroup of G, Chgi(S) = hgpi and every subgroup
of S is G-invariant;

(iv) G = D h hgi where D is a normal abelian subgroup, D = S ⇥ K
where S is a Sylow 2 0-subgroup of G, K is a divisible 2-subgroup, g
has order 2 or 4, dg = d-1 for every d 2 D;
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(v) G = Dhgi where D is a normal abelian subgroup, D = S⇥A⇥ B
where S is a Sylow 2 0-subgroup of G, A ⇥ B is a divisible 2-sub-
group, g has order 2 or 4, dg = d-1 for every d 2 D, g2 2 ⌦1(A),
and hA, gi is an infinite generalized quaternion group.

If G is a non-periodic group, then G is a group of one of the following
types:

(vi) G = Dh hgi, g has order 2 or 4, and xg = x-1 for each x 2 D,
Chgi(D) = hg2i, 2 62 ⇧(D), D2 = D, and every subgroup of D
is G-invariant;

(vii) G = Dh hgi, g has order 2 or 4, and xg = x-1 for each x 2 D,
Chgi(D) = hg2i, D2 = D, D = S⇥ B, 2 62 ⇧(B), S is a divisible Sy-
low 2-subgroup of D;

(viii) G = Dhgi, g has order 2 or 4, and xg = x-1 for each x 2 D,
Chgi(D) = hg2i, D2 = D, D = S⇥B, where 2 62 ⇧(B), S = A⇥C is
a divisible Sylow 2-subgroup of D, hgi \ (A⇥B) = h1i, g2 2 ⌦1(C)
and hC, gi is an infinite generalized quaternion group.

Further, for the study of groups whose subgroups are either nor-
mal, core-free or contranormal, it is natural to assume that they con-
tain proper contranormal and proper non-trivial core-free subgroups.
Here we consider periodic locally soluble such groups. Their descrip-
tion decomposes to few natural parts.

Theorem C Let G be a group whose non-normal subgroups are either
contranormal or core-free. If G is locally soluble, then G is a soluble group.

Let G be a group and A be a normal subgroup of G. The in-
tersection MonG(A) of all non-trivial G-invariant subgroups of A
is called the G-monolith of A. If MonG(A) is not trivial, then A is
called G-monolithic. If A = G, then we will say that MonG(G) is the
monolith of G and denote it by Mon(G).

Recall that a p-group G is called extraspecial, if [G,G] = ⇣(G) is a
subgroup of order p and G/⇣(G) is an elementary abelian p-group.

The following theorem is dedicated to the monolithic case.

Theorem D Let G be a soluble periodic monolithic group whose non-nor-
mal subgroups are either contranormal or core-free. Suppose that G contains
proper contranormal and non-trivial core-free subgroups. Then G is a group
of one of the following types:
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(i) G = D h hvi where D is a normal Prüfer 2-subgroup, v2 = 1,
dv = d-1 for all d 2 D;

(ii) G = Mh S where M is an elementary abelian p-subgroup, p is a
prime, S is a locally cyclic p 0-subgroup, CG(M) = M, and every
complement to M in G is conjugate with S; in particular, if M is finite,
then G is finite and G = MhS where S is a cyclic Sylow p 0-subgroup
of G;

(iii) G = Dh hgi where D is a normal cyclic p-subgroup, |g| = q is a
prime, q < p, CG(D) = D;

(iv) G = Dh hgi where D is a normal Prüfer p-subgroup, |g| = q is a
prime, q < p, CG(D) = D;

(v) G = Dh hgi where D is an extraspecial p-subgroup, p is a prime,
|g| = q is a prime, q < p, q 6= 2, moreover, M = [D,D] = ⇣(D) is a
monolith of G, and every subgroup of D/M is G-invariant;

(vi) G = Mh K where M is a finite elementary abelian p-subgroup, p
is an odd prime, K is a quaternion group of order 8, M is a minimal
normal subgroup of G, CG(M) = M;

(vii) G = Mh B where M is a minimal normal elementary abelian p-sub-
group, p is an odd prime, B = K h hui where K is a normal Prü-
fer 2-subgroup, u2 = 1, au = a-1 for each a 2 K;

(viii) G = Mh B where M is a minimal normal elementary abelian p-sub-
group, p is an odd prime, B is an infinite generalized quaternion
group;

(ix) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = D1h hgi where D1 is a locally cyclic p 0-sub-
group, |g| = p, every subgroup of D1 is hgi-invariant, CV (D1) = D1;

(x) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = D1 h hgi where D1 is a locally cyclic sub-
group, g is a q-element, q is an odd prime, p,q 62 ⇧(D1),
Chgi(D1) = hgqi, and every subgroup of D1 is hgi-invariant;

(xi) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = D1 h hgi where D1 is a locally cyclic sub-
group, g is a 2-element, 2,p 62 ⇧(D1), Chgi(D1) = hg2i, xg = x-1

for each x 2 D1;
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(xii) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = (S⇥K)h hgi where S⇥K is a locally cyclic
subgroup, moreover, K is a Prüfer 2-subgroup, S is a 2 0-subgroup,
|g| = 2, xg = x-1 for each x 2 S⇥K;

(xiii) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = Sh (Khgi) where S is a locally cyclic 2 0-sub-
group, K is a Prüfer 2-subgroup, |g| = 4, g2 2 ⌦1(K), hK, gi is an
infinite generalized quaternion group, CV (S) = S⇥K, xg = x-1 for
each x 2 S⇥K.

Finally, our last theorem considers the non-monolithic case.

Theorem E Let G be a soluble periodic non-monolithic group whose non-
normal subgroups are either contranormal or core-free. Suppose that G con-
tains proper contranormal and non-trivial core-free subgroups. Then G is a
group of one of the following types:

(i) G = A h hvi where A is a normal divisible 2-subgroup, v2 = 1,
av = a-1 for all a 2 A;

(ii) G = Mh (hci ⇥ hgi) where M is a normal subgroup of prime order
p 6= 2, |c| = s is a prime, |g| = q is a prime, q 6= s, q divides p- 1,
CG(M) = M⇥ hci;

(iii) G = Mh (hci ⇥ hgi) where M is a normal subgroup of prime order
p 6= 2, |c| = |g| = q is a prime, q divides p- 1, CG(M) = M⇥ hci;

(iv) G = Mh hgi where M is a normal subgroup of prime order p 6= 2, g
is an element of order q, q is a prime, q divides p- 1, CG(M) = M;

(v) G = [G,G]h hgi where [G,G] is a normal cyclic p-subgroup, where p
is an odd prime, hgi is a cyclic q-subgroup, q is a prime,
CG([G,G]) = [G,G];

(vi) G = [G,G]h hgi where [G,G] is a normal Prüfer p-subgroup, where p
is an odd prime, hgi is a cyclic q-subgroup, q is a prime,
CG([G,G]) = [G,G];

(vii) G = (ha1i ⇥ ha2i)h hgi where |a1| = |a2| = q, |g| = p, p is a prime,
p < q, CG([G,G]) = [G,G], ag

1
= am

1
, ag

2
= as

2
, 1 6 m, s < q,

m 6= s;
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(viii) G = [G,G]h hgi where g is an element of order p, p is a prime, p < q,
[G,G] is an abelian Sylow q-subgroup of G, CG([G,G]) = [G,G],
and every subgroup of [G,G] is G-invariant;

(ix) G = Sh hgi where g is an element of order 2, S is an abelian 2 0-sub-
group, CG(S) = S, and xg = x-1 for every x 2 S;

(x) G = S h P where P is a Sylow 2-subgroup of G and S is an a-
belian 2 0-subgroup, P = P1 h hgi where D is a normal divisible
abelian 2-subgroup, [S,P1] = h1i, |g| = 2, and xg = x-1 for every
x 2 S⇥ P1;

(xi) G = Sh hgi where |g| = p, where p is the least prime of the set ⇧(G),
S is an abelian Sylow p 0-subgroup of G, CG(S) = S, and every sub-
group of S is G-invariant.

2 Groups whose non-normal subgroups are contra-
normal

Lemma 2.1 Assume that G is a group and H is a non-trivial normal
subgroup of G. If every non-normal subgroup of G is either contranormal
or core-free, then every non-normal subgroup of G/H is contranormal. More
precisely, if K/H is a proper normal subgroup of G/H, then every subgroup
of K/H is G-invariant, in particular, K/H is a Dedekind group.

Proof — Indeed, let X be an arbitrary subgroup containing H.
Since X contains a non-trivial normal subgroup of G, CoreG(X) 6= h1i.
Hence X must be normal or contranormal in G. It follows that X/H
is a normal or contranormal subgroup of G/H.

Let L/H be a subgroup of K/H. Then LG 6 K 6= G, which shows
that L cannot be contranormal. The inclusion h1i 6= H 6 CoreG(L)
shows that L cannot be core-free. Hence L is normal in G. In other
words, L/H is a G-invariant subgroup of G/H. ut

Lemma 2.1 shows that if G is a group whose non-normal sub-
groups are either core-free or contranormal, then in every proper
factor-group of G each subgroup is normal or contranormal. There-
fore we need some properties of such groups.

Lemma 2.2 Assume that G is a soluble group whose non-normal sub-
groups are contranormal. Suppose that G is not a Dedekind group.
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Then G/[G,G] is a cyclic p-group for some prime p. Moreover, G=hgi[G,G]
where hgi is contranormal, and every subgroup of Gp[G,G] is G-invariant.

Proof — Since G is not a Dedekind group, it contains a proper
contranormal subgroup C. Since G is soluble, D = [G,G] 6= G. The
subgroup CD is normal in G, therefore if we suppose that CD is a
proper subgroup of G, then from CG 6 CD 6= G we obtain that a
subgroup C cannot be contranormal, and we come to a contradiction.
This contradiction proves that G = CD.

Suppose that C contains two proper subgroups U, V such that

C\D 6 U, C\D 6 V and C = UV .

Then DU and DV are proper normal subgroups of G. Then every sub-
group of DU (respectively, DV) cannot be contranormal, and hence,
it is G-invariant. In particular, the subgroups U, V are G-invariant.
Then equality C = UV implies that C is normal in G, and we ob-
tain a contradiction. This contradiction shows that C/(C \D) is not
a product of two proper subgroups. In this case, C/(C \D) is either
cyclic or quasicyclic p-group for some prime p (it follows, for exam-
ple, from [9, Corollary 27.4]).

Assume that C/(C \D) is quasicyclic. Then C has an ascending
series

C\D = C1 6 C2 6 . . . 6 Cn 6 Cn+1 6 . . .
[

n2N

Cn = C,

whose factors Cn+1/Cn of order p, n 2 N. Isomorphism

G/D ' C/(C\D)

shows that CnD is a proper normal subgroup of G for each n 2 N.
Using the above arguments we obtain that every subgroup of CnD
is G-invariant, in particular, Cn is a normal subgroup of G for
each n 2 N.

The equality [

n2N

Cn = C

shows that C is normal in G, and we obtain a contradiction.
Thus C/(C\D) is a cyclic p-group, so that G/D is likewise cyclic.

Let g be an element of C such that C = hgi(C\D). Then G = hgiD.
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If we suppose that hgi is not contranormal, then hgi is normal. The
fact that C\D is normal in G together with equality C = hgi(C\D)
imply that C is normal in G, and we obtain a contradiction. This
contradiction shows that hgi must be contranormal.

Finally, GpD is a proper normal subgroup of G, and, as above, we
obtain that every subgroup of GpD is G-invariant. ut

Lemma 2.3 Let G be an abelian p-group for some prime p. If the factor-
group G/Gp is finite, then G = B⇥D where B is a finite subgroup and D
is a divisible subgroup.

Proof — Let B be a basic subgroup of G, that is B is a pure subgroup
of G, in particular, Bp = B \Gp, B is a direct product of cyclic sub-
groups, and G/B is divisible. The existence of this subgroup follows,
for example, from the results of Sections 32 and 33 of the book [9].
The fact that G/Gp is finite together with the equality

Bp = B\Gp

imply that B/Bp is finite. It implies that B is finite. Then G = B⇥D
(see, for example, [9, Theorem 27.5]). The isomorphism D ' G/B
shows that D is divisible. ut

Lemma 2.4 Let G be a soluble p-group for some prime p whose non-
normal subgroups are contranormal. Suppose that G is not a Dedekind
group. Then p = 2 and G is a group of one of the following types:

(i) G = Dh hgi where D is a normal divisible abelian 2-subgroup, g has
order 2 or 4, dg = d-1 for every d 2 D;

(ii) G = Dhgi where D is a normal divisible abelian 2-subgroup, g has
order 2 or 4, dg = d-1 for every d 2 D, D = A⇥ B, where A is
a Prüfer 2-subgroup, g2 2 ⌦1(A) and hA, gi is an infinite general-
ized quaternion group.

Proof — Since G is not a Dedekind group, G contains a proper
contranormal subgroup. Let D = [G,G]. Then Lemma 2.2 implies
that G = hgiD where a subgroup hgi is contranormal in G. If we
suppose that G is finite, then, being nilpotent, G does not contain
proper contranormal subgroups. It follows that G = hgi. But in this
case, G is abelian, and we obtain a contradiction. This contradiction
shows that G must be infinite.
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If H is a subgroup of L = Dhgpi, then HG 6 D 6= G, so that a sub-
group H cannot be contranormal. Thus every subgroup of L is G-in-
variant. In particular, it follows that L is a Dedekind group.

Suppose that D is not abelian. Then D = Q⇥E where Q is a quater-
nion group of order 8 and E is an elementary abelian 2-group. The
fact that every cyclic subgroup of E is G-invariant implies
that E 6 ⇣(G). Being central-by-finite, G is nilpotent. On the other
hand, a nilpotent group does not contain proper contranormal sub-
groups. It follows that G must be Dedekind, and we obtain a contra-
diction. This contradiction shows that D is abelian.

Suppose that Dp 6= D. Consider first the case when D/Dp is infi-
nite. In this case, G/Dp contains a normal elementary abelian p-sub-
group of finite index. Then G/Dp is nilpotent (see, for example, [2]).
Since G/Dp is infinite, hgDpi 6= G/Dp.

Being a proper subgroup of a nilpotent group, hgDpi cannot be
contranormal, and we obtain a contradiction. This contradic-
tion proves that D/Dp must be finite. Lemma 2.3 shows that D=K⇥ P
where K is a finite subgroup and P is a divisible subgroup. Since G/P
is finite, by the above arguments, G/P = hgPi. In particular, G/P is
abelian, which implies that D = P. Thus, D is divisible.

Since L is a proper normal subgroup of G, every subgroup of L
is G-invariant, in particular, L is a Dedekind group. Since L con-
tains divisible subgroups, L is abelian. Since |G : L| = p, L = CG(L).
Then G/L is isomorphic to a subgroup of the multiplicative group of
ring Zp1 of p-adic integers (see, for example, [21, Theorem 1.5.6]).
We recall that

U(Zp1) = C⇥ J

where |C| = 2 and J is an additive group of 2-adic integers, when-
ever p = 2, or U(Zp1) = C ⇥ J where C is a cyclic group of or-
der p- 1 and J is an additive group of p-adic integers, whenever p
is an odd prime (see, for example, [10, Chapter 4, Theorem 6.5]).
Since G is a p-group, p = 2. In other words, G is a 2-group. Moreo-
ver, G/CG(L) is of order 2. We note that a subgroup C of U(Z21) coin-
cides with {1,-1}. It follows that xg = x-1 for each x 2 L. Put y = g2

and suppose that y 6= 1. Then yg = y-1. However yg = y, so
that y = y-1 and |y| = 2, so |g| = 4.

Suppose that hgi \D = h1i. Then G = Dh hgi, g has order 2 or 4
and xg = x-1 for each x 2 D. Thus G is a group of type (i).

Suppose that hgi \D = hai 6= h1i. Since D is divisible, there exists
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a Prüfer 2-subgroup A such that a 2 A. Let

M = {H| H 6 D and H\A = h1i}

and let B be a maximal element of family M. Then D = A⇥ B (see,
for example, [9, Theorem 21.2]). By this choice hgi \ B = h1i. The
subgroup C = hg2,Ai is abelian. By its choice,

⌦1(C) = ⌦1(hg2i) = ⌦1(hgi) = ⌦1(A),

so that ⌦1(C) is cyclic. Since C is abelian and infinite, it follows
that C must be a Prüfer 2-subgroup. Its choice shows that C = A.
We have hgi \A = ⌦1(A) and ag = a-1 for each a 2 A. This means
that hg,Ai is an infinite generalized quaternion group. Thus G is a
group of type (ii). ut

Lemma 2.5 Let G be a soluble periodic group whose non-normal sub-
groups are contranormal. Suppose that G is not a Dedekind group.
If |⇧(G)| > 2, then G is a group of one of the following types:

(i) G = Sh hgi where g is a p-element for some prime p, S is an abelian
Sylow p 0-subgroup of G, Chgi(S) = hgpi and every subgroup of S
is G-invariant;

(ii) G = D h hgi where D is a normal abelian subgroup, D = S ⇥ K
where S is a Sylow 2 0-subgroup of G, K is a divisible 2-subgroup, g
has order 2 or 4, dg = d-1 for every d 2 D;

(iii) G = Dhgi where D is a normal abelian subgroup, D = S⇥A⇥ B
where S is a Sylow 2 0-subgroup of G, A ⇥ B is a divisible 2-sub-
group, g has order 2 or 4, dg = d-1 for every d 2 D, g2 2 ⌦1(A),
and hA, gi is an infinite generalized quaternion group.

Proof — Since G is not a Dedekind group, G contains a proper
contranormal subgroup. Let D = [G,G]. Then Lemma 2.2 implies
that G=hgiD where hgi is contranormal. Moreover, Lemma 2.2 shows
that G/D is a p-group for some prime p. We have g = g1g2 where g1
is a p-element, g2 is a p 0-element and [g1, g2] = 1. The fact that G/D
is a p-group implies that g2 2 D. Using again Lemma 2.2 we obtain
that hg2i is normal in G. It follows that hg1i is contranormal in G.
Therefore without loss of generality we may assume that g is a p-ele-
ment.
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By Lemma 2.2 every subgroup of D is G-invariant. It follows that G
is hypercyclic. Let q be the smallest prime from ⇧(G). Then G = ShP
where P is a Sylow q-subgroup of G and S is a Sylow p 0-subgroup
of G. The inclusion D 6 S[P,P] together with the fact that G/D is
a p-group imply that q = p.

Suppose first that P is finite. Then G/S is finite and nilpotent. Us-
ing the above arguments we can obtain that P = hgi. The choice of p
shows that 2 62 ⇧(S). Being a Dedekind 2 0-group, S is abelian. Thus

G = Sh hgi

where S is an abelian Sylow p 0-subgroup of G whose subgroups
are G-invariant. Thus G is a group of type (i).

Suppose now that P is infinite. The isomorphism P ' G/S shows
that P is a p-group whose non-normal subgroups are contranor-
mal. Lemma 2.4 shows that p = 2 and P = hgiK where K is a divisi-
ble 2-subgroup. By Lemma 2.2, every subgroup of SP2 is G-invariant.
Since a non-abelian Dedekind group does not contain divisible 2-sub-
group, SP2 is abelian. For every x 2 S we have xg = xk for some
positive integer k. Then

x = g-2xg2 = g-1(g-1xg)g = g-1xkg = (g-1xg)k = (xg)k.

It follows that
k2 ⌘ 1(mod |x|).

The last congruence has gcd(2,'(|x|)) = 2 solutions where ' is an Eu-
ler function. Thus only 1 and -1 are the solutions of this congruence.
It follows that xg = x-1 for each x 2 S.

If P is a group of type (i) from Lemma 2.4, then P = Kh hgi where K
is a normal divisible abelian 2-subgroup, g has order 2 or 4, dg = d-1

for every d 2 K.
Then we obtain that G = D h hgi where D is a normal abelian

subgroup, D = S⇥ K where S is a Sylow 2 0-subgroup of G, K is a
divisible 2-subgroup, g has order 2 or 4, dg = d-1 for every d 2 D.
Thus G is a group of type (ii).

If P is a group of type (ii) of Lemma 2.4, then P = K h hgi
where K is a normal divisible abelian 2-subgroup, g has order 2
or 4, dg = d-1 for every x 2 K, K = A⇥B, where A is a Prüfer 2 0-sub-
group, g2 2 ⌦1(A) and hA, gi is an infinite generalized quaternion
group. Then we obtain that G = Dhgi where D is a normal abelian
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subgroup,
D = S⇥A⇥B,

S is a Sylow 2 0-subgroup of G, K is a divisible 2-subgroup, g has
order 2 or 4, dg = d-1 for every d 2 D, g2 2 ⌦1(A), and hA, gi
is an infinite generalized quaternion group. Thus G is a group of
type (iii). ut

Lemma 2.6 Let G be a soluble non-periodic group whose non-normal sub-
groups are contranormal. Suppose that G is not a Dedekind group. Then G
is a group of one of the following types:

(i) G = Dh hgi, g has order 2 or 4, and xg = x-1 for each x 2 D,
Chgi(D) = hg2i, 2 62 ⇧(D), D2 = D, and every subgroup of D
is G-invariant;

(ii) G = Dh hgi, g has order 2 or 4, and xg = x-1 for each x 2 D,
Chgi(D) = hg2i, D2 = D, D = S⇥ B, 2 62 ⇧(B), S is a divisible Sy-
low 2-subgroup of D;

(iii) G = Dhgi, g has order 2 or 4, and xg = x-1 for each x 2 D,
Chgi(D) = hg2i, D2 = D, D = S⇥B, where 2 62 ⇧(B), S = A⇥C is
a divisible Sylow 2-subgroup of D, hgi \ (A⇥B) = h1i, g2 2 ⌦1(C)
and hC, gi is an infinite generalized quaternion group.

Proof — Let D = [G,G]. Then Lemma 2.2 implies that G/D is a
cyclic p-group for some prime p, so that G = hgiD where hgi is con-
tranormal, and every subgroup of hgpiD is G-invariant. Since G is
not periodic, hgpiD is not periodic. Being a non-periodic Dedekind
group, hgpiD is abelian. Then p = 2 and xg = x-1 for each x 2 hg2iD
(see, for example, [21, Theorem 1.5.7]). Put y = g2, and suppose
that y 6= 1. Then yg = y-1. But yg = y, so that y = y-1 and |y| = 2.

Let S be a Sylow 2-subgroup of D. Suppose that S is finite. Then S
is pure in D, D = S⇥B (see, for example, [9, Theorem 27.5]).

Thus G/B is finite. Being a 2-group, it is nilpotent. As above, G/B
is cyclic. It follows that D = B. In particular, 2 62 ⇧(D). Thus we
obtain that G = Dh hgi where g has order 2 or 4, and xg = x-1 for
each x 2 D. Thus G is a group of type (i).

Suppose now that a subgroup S is infinite. If D2 = D, then being
a pure subgroup of D, S is divisible. Then D = S ⇥ B (see, for e-
xample, [9, Theorems 21.2 and 27.5]). By this choice, 2 62 ⇧(B). The
factor-group G/S has a finite Sylow 2-subgroup, and using the above
arguments we obtain that G/S = D/Sh hgSi where gS has order 2
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or 4. It follows that hg, Si\B = h1i. Clearly, P = hg, Si is a Sylow 2-sub-
group of G. The isomorphism P ' G/B proves that P is a group
from Lemma 2.4. Then either G = Dh hgi where g has order 2 or 4
and xg = x-1 for each x 2 D, or G = Dhgi where g has order 2 or 4
and xg = x-1 for each x 2 D, D = A⇥ C where g2 2 C and hg,Ci
is an infinite generalized quaternion group. Thus G is a group of
type (ii) or (iii).

Suppose that D2 6= D. Then G/D2 must be non-abelian. As in Lem-
ma 2.4 we can prove that D/D2 must be finite. In turn out it follows
that D/D2 must be cyclic. In particular, it is abelian, and we obtain a
contradiction. This contradiction proves the equality D2 = D. ut

Proof of Theorem A — Suppose that G contains a non-trivial
proper normal subgroup H. Each subgroup of H cannot be contra-
normal and therefore is G-invariant. Then G/CG(H) is abelian (see,
for example, [21, Theorem 1.5.1]). If we suppose that G 6= CG(H),
then, as we done above, we can prove that every subgroup of CG(H)
is G-invariant, in particular, CG(H) is a Dedekind group. Being Dede-
kind, CG(H) is nilpotent, so that G must be soluble, and we obtain a
contradiction. This contradiction proves the equality G = CG(H). In
other words, the center of G contains every proper normal subgroup
of G. In particular, it follows that G/⇣(G) is a simple group. If we
suppose that G 6= [G,G], then by above [G,G] 6 ⇣(G), so that G is sol-
uble, which is impossible. This contradiction proves that G = [G,G].
Thus G is a quasisimple group.

Proof of Theorem B — This theorem directly follows from Lem-
mas 2.4, 2.5 and 2.6.

Proof of Theorem C — Being locally soluble, G has a family S of
normal subgroups containing h1i and G, which is linearly ordered
by inclusion and closed with the respect of taking intersections and
unions, and whose factors are G-chief and abelian (see, for exam-
ple, [19, §58]). If S = {h1i,G}, then G is abelian, and all is proved.

Suppose that S 6= {h1i,G}. Denote by D the intersection of all
non-trivial members of S. If H is a proper non-trivial normal sub-
group of G, then Lemma 2.1 shows that every subgroup of G/H is
normal or contranormal. Lemmas 2.4, 2.5 and 2.6 shows that G/H is
metabelian. It follows that

[[G,G], [G,G]] 6 H.
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Since it is true for each non-trivial subgroup H 2 S,

[[G,G], [G,G]] 6 D.

If D = h1i, then G is metabelian. If D 6= h1i, then D is a minimal
normal subgroup of G. In this case, G is soluble of solubility class at
most 3.

3 Primary groups whose non-normal subgroups
are either contranormal or core-free

Lemma 3.1 Let G be a group whose non-normal subgroups are either
contranormal or core-free and let U be a proper non-trivial normal subgroup
of G. If G contains a normal non-trivial subgroup V such that U\V = h1i,
then every subgroup of U is G-invariant.

Proof — Let u be an arbitrary element of U. Since U is normal in G,
then huiG 6 U. The fact that U is proper implies that every subgroup
of U cannot be contranormal. On the other hand, every subgroup W
of G such that V 6 W has a non-trivial core, and hence cannot be
core-free. Thus, every subgroup of (UV)/V is G-invariant. Hence if g
is an arbitrary element of G, then

(uV)gV = ugV 2 huVi.

In other words, ug = ukv for some v 2 V and some integer k. Thus,
we have ukv 2 U, which implies that v 2 U. Then equality U\ V = h1i
implies that v = 1. We obtain that ug 2 hui for each g 2 G. It fol-
lows that hui is G-invariant. The fact that every cyclic subgroup of U
is G-invariant implies that every subgroup of U is G-invariant. ut

Lemma 3.2 Let G be a soluble group whose non-normal subgroups are ei-
ther contranormal or core-free. Suppose that G contains a proper contranor-
mal subgroup and [G,G] contains a proper non-trivial G-invariant abelian
subgroup A. Then G/[G,G] is a cyclic p-group for some prime p, and every
subgroup of Gp[G,G]/A is G-invariant.

Proof — Indeed, Lemma 2.1 shows that every subgroup of G/A is
contranormal or normal in G, hence we can apply Lemma 2.2. ut
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Lemma 3.3 Let G be a group whose non-normal subgroups are either con-
tranormal or core-free, H be a proper normal elementary abelian p-subgroup
of G, p is a prime. Suppose also that |H| > p2. If H contains two G-
invariant non-trivial subgroups U, V such that U \ V = h1i, then every
subgroup of H is G-invariant.

Proof — Let h be an arbitrary element of H. The equality U\ V=h1i
implies that either h 62 U or h 62 V . Suppose that h 62 U. If h 2 V ,
then Lemma 3.1 implies that hhi is G-invariant. Therefore we will
assume that h 62 V . By Lemma 2.1 hhUi is G-invariant. If g is an arbi-
trary element of G, then we obtain hg = hku0 for some u0 2 U and
some integer k. Since H is elementary abelian, hhi \U = h1i.

Suppose that |U| > p. Then U contains a non-trivial subgroup U1

such that U = hu0i ⇥ U1. Using Lemma 2.1 we obtain that hhU1i
is G-invariant. Hence

hg = hku0 2 hhiU1.

It follows that u0 2 hhiU1, which implies that

u0 2 hhiU1 \ hu0i = h1i.

So hg 2 hhi.
Suppose that |U| = p. If u0 6= 1, then U = hu0i. Since h 62 V , hhVi is

non-trivial. By Lemma 2.1, this subgroup is G-invariant, so that

hg = hku0 2 hhiV .

It follows that hku0 = htv for some v 2 V and some integer t. Then

ht-k = u0v
-1.

The equality U \ V = h1i implies that u0v
-1 6= 1, so that p does

not divide t - k, which implies that hhi 6 UV , i.e. h = us

0
v0 for

some v0 2 V and some integer s such that (p, s) = 1.
Suppose that |V | > p. Then V contains a non-trivial subgroup V1

such that V = hv0i ⇥ V1. Using Lemma 3.1 we obtain that both
subgroups hv0i and V1 are G-invariant. Since hu0i = U is G-inva-
riant, Uhv0i is G-invariant. Its choice yields that h1i = V1 \ (Uhv0i).
Using Lemma 3.1 one more time, we obtain that every subgroup
of Uhv0i is G-invariant. In particular, hhi is G-invariant.

Finally, suppose that |U| = |V | = p. By our condition |H| > p2. It
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follows that there exists an element h 62 UV . By Lemma 2.1, a sub-
group hhiU (respectively, hhiV) of H/U (respectively, H/V) is G-inva-
riant. If g is an arbitrary element of G, then we obtain that hg = hku0

for some u0 2 U and some integer k. If we assume that u0 6= 1,
then repeating the above arguments, we obtain that h 2 UV , which
contradicts to the choice of h. This contradiction again proves that hhi
is G-invariant. If x is an element of UV , then x 62 hhiU or x 62 hhiV .
Repeating the above arguments, we obtain that hxi is G-invariant.

Thus, every cyclic subgroup of H is G-invariant. It implies that
every subgroup of H is G-invariant. ut

Lemma 3.4 Let G be a group whose non-normal subgroups are either con-
tranormal or core-free, H be a proper normal elementary abelian p-subgroup
of G, p is a prime. Suppose that |H| > p2. If H is not G-monolithic, then
every subgroup of H is G-invariant.

Proof — Let {V�| � 2 ⇤} be the family of all non-trivial G-invariant
subgroups of H. Since H is not G-monolithic,

\

�2⇤

V� = h1i.

This equality together with Remak’s theorem imply that H is embed-
ded in the cartesian product Cr�2⇤H/V�. Lemma 2.1 shows that the
factors H/V� are Dedekind for each index � 2 ⇤. If

T
�2⌅

V� = h1i for
some finite subset ⌅ of ⇤, then we can apply Lemma 3.3. Therefore,
further we will suppose that the intersection

T
�2�

V� is not trivial
for every finite subset � of ⇤.

Suppose that H has an element h such that hhi is not G-invariant.
In this case, G contains an element g such that hg 62 hhi. The equality

\

�2⇤

V� = h1i

implies that there exists an index µ 2 ⇤ such that Vµ does not con-
tains h. Since Vµ 6= h1i, then Lemma 2.1 implies that hhVµi is G-inva-
riant in the factor-group G/Vµ. It follows that

hg = hkvµ

for some vµ 2 Vµ and some integer k. Moreover, our assumption
about h implies that hhi does not contains vµ. There exists an in-
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dex ⌫ 2 ⇤ such that the subgroup V⌫ does not contains vµ. Since

hhi \ Vµ = h1i and hvµi \ V⌫ = h1i,

we have
(hhihvµi)\ (Vµ \ V⌫) = h1i.

As we have noted above, D = Vµ \ V⌫ is non-trivial, and there-
fore, Lemma 2.1 implies that every subgroup of H/D is G-invariant.
On the other hand,

(hD)g = hgD = hkvµD = (hkD)(vµD) 62 hhiD,

and we obtain a contradiction, which proves that every subgroup
of H is G-invariant. ut

Lemma 3.5 Let G be a group whose non-normal subgroups are either
contranormal or core-free, A be a proper normal p-subgroup of G, p is a
prime. Let B be a G-invariant subgroup of A containing all elements of A
of order p. If every cyclic subgroup of B is G-invariant, then every subgroup
of A is G-invariant. In particular, if A is abelian and every cyclic subgroup
of ⌦1(A) is G-invariant, then every subgroup of A is G-invariant.

Proof — Let b be an arbitrary element of A. Since the subgroup

B1 = ⌦1(hbi)

is G-invariant, Lemma 2.1 implies that every subgroup of A/B1

is G-invariant. In particular, hbi/B1 is G-invariant. It follows that hbi
is G-invariant. In its turn, the fact that every cyclic subgroup
of A is G-invariant implies that every subgroup of A is G-invariant. ut

Lemma 3.6 Let G be a group whose non-normal subgroups are either
contranormal or core-free, A be a proper normal abelian p-subgroup of G, p
is a prime. If (⌦2(A))p = ⌦1(A), then every subgroup of A is G-invariant.

Proof — Let c 6= 1 be an arbitrary element of ⌦1(A). The equality

(⌦2(A))p = ⌦1(A)

implies that there exists an element d 2 ⌦2(A) such that dp = c.
Lemma 2.1 implies that every subgroup of A/⌦1(A) is G-invariant.
Hence for each x of G we have dx = dkc1 where 1 6 k 6 p and
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c1 2 ⌦1(A). Then

cx = (dp)x = (dx)p = (dkc1)
p = dpkcp

1
= ck.

Since this is true for each x 2 G, hci is normal in G. Thus, every cyclic
subgroup of ⌦1(A) is G-invariant. Using Lemma 3.5 we obtain that
every subgroup of A is G-invariant. ut

Corollary 3.7 Let G be a group whose non-normal subgroups are either
contranormal or core-free, A be a proper normal abelian p-subgroup of G, p
is a prime. If A is divisible, then every subgroup of A is G-invariant.

Proof — Indeed, the fact that a subgroup A is divisible implies the
equality (⌦2(A))p = ⌦1(A), and we can apply Lemma 3.6. ut

Let p be a prime. If every elementary abelian p-section of a group G
is finite of order at most pr and there is an elementary abelian p-sec-
tion of order precisely pr, then G is said to have finite section p-rank r,
denoted by srp(G) = r.

Lemma 3.8 Let G be a group whose non-normal subgroups are either
contranormal or core-free, H be a proper non-trivial normal p-subgroup
of G, p is a prime. Suppose that srp(H) > 2. If H is not G-monolithic, then
every subgroup of H is G-invariant.

Proof — Let {V�| � 2 ⇤} be the family of all non-trivial G-invariant
subgroups of H. Since H is not G-monolithic,

T
�2⇤

V� = h1i. This
equality together with Remak’s theorem imply that H is embedded
in the cartesian product Cr�2⇤H/V�. Lemma 2.1 shows that the fac-
tors H/V� are Dedekind groups for each index � 2 ⇤.

Suppose that p is odd. Then every factor H/V� are abelian for each
index � 2 ⇤. It follows that H is likewise abelian. Using Lemma 3.4
we obtain that every subgroup of ⌦1(H) is G-invariant. Then Lem-
ma 3.5 implies that every subgroup of H is G-invariant.

Suppose now that p = 2. Lemma 2.1 shows that the factors H/V�

are Dedekind groups for each index � 2 ⇤. Taking into account the
description of the structure of Dedekind groups, we can conclude
that if a factor H/V� is not abelian, then its center contains all its
elements of order 2. The equality

T
�2⇤

V� = h1i together with Re-
mak’s theorem imply that H is embedded in the cartesian product
Cr�2⇤H/V�. Thus, we can see that if H is not abelian, then its center
contains all its elements of order 2. It follows that the set A of all
elements of H of order 2, is a subgroup of H. Using Lemma 3.4 we
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obtain that every subgroup of A is G-invariant. Lemma 3.5 implies
that every subgroup of H is G-invariant. ut

Lemma 3.9 Let G be a periodic group whose non-normal subgroups are
either contranormal or core-free. Suppose that [G,G] is abelian and contains
a proper non-trivial G-invariant subgroup. Then

(i) G/[G,G] is a cyclic p-group for some prime p;

(ii) if a Sylow p-subgroup of [G,G] is trivial, then either every subgroup
of Gp[G,G] is G-invariant, or G is a group of one of the following
types:

(ii.a) G = Dh hgi where D = hd1i ⇥ hd2i, |d1| = |d2| = q, q is
a prime, |g| = p, p 6= q, dg

1
= dk

1
, dg

2
= dm

2
, 1 6 k,m < q,

k 6= m;

(ii.b) if p 6= 2, then a Sylow p-subgroup of [G,G] is trivial;

(ii.c) if p = 2 and a Sylow 2-subgroup V of [G,G] is non-trivial,
then V is divisible and every subgroup of G2[G,G] is G-inva-
riant.

Proof — Let D = [G,G]. Then Lemma 3.2 implies that G/D is a
cyclic p-group for some prime p, so that G = hgiD, and we can choose
the element g in such way that g will be a p-element.

Suppose that a Sylow p-subgroup of D is trivial. Consider the case
when the set ⇧(D) contains at least two primes. Let q 2 ⇧(D) and Q
be a Sylow q-subgroup of D. Then D = Q ⇥ R where R is a non-
trivial Sylow q 0-subgroup of D. Using Lemma 3.1 we obtain that
every subgroup of Q and every subgroup of R are G-invariant. It
follows that every subgroup of D is G-invariant. Suppose that gp 6= 1.
Using Lemma 2.1 we obtain that the subgroups Qhgpi and Rhgpi
are G-invariant. It follows that

hgpi = Qhgpi \ Rhgpi

is G-invariant. Since p 62 ⇧(D) we obtain that every subgroup of Dhgpi
is G-invariant.

Assume now that D is a q-subgroup for some prime q. Suppose
also that D is G-monolithic. If we assume that

⌦1(D) 6= MonG(D),



On groups with normal, contranormal or core-free subgroups 103

then ⌦1(D) contains a G-invariant subgroup W such that

⌦1(D) = MonG(D)⇥W

(see, for example, [13, Corollary 5.14]), and we come to a contradic-
tion. This contradiction proves the equality ⌦1(D) = MonG(D).

Since D contains a proper non-trivial G-invariant subgroup, we
have D 6= ⌦1(D). Then (⌦2(D))q is a non-trivial G-invariant sub-
group of ⌦1(D). Using the fact that ⌦1(D) is a minimal normal sub-
group of G, we obtain the equality

(⌦2(D))q = ⌦1(D).

Then Lemma 3.6 implies that every subgroup of D is G-invariant.
Suppose that gp 6= 1. Lemma 3.2 shows that every subgroup
of Dhgpi/⌦1(D) is G-invariant. It follows that

[⌦2(D), gp] 6 ⌦1(D).

Let d be an arbitrary element of ⌦1(D). The equality

(⌦2(D))q = ⌦1(D)

shows that there is an element b 2 ⌦2(D) such that bq = d. It follows
that g-pbgp = bc for some c 2 ⌦1(D). Then

g-pdgp = g-pbqgp = (g-pbgp)q = (bc)q = bqcq = d.

Thus
[⌦1(D), gp] = h1i.

Since p 6=q, [D, gp]=h1i. The equality G=hgiD shows that hgpi6⇣(G).
Thus every subgroup of Dhgpi is G-invariant.

Suppose that gp 6= 1 and that D is not G-monolithic. Then a sub-
group D has a family

{V�| � 2 ⇤}

of non-trivial G-invariant subgroups such that
\

�2⇤

V� = h1i.
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By Lemma 2.1 every subgroup hgpiV� is G-invariant. Then

hgpi =
\

�2⇤

V�hgpi

is G-invariant. By Lemma 3.1 every subgroup of D is G-invariant. It
follows that every subgroup of Dhgpi is G-invariant.

Suppose that gp = 1 and that D is not G-monolithic. If srp(D) > 2
and D is not G-monolithic, then Lemma 3.8 implies that every sub-
group of D is G-invariant. If srp(D) = 1, then D is a cyclic q-subgroup
or a Prüfer q-subgroup. In each of these cases, every subgroup of D
is G-invariant. Assume that srp(D) = 2. Then ⌦1(D) has order q2.
Since D is not G-monolithic, ⌦1(D) contains two non-trivial G-inva-
riant subgroup, having trivial intersection. It follows that

⌦1(D) = hd1i ⇥ hd2i

and both subgroups hd1i and hd2i are G-invariant. Then

dg

1
= dk

1
, dg

2
= dm

2
(1 6 k,m < q, k 6= m).

Suppose that D = ⌦1(D). If k = m, then every subgroup of D is G-in-
variant. If k 6= m, G is a group of type (ii.a).

Consider the case when D 6= ⌦1(D). If

(⌦2(D))q = ⌦1(D),

Lemma 3.6 implies that every subgroup of D is G-invariant. There-
fore suppose that (⌦2(D))q = E 6= ⌦1(D). Without loss of gener-
ality we can assume that E = hd1i. Using again Corollary 5.14 of
the book [13] we obtain that E has a G-invariant complement C in D.
Without loss of generality we can assume that C = hd2i. Let b be an el-
ement of ⌦2(D) such that bq = d1. We have ⌦2(D)/E = hbEi⇥ hd2Ei.
The equality dg

2
= dm

2
implies that dg

2
E = dm

2
E. By Lemma 2.1, every

subgroup of ⌦2(D)/E is G-invariant. It follows that

(bE)g = (bE)m = bmE.

It implies that bg = bmu for some u 2 E. Then

dg

1
= (bq)g = (bg)q = (bmu)q = bmquq = bqm = dm

1
.
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Thus k = m. It follows that every subgroup of ⌦1(D) is G-invariant.
Using Lemma 3.5 we obtain that every subgroup of D is G-invariant.

Suppose that Sylow p-subgroup P of D is not trivial. Then

D = P⇥B

where B is a Sylow p 0-subgroup of D. Since G/D is a p-group, B
is a Sylow p 0-subgroup of G. Suppose that P is finite. Then factor-
group G/B, being a finite p-subgroup, is nilpotent. We note that
a nilpotent group, having a cyclic factor-group by the derived sub-
group, is itself cyclic. On the other hand, the choice of B implies that
it is a proper G-invariant subgroup of D, and we obtain a contradic-
tion. Thus G is a group of type (ii.b).

Suppose now that P is infinite and divisible. By Corollary 3.7, every
subgroup of P is G-invariant. Let x be an element of P, having prime
order. Let d be an arbitrary element of D. By Lemma 2.1, hd, xi/hxi
is G-invariant, so that hd, xi is G-invariant. Suppose that gcd(|d|,p)=1.
Then hdi is a Sylow p 0-subgroup of hd, xi, and therefore hdi is G-in-
variant. Thus, every subgroup of B is G-invariant too. It follows that
every subgroup of D is G-invariant. By Lemma 2.1, every subgroup
of G/B is normal or contranormal. Since G/B is a p-group, Lemma 2.4
implies that p = 2.

Suppose that P is infinite and not divisible. Then S = Pp 6= P and
P/S is an elementary abelian Sylow p-subgroup of D/S. Then

D/S = P/S⇥B1/S

where B1/S = BS/S. Furthermore,

(D/S)p = (B1/S)
p = B1/S

is a G-invariant subgroup having a trivial intersection with P/S. Then
factor-group G/B1, being an extension of elementary abelian p-sub-
group by a cyclic p-group, is nilpotent (see, for example, [2]). We
note that a nilpotent group, having a cyclic factor-group by the de-
rived subgroup, is itself cyclic. On the other hand, the choice of B1

shows that it is a proper G-invariant subgroup of D, and we obtain
a contradiction. This contradiction shows that a subgroup P must be
divisible. We have already proved that in this case, every subgroup
of D is G-invariant.

Suppose that hg2i is non-trivial. Suppose that B 6= h1i. Then by Lem-
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ma 2.1 every subgroup of G2[G,G]/P is G-invariant, so that hg2iP/P
is G-invariant. Since hg2iP is a 2-subgroup, hg2iP \ B = h1i. By Lem-
ma 3.1 every subgroup of hg2iP is G-invariant. Then every subgroup
of G2[G,G] is G-invariant.

Suppose now that B = h1i, so that G is a 2-group. Since every sub-
group of D is G-invariant, G/CG(D) is isomorphic to a subgroup of
the multiplicative group of ring Z21 of 2-adic integers (see, for exam-
ple, [21, Theorem 1.5.6]). We recall that U(Z21) = C⇥ J where |C| = 2
and J is the additive group of 2-adic integer (see, for example, Cha-
pter 4 and Theorem 6.5 of [10]). Since G is periodic, G/CG(D) is a
group of order 2. It follows that g2 2 CG(D), so that a subgroup hg2iD
is abelian. The equality G = hgiD implies that hg2i 6 ⇣(G). The facts
that every subgroup of ⌦1(D) is G-invariant and that G is a 2-group
imply that ⌦1(D) 6 ⇣(G). It follows that ⇣(G) contains ⌦1(Dhg2i).
Using Lemma 3.5 we obtain that every subgroup of hg2i[G,G] is G-in-
variant. Thus G is a group of type (ii.c). ut

Lemma 3.10 Let G be a soluble p-group whose non-normal subgroups
are either contranormal or core-free, p is a prime. Suppose that G contains
proper contranormal and non-trivial core-free subgroups. If G is monolithic,
then G = Dh hvi where D is a normal Prüfer 2-subgroup, v2=1, dv=d-1

for all d 2 D.

Proof — Let M be the monolith of G. Then M is a minimal normal
subgroup of G. Since G is a soluble p-group, G is locally nilpotent.
It follows that M has a prime order p and M 6 ⇣(G) (see, for exam-
ple, [4, Proposition 1.2.20]). If we suppose that M = [G,G], then G
is nilpotent. But a nilpotent group does not contain proper contra-
normal subgroups, and we obtain a contradiction. This contradiction
shows that M is a proper subgroup of [G,G].

Lemma 3.9 implies that G is a 2-group and [G,G] is a divisible
subgroup with G/[G,G] is cyclic. Moreover, every subgroup of

D = G2[G,G]

is G-invariant. Since G2[G,G] contains a divisible subgroup, it is
abelian. Then the facts that G is monolithic and that every subgroup
of ⌦1(D) is G-invariant imply that M = ⌦1(D). In particular, ⌦1(D)
is cyclic. Being abelian and infinite, D must be a Prüfer 2-subgroup.
Let g be an element of G such that G = hgi[G,G]. As in Lemma 2.4
we can obtain that dg = d-1 for all d 2 D.
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By our assumption G contains a proper non-trivial core-free sub-
group S. Then S \ D must be trivial. It follows that |S| = 2.
Since |G/D|=2, G=DS. Let S=hvi, then dv=dg=d-1 for all d 2 D. ut

Lemma 3.11 Let G be a soluble p-group whose non-normal subgroups
are either contranormal or core-free, p is a prime. Suppose that G con-
tains proper contranormal and non-trivial core-free subgroups. If G is non-
monolithic, then p = 2 and then G = Ah hvi where A is a normal divisible
subgroup, v2 = 1, av = a-1 for all a 2 A.

Proof — Let S be the family of all proper non-trivial normal sub-
groups of G. Since G is not monolithic,

T
S = h1i. If H is a proper

non-trivial normal subgroup of G, then Lemma 2.1 implies that ev-
ery subgroup of G/H is normal or contranormal. Using Lemma 2.4
we obtain that G/H is abelian or metabelian. In any case, H con-
tains [[G,G], [G,G]]. Since it is true for every subgroup H 2 S,

[[G,G], [G,G]] 6
\

S = h1i.

The fact that G contains a proper contranormal subgroup implies
that G is not abelian. Thus G is metabelian. If we suppose that [G,G]
is a minimal normal subgroup of G, then [G,G] has a prime order p
and [G,G] 6 ⇣(G) (see, for example, [4, Proposition 1.2.20]). Then G is
nilpotent. But nilpotent group does not contain proper contranormal
subgroup.

Thus [G,G] contains a proper non-trivial G-invariant subgroup.
Then Lemma 3.9 implies that p = 2, G/[G,G] is cyclic, [G,G] is di-
visible and every subgroup of G2[G,G] is G-invariant.

Let g be an element of G such that G = hgi[G,G]. Since

D = G2[G,G]

contains a divisible subgroup, it is abelian. Then G/CG(D) is isomor-
phic to a subgroup of the multiplicative group of ring Z21 of 2-adic
integers (see, for example, [21, Theorem 1.5.6]). We recall that

U(Z21) = C⇥ J

where |C| = 2 and J is the additive group of 2-adic integer (see, for
example, [10, Chapter 4, Theorem 6.5]). Since G is a 2-group, we
obtain that G/CG(D) is a group of order 2. We note that a sub-
group C of U(Z21) coincides with {1,-1}. It follows that xg = x-1
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for each x 2 D. The fact that G is not abelian implies that D = CG(D).
If y is an element of G such that 62 D, then y = gka where k is an
odd integer and a 2 D. Then we obtain that xy = x-1 for each x 2 D.
We have

[x,y] = x-1xy = x-2.

Since [G,G] is divisible, [[G,G],y] = [G,G]. Then equality

G = [G,G]hgi = [G,G]hyi

implies hyiG = G. Hence hyi is contranormal in G. It means that
every subgroup H which does not belong to D, is contranormal in G.
We have already noted, that every subgroup of D is normal in G.
Thus every subgroup of G is either normal or contranormal, and we
can use Lemma 2.4. Taking into account the fact that G contains a
proper non-trivial core-free subgroup, we obtain that

G = Ah hvi

where A = [G,G] is a divisible subgroup, v2 = 1 and av = a-1 for
all a 2 A. ut

4 Non-primary periodic groups whose non-normal
subgroups are either contranormal or core-free

Lemma 4.1 Let G be a periodic soluble group whose non-normal sub-
groups are either contranormal or core-free. Suppose that G contains proper
contranormal and non-trivial core-free subgroups. If G is a monolithic group
and Mon(G) = M = [G,G], then G = Mh S, M is an elementary abe-
lian p-subgroup, p is a prime, S is a locally cyclic p 0-subgroup, CG(M)=M,
and every complement to M in G is conjugate with S. In particular, if M
is finite, then G is finite and G = Mh S where S is a cyclic Sylow p 0-sub-
group of G.

Proof — Let M be the monolith of G. Then M is a minimal normal
subgroup of G. Since G is periodic and soluble, M is an elementary
abelian p-subgroup for some prime p. If we suppose that the center
of G contains M, then equality M = [G,G] implies that G is nilpo-
tent. But a nilpotent group does not contain proper contranormal
subgroups. This contradiction shows that M\ ⇣(G) = h1i.
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Suppose that M 6= CG(M). The facts that CG(M) is nilpotent and
that G is monolithic imply that CG(M) is a p-subgroup.
Since

CG(M) 6= G,

Lemma 2.1 proves that every subgroup of CG(M)/M is G-invariant.
Let a be an element of CG(M) \ M, then hM,ai is normal in G.
This subgroup is also abelian and the factor-group G/CG(hM,ai)
is abelian. Since G/M is abelian, factor hM,ai/M is G-central. On
the other hand, M is not central and G-chief. Then hM,ai contains
a G-invariant subgroup A such that

hM,ai = M⇥A

(see, for example, [4, Lemma 1.6.3]). This contradicts the fact that M
is a monolith of G. This contradiction proves the equality

M = CG(M).

In particular, it follows that if M is finite, then G it itself finite.
Since G/M is periodic and abelian, equality M = CG(M) implies
that G/M is a locally cyclic p 0-subgroup (see, for example, [12, Theo-
rem 2.3]). Moreover, G = MhS, and every another complement to M
is conjugate with S (see, for example, [12, Theorem 14.18]). ut

Lemma 4.2 Let G be a periodic soluble non-primary group whose non-
normal subgroups are either contranormal or core-free. Suppose that G con-
tains proper contranormal and non-trivial core-free subgroups. If G is a
monolithic group, Mon(G) 6= [G,G] and [G,G] is a p-subgroup for some
prime p, then G is a group of one of the following types:

(i) G = Dh hgi where D is a normal cyclic p-subgroup, |g| = q is a
prime, q < p, CG(D) = D;

(ii) G = Dh hgi where D is a normal Prüfer p-subgroup, |g| = q is a
prime, q < p, CG(D) = D;

(iii) G = D h hgi where D is an extraspecial p-subgroup, p is a
prime, |g|=q is a prime, q < p, q 6= 2, moreover, M=[D,D]=⇣(D)
is a monolith of G, and every subgroup of D/M is G-invariant.

Proof — Let M be the monolith of G. Then M is a minimal nor-
mal subgroup of G. Since G is periodic and soluble, M is an ele-
mentary abelian p-subgroup for some prime p. Lemma 3.2 implies
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that G/[G,G] is a cyclic q-group for some prime q and every sub-
group of [G,G]/M is G-invariant. It follows that G/M is a hypercyclic
group. Let s be the least prime from the set ⇧(G/M). Then

G/M = P/Mh S/M

where S/M is a Sylow s-subgroup of G/M, P/M is a Sylow s 0-sub-
group of G/M. From our conditions we obtain that s = q. Since G is
not a q-group, p 6= q. The inclusion P 6 [G,G] together with the
fact that [G,G] is a p-subgroup imply that P = [G,G]. It follows
that S/M is a cyclic q-subgroup, so that there is an element g such
that S/M = hgMi.

Without loss of generality we may assume that g is a q-element.
Moreover, p < q. Using again Lemma 3.2, we obtain that every sub-
group of hgq, [G,G]i/M is G-invariant. It follows that [G,G]/M is
abelian.

Since M 6= [G,G], we can choose an element d 2 [G,G] \ M.
Then hd,Mi is normal in G. This subgroup is nilpotent (see, for ex-
ample, [2]). It follows that the intersection M\ ⇣(hd,Mi) is not trivial.
Since this intersection is a normal subgroup of G, the fact that M is
a minimal normal subgroup of G implies that

M = M\ ⇣(hd,Mi).

It follows that [d,M] = h1i. Since it is true for an arbitrary ele-
ment d 2 [G,G], M 6 ⇣([G,G]). It follows that [G,G] 6 CG(M), in
particular, G/CG(M) is a finite q-group. Then the fact that M is a
minimal normal subgroup of G implies that M is finite.

Suppose that h = gq 6= 1. As we have noted above, K = hM,hi is
normal in G. The fact that M is the monolith of G implies that

CK(M) = M.

We have K = M h hhi, and every complement to M is conjugate
with hhi. Since K is normal in G, then using Proposition 8.2.12 of
the book [4], we obtain that G = Mh V and every complement to M
in G is conjugate with V . The isomorphism V ' G/M shows that V
contains a normal non-trivial Sylow p-subgroup

D1 ' [G,G]/M.



On groups with normal, contranormal or core-free subgroups 111

In particular, D1 is abelian. The inclusion M 6 ⇣([G,G]) implies
that MD1 is abelian, in particular, D1 is M-invariant. Since D1 is V-in-
variant, equality G = MV implies that D1 is G-invariant, and we
obtain a contradiction with the fact that G is monolithic. This contra-
diction proves that g has prime order q.

As we have seen above, hd,Mi is abelian and normal in G.
Since G/M is hypercyclic, G/CG(hd,Mi) is hypercyclic too. Suppose
that M is not cyclic. Then hd,Mi contains a G-invariant subgroup E
such that

hd,Mi = M⇥ E

(see [23]), and we obtain a contradiction with the fact that G is mono-
lithic. This contradiction shows that M must by cyclic.

Let M = hai. If x, y are arbitrary elements of D = [G,G], then

yx = yam

where 1 6 m 6 p. It follows that

x-qyxq = y.

This means that Dq 6 ⇣(D). Assume that

⌦1(⇣(D)) 6= M.

Since D = CG(⌦1(⇣(D))) and G/D is a cyclic p-group, ⌦1(⇣(D))
contains a non-trivial G-invariant subgroup E1 such that

⌦1(⇣(D)) = M⇥ E1

(see, for example, [13, Corollary 5.14]), and we obtain a contradiction
with the fact that G is monolithic. This contradiction shows that

⌦1(⇣(D)) = M.

It follows that ⇣(D) is either cyclic or quasicyclic. In particular, if D
is abelian, then D is cyclic or quasicyclic. Then

G = Dh hgi

where |g| = q is a prime, so that G is a group of type (i) or (ii).
Suppose that D is non-abelian. Then D/M is an extension of cyclic
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or quasicyclic subgroup ⇣(D)/M by an elementary abelian p-sub-
group. Suppose that ⇣(D) 6= M. Then D/M = ⇣(D)/M ⇥ Y/M for
some subgroup Y. If we suppose that Y is abelian, then the equali-
ty D = ⇣(D)Y implies that D is abelian. Thus Y is not abelian.

The inequality ⇣(D) 6=M shows that there exists an element c2⇣(D)
such that cp = a. By such a choice, cM 2 ⌦1(D/M). Lemma 2.1 im-
plies that every subgroup of ⌦1(D/M) is G-invariant. It follows that
there exists an integer r such that 1 6 r < q and (yM)g = (yM)r

for all yM 2 ⌦1(D/M) (see, for example, [21, Theorem 1.5.6]). If we
suppose that r = 1, then it is not hard to see, that gM 2 CG/M(D/M).
Then G/M is abelian, and we obtain a contradiction. This contradic-
tion shows that r 6= 1. Since Y is not abelian, there are elements x,y2Y
such that a = [x,y]. We have xg = xru1, yg = yru2 where u1,u2 2 M,
and hence

ag = [x,y]g = [xg,yg] = [xru1,yru2] = [xr,yr] = ak

where k = r2. On the other hand, cg = cru3 where u3 2 M, and
hence

ag = (cp)g = (cg)p = (cru3)
p = cprup

3
= ar.

Thus, r ⌘ r2(mod p). This contradiction proves that ⇣(D) 6= M, that
is D = Y. Since D is not abelian, [D,D] = M, so that D is an extraspe-
cial p-subgroup. If we suppose now that q = 2, then the fact that
every subgroup of D/M is G-invariant implies that

D/M 6 ⇣(G/M).

In this case, G/M is abelian, and we obtain a contradiction
with M 6= [G,G]. This final contradiction proves that G is a group
of type (iii). ut

Lemma 4.3 Let G be a periodic soluble group whose non-normal sub-
groups are either contranormal or core-free. Suppose that G contains proper
contranormal and non-trivial core-free subgroups. If G is a monolithic group
with Mon(G) 6= [G,G] and [G,G] is not a primary group, then G is a group
of one of the following types:

(i) G = Mh K where M is a finite elementary abelian p-subgroup, p
is an odd prime, K is a quaternion group of order 8, M is a minimal
normal subgroup of G, CG(M) = M;

(ii) G = M h B where M is a minimal normal elementary abelian p-
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subgroup, p is an odd prime, B = Kh hui where K is a normal Prü-
fer 2-subgroup, u2 = 1, au = a-1 for each a 2 K;

(iii) G = Mh B where M is a minimal normal elementary abelian p-sub-
group, p is an odd prime, B is an infinite generalized quaternion
group;

(iv) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = D1h hgi where D1 is a locally cyclic p 0-sub-
group, |g| = p, every subgroup of D1 is hgi-invariant, CV (D1) = D1;

(v) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = D1 h hgi where D1 is a locally cyclic sub-
group, g is a q-element, q is an odd prime, p,q 62 ⇧(D1),
Chgi(D1)=hgqi, and every subgroup of D1 is hgi-invariant;

(vi) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = D1 h hgi where D1 is a locally cyclic sub-
group, g is a 2-element, 2,p 62 ⇧(D1), Chgi(D1) = hg2i, xg = x-1

for each x 2 D1;

(vii) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = (S ⇥ K) h hgi where S ⇥ K is a locally
cyclic subgroup, moreover, K is a Prüfer 2-subgroup, S is a 2 0-sub-
group, |g| = 2, xg = x-1 for each x 2 S⇥K;

(viii) G = Mh V where M is a minimal normal elementary abelian p-sub-
group, p is a prime, V = Sh (Khgi) where S is a locally cyclic 2 0-sub-
group, K is a Prüfer 2-subgroup, |g| = 4, g2 2 ⌦1(K), hK, gi is an
infinite generalized quaternion group, CV (S) = S⇥K, xg = x-1 for
each x 2 S⇥K.

Proof — Let M be the monolith of G. Then M is a minimal nor-
mal subgroup of G. Since G is periodic and soluble, M is an ele-
mentary abelian p-subgroup for some prime p. Lemma 3.2 implies
that G/[G,G] is a cyclic q-group for some prime q and every sub-
group of [G,G]/M is G-invariant. In particular, [G,G]/M is nilpotent.

Suppose that G/M is a q-group. Since [G,G] is a not p-sub-
group, p 6= q. The fact that G is monolithic implies that

CG(M) = M.

Using Lemma 2.1 and Lemma 2.4 we obtain that either G/M is a De-
dekind group or G/M is a group that was described in Lemma 2.4.
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Since M 6= [G,G], G/M is non-abelian. Suppose that G/M is a Dede-
kind group. Then

G/M = K1/M⇥K2/M

where K1/M is a quaternion group of order 8 and K2/M is an ele-
mentary abelian 2-subgroup. We remark that

⇣(G/M) = ⇣(K1/M)⇥K2/M

is an elementary abelian subgroup. Since M is a monolith
of G, ⇣(G/M) must be locally cyclic [12, Theorem 3.1]. Since G/M
is not abelian, G/M is a quaternion group. Since M is a minimal
normal subgroup of G, M is finite, so that

G = MhK

where K is a quaternion group of order 8, so that G is a group of
type (i).

Suppose now that
G/M = A/MhgMi

where A/M is a divisible abelian 2-subgroup and

g2M2CG/M(A/M).

Every subgroup of hA, g2i/M is G-invariant. In particular, every sub-
group of ⌦1(hA, g2i/M) is G-invariant. Since M is a minimal normal
abelian p-subgroup of G, ⌦1(hA, g2i/M) contains a subgroup W/M
such that

⌦1(hA, g2i/M)/(W/M)

is locally cyclic and CoreG/M(W/M) = h1i [12, Lemma 3.8]. The
fact that every subgroup of ⌦1(hA, g2i/M) is W-invariant shows that
equality

CoreG/M(W/M) = h1i

is possible only if W/M = h1i. Thus ⌦1(hA, g2i/M) is locally cyclic,
and it follows that hA, g2i/M is locally cyclic. Then g2M 2 A/M.
Finally, G = M h B where B ' A/M (see, for example, [3, Theo-
rem 2.4.5]). Using Lemma 2.4 we obtain that either B = K h hui
where K is a normal Prüfer 2-subgroup, u2 = 1, au = a-1 for
each a 2 K, or B is an infinite generalized quaternion group, so that G
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is a group of type (ii) or (iii).
Suppose now that ⇧(G/M) contains at least two primes. Let s be

the smallest prime from the set ⇧(G/M). Since G/M is hypercyclic,

G/M = S/MhQ/M

where Q/M is a Sylow s-subgroup of G/M and S/M is a Sylow s 0-sub-
group of G/M. The fact that G/[G,G] is a q-group implies that s = q.
Without loss of generality we may suppose that gM 2 Q/M.

Using Lemma 2.1 we obtain that every subgroup of

D/M = Gq[G,G]/M

is G-invariant. Thus, D/M is nilpotent. Then D/M = P/M ⇥ S/M
where P/M is a Sylow p-subgroup of D/M, S/M is a Sylow p 0-sub-
group of D/M.

Let xM be an arbitrary element of P/M. By above noted a sub-
group hx,Mi is normal in G. This subgroup is nilpotent (see, for
example, [2]). It follows that

M\ ⇣(hx,Mi) 6= h1i.

Since this intersection is a normal subgroup of G, the fact that M is
a minimal normal subgroup of G implies that M = M \ ⇣(hx,Mi). It
follows that [x,M] = h1i. Since it is true for arbitrary x 2 P, M 6 ⇣(P).

By our assumption, S/M is not trivial. Then the fact that M is the
monolith of G, implies that CS(M) = M. Choose in S an element z
such that

M 6= zM 2 ⇣([G,G]/M).

Without loss of generality we may assume that z is a p 0-element.
Then M = CM(hzi)⇥ [hzi,M] (see, for example, [13, Proposition 5.19]).
Since hzMi is normal in G/M, CM(hzi) is G-invariant. If we suppose
that CM(hzi) 6= h1i, then CM(hzi) = M. But in this case, z 2 CS(M)
and we obtain a contradiction with CS(M) = M. Thus

CM(hzi) = h1i,

and hence M = [hzi,M]. We note that [hzi,M] = [z,M]. Then

S = MhU
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and every complement to M in S is conjugate to U (see, for exam-
ple, [4, Theorem 8.2.7]). Since S is normal in G, then using Proposi-
tion 8.2.12 of [4], we obtain that G = Mh V , and every complement
to M in G is conjugate to V . The isomorphism V ' G/M shows that V
contains a normal subgroup D1 such that |V/D1| = q and every sub-
group of D1 is V-invariant.

Suppose now that P/M is not trivial. Then Sylow p-subgroup P1
of D1 is non-trivial. This subgroup is normal in V . By above proved,
we have M 6 ⇣(P). It follows that [P1,M] = h1i, in particular, P1
is M-invariant. Then P1 is G-invariant. The inclusion P1 6 V implies
that P1 \M = h1i, and we obtain a contradiction. This contradiction
shows that D/M is a p 0-group.

Thus we have G = Mh V . Let D2 be the socle of D1. Since M is a
minimal normal abelian p-subgroup of G, D2 contains a subgroup W
such that D2/W is locally cyclic and CoreV (W) = h1i [12, Lemma 3.8].
The fact that every subgroup of D1 is V-invariant shows that equality

CoreV (W) = h1i

is possible only if W = h1i. Thus, D2 is locally cyclic, and it follows
that D1 is locally cyclic.

If p = q, then V = D1 h hgi where |g| = p, D1 is abelian p 0-sub-
group and every subgroup of D1 is hgi-invariant. Hence G is a group
of type (iv).

Suppose that p 6= q. By Lemma 2.1, every subgroup of G/M is
normal or contranormal, so that G/M ' V satisfies the conditions
of Lemma 2.5. If q 6= 2, then Lemma 2.5 implies that

V = D1 h hgi

where g is a q-element, D1 is abelian subgroup, p,q 62 ⇧(D1),

Chgi(D1) = hgqi,

and every subgroup of D1 is hgi-invariant. Hence G is a group of
type (v).

Finally suppose that q = 2. If a Sylow 2-subgroup of G/M is fi-
nite, then Lemma 2.5 shows that G is a group of type (v), more-
over, xg = x-1 for each x 2 D1, so that G is a group of type (vi).

Suppose that a Sylow 2-subgroup of G/M is infinite. Taking into
account Lemma 2.5 we conclude that V = Sh P where P is an infi-
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nite Sylow 2-subgroup of G, P = Khgi is a group satisfying all condi-
tions of Lemma 2.4, S is an abelian Sylow 2 0-subgroup of G, xg = x-1

for each x 2 S. From above proved we derive that S⇥ K is a locally
cyclic subgroup. By Lemma 2.4, we can have the following two types
of V : either V = (S ⇥ K) h hgi where S ⇥ K is a locally cyclic sub-
group, K is a Prüfer 2-subgroup, S is a 2 0-subgroup, |g|=2, xg=x-1

for each x 2 S⇥K, or V = Sh (Khgi) where S is a locally cyclic 2 0-sub-
group, K is a Prüfer 2-subgroup, |g| = 4, g2 2 ⌦1(K), hK, gi is an in-
finite generalized quaternion group, CV (S) = S⇥ K, xg = x-1 for
each x 2 S⇥K. Thus G is a group of types (vii) or (viii). ut

Proof of Theorem D — This theorem is a direct consequence of Lem-
mas 3.10, 4.1, 4.2, and 4.3.

The next natural step is the study of the case when G is not a
monolithic group.

Lemma 4.4 Let G be a periodic soluble non-primary group whose non-
normal subgroups are either contranormal or core-free. Suppose that G con-
tains proper contranormal and non-trivial core-free subgroups. If G is not
a monolithic group but [G,G] is G-monolithic, then G is a group of one of
the following types:

(i) G = M h (hci ⇥ hgi) where M is a normal subgroup of prime or-
der p 6= 2, |c| = s is a prime, |g| = q is a prime, q 6= s, q divides p- 1,
and we have CG(M) = M⇥ hci;

(ii) G = M h (hci ⇥ hgi) where M is a normal subgroup of prime or-
der p 6= 2, |c| = |g| = q is a prime, q divides p - 1, and we
have CG(M) = M⇥ hci;

(iii) G = Mh hgi where M is a normal subgroup of prime order p 6= 2, g
is an element of order q, q is a prime, q divides p - 1, and we
have CG(M) = M;

(iv) G = [G,G]h hgi where [G,G] is a normal cyclic p-subgroup, where p
is an odd prime, hgi is a cyclic q-subgroup, q is a prime, and we
have CG([G,G]) = [G,G];

(v) G = [G,G]h hgi where [G,G] is a normal Prüfer p-subgroup, where p
is an odd prime, hgi is a cyclic q-subgroup, q is a prime, and we
have CG([G,G]) = [G,G].
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Proof — Let M be the G-monolith of [G,G]. Then M is a min-
imal normal subgroup of G. Since G is periodic and soluble, M
is an elementary abelian p-subgroup for some prime p. Since G is
not monolithic, G contains a non-trivial normal subgroup H such
that H\M = h1i. It follows that

H\ [G,G] = h1i.

The last equality implies that H 6 ⇣(G). Lemma 3.1 implies that every
subgroup of [G,G] is G-invariant. In particular, [G,G] is a Dedekind
group. Being Dedekind, [G,G] is abelian or nilpotent of class nilpo-
tency 2. The fact that [G,G] is G-monolithic implies that [G,G] must
be a p-subgroup for some prime p. Since every subgroup of [G,G]
is G-invariant, M = hai is a cyclic subgroup of order p.

Suppose that M = [G,G]. If we assume that p = 2, then M 6 ⇣(G),
so that G is nilpotent. However, a nilpotent group does not contain
proper contranormal subgroups. This contradiction shows that p 6= 2.
Let C be a proper contranormal subgroup of G. Since G/M is abe-
lian, CM/M is a normal subgroup of G/M. On the other hand, CM/M
is contranormal in G/M, which implies that

CM/M = G/M or CM = G.

Since M has a prime order and C is a proper subgroup of G, it follows
that C\M = h1i. Clearly, C1 = CC(M) is normal in G, and equality

C1 \ [G,G] = h1i

implies that C1 6 ⇣(G). Assume that C1 is non-trivial and chose an
element c 2 C1 such that |c| = s is a prime. By Lemma 2.1, every
subgroup of G/hci is normal or contranormal.

Using Lemma 2.2 we obtain that (G/hci)/[G/hci,G/hci] is a cy-
clic q-group for some prime q. Since G is not abelian, q 6= p. Choose
an element g such that G = hgi(Mhci). Without loss of generality we
can suppose that g is a q-element. Lemma 2.2 implies that hgqihci is
normal in G. Equality (hgqihci) \M = h1i together with Lemma 3.1
imply that every subgroup of hgqihci is G-invariant.

Let s 6= q and suppose that gq 6= 1. Then

(G/hgqi)/[G/hgqi,G/hgqi] = (G/hgqi)/(Mhgqi/hgqi)
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is not a primary group, so we obtain a contradiction with Lemmas 2.1
and 2.2. This contradiction shows that gq = 1, and we obtain that G
is a group of type (i).

Assume now that s = q and hg, ci is not cyclic. Using the above
arguments we obtain again that gq = 1, thus G is a group of type (ii).

Suppose now that hg, ci is cyclic. Then hg, ci = hgi. As above we
can prove that hgqi is normal in G. Since G must contain proper non-
trivial core-free subgroup, we obtain that gq = 1, so that G is a group
of type (iii).

Suppose now that M 6= [G,G]. Lemma 3.2 implies that G/[G,G] is a
cyclic q-group for some prime q. Since G is not a primary group, we
have p 6= q. The fact that every subgroup of [G,G] is G-invariant im-
plies that G is hypercyclic. It follows that q < p. In particular, p 6= 2,
so that [G,G] is abelian. Using again the fact that every subgroup
of [G,G] is G-invariant, we obtain that M = ⌦1([G,G]). In turn out,
it follows that [G,G] is a cyclic p-subgroup or [G,G] is a Prüfer p-sub-
group. Since [G,G] is a normal Sylow p-subgroup of G, then

G = [G,G]hK

for some subgroup K and every complement to [G,G] in G is conju-
gate to K (see, for example, [3, Theorem 2.4.5]). The isomorphism

K ' G/[G,G]

implies that K is a cyclic q-subgroup. Let K = hgi. Moreover, equality

H\ [G,G] = h1i

implies that H is a q-subgroup. It follows that ⌦1(K) is a nor-
mal q-subgroup of G. Using Lemma 2.1 we obtain that every sub-
group of Gq[G,G]⌦1(K)/⌦1(K) is G-invariant. In particular, the sub-
group hgq⌦1(K)i is normal in G/⌦1(K). Then hgqi is normal in G.
Since G must contain a proper non-trivial core-free subgroup, we
conclude that gq = 1. This means that CG([G,G]) = [G,G], so that G
is a group of types (iv) or (v). ut

Lemma 4.5 Let G be a soluble periodic non-primary group whose non-
normal subgroups are either contranormal or core-free. Suppose that G con-
tains proper contranormal and non-trivial core-free subgroups, and [G,G]
is a q-subgroup for some prime q such that srq(H) > 2. If the derived sub-
group [G,G] is not G-monolithic, then G = [G,G]h hgi where g is an ele-
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ment of order p, p is a prime, p < q, [G,G] is an abelian Sylow q-subgroup
of G, CG([G,G]) = [G,G], and every subgroup of [G,G] is G-invariant.

Proof — Since [G,G] is not G-monolithic, it contains a proper non-
trivial abelian G-invariant subgroup. Lemma 3.2 shows that G/[G,G]
is a cyclic p-group for some prime p. Since G is not primary, p 6= q.
Using Lemma 3.8, we obtain that every subgroup of [G,G] is G-in-
variant. Then G is a hypercyclic group. Let r be the smallest prime
from the set ⇧(G). Then

G = Sh P

where P is a Sylow r-subgroup of G and S is a Sylow r 0-subgroup
of G. Inclusion [G,G] 6 S[P,P] together with the fact that G/[G,G] is
a p-group imply that r = p. It follows that p < q. In particular, p 6= 2.
Then [G,G] is abelian. Moreover, our conditions imply that [G,G] is
a Sylow q-subgroup of G. Then

G = [G,G]hK

for some subgroup K and every complement to [G,G] in G is conju-
gate to K (see, for example, [3, Theorem 2.4.5]). The isomorphism

K ' G/[G,G]

implies that K is a cyclic p-subgroup. Let K = hgi.
The fact that [G,G] is not G-monolithic implies that [G,G] contains

a proper non-trivial G-invariant subgroup. Thus we can apply Lem-
ma 3.9. By this lemma, every subgroup of Gp[G,G] is G-invariant.
The equality

G = [G,G]hgi

shows that hgpi 6 ⇣(G). Since G must contain a proper non-trivial
core-free subgroup, gp = 1. Thus CG([G,G]) = [G,G]. ut

Lemma 4.6 Let G be a soluble periodic non-primary group whose non-
normal subgroups are either contranormal or core-free. Suppose that G con-
tains proper contranormal and non-trivial core-free subgroups, and [G,G]
is a q-subgroup for some prime q such that srq([G,G]) 6 2. If the derived
subgroup [G,G] is not G-monolithic, then G is a group of one of the follow-
ing types:

(i) G = (ha1i ⇥ ha2i)h hgi where |a1| = |a2| = q, |g| = p, p is a prime
with p < q, CG([G,G]) = [G,G], ag

1
= am

1
, ag

2
= as

2
, 1 6 m, s < q

and m 6= s;
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(ii) G = [G,G]h hgi where g is an element of order p, p is a prime, p < q,
the commutator subgroup [G,G] is an abelian Sylow q-subgroup of G
which is equal to CG([G,G]) and every subgroup of [G,G] is G-in-
variant.

Proof — As in the proof of Lemma 4.5 we can show that G/[G,G] is
a cyclic p-group for some prime p. Since [G,G] is not G-monolithic, it
has a family {V�| � 2 ⇤} of proper non-trivial G-invariant subgroups
such that

T
�2⇤

V� = h1i. By Lemma 2.1, every subgroup of [G,G]/V�

is G-invariant. Then [G,G]/V� is hypercyclic. It follows that p < q,
in particular, q 6= 2. Being a Dedekind group, [G,G]/V� is abelian.
The equality

T
�2⇤

V� = h1i implies that [G,G] is abelian. The fact
that [G,G] is not G-monolithic implies that [G,G] contains a proper
non-trivial G-invariant subgroup. Thus, we can apply Lemma 3.9.
By this lemma, either G is a group of type (i), or every subgroup
of Gp[G,G] is G-invariant. Repeating the same arguments that we
used in the proof of Lemma 4.5 we obtain that G is a group of
type (ii). ut

Lemma 4.7 Let G be a group whose non-normal subgroups are either con-
tranormal or core-free, H be a proper non-trivial normal periodic subgroup
of G. Suppose also that ⇧(H) contains at least two different primes. If H is
not G-monolithic, then every subgroup of H is G-invariant.

Proof — Let {V�| � 2 ⇤} be the family of all non-trivial G-invariant
subgroups of H. Since H is not G-monolithic,

T
�2⇤

V� = h1i. This
equality together with Remak’s theorem imply that H is embedded
in the cartesian product Cr�2⇤H/V�. Lemma 2.1 shows that the fac-
tors H/V� are Dedekind groups for each index � 2 ⇤. It follows that
all these factors are nilpotent of nilpotency class at most 2. There-
fore, H is also nilpotent of nilpotency class at most 2. Then

H = Drp2⇧(H)Hp

where Hp is a Sylow p-subgroup of H, p 2 ⇧(H). Since a set ⇧(H)
contains at least two different primes, Lemma 3.1 shows that every
subgroup of Hp is G-invariant for each p 2 ⇧(H). Then every sub-
group of H is G-invariant. ut

Lemma 4.8 Let G be a soluble periodic group whose non-normal sub-
groups are either contranormal or core-free. Suppose that G contains proper
contranormal and non-trivial core-free subgroups, and ⇧([G,G]) contains
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at least two different primes. If the derived subgroup [G,G] is not G-mono-
lithic, then G is a group of one of the following types:

(i) G = S h hgi where g is an element of order 2, S is an abelian 2 0-
subgroup, CG(S) = S, and xg = x-1 for every x 2 S;

(ii) G = S h P where P is a Sylow 2-subgroup of G and S is an abe-
lian 2 0-subgroup, P = P1 h hgi where D is a normal divisible abelian
2-subgroup, [S,P1] = h1i, |g| = 2, and xg = x-1 for every x 2
S⇥ P1;

(iii) G = Sh hgi where |g| = p, where p is the least prime of the set ⇧(G),
S is an abelian Sylow p 0-subgroup of G, CG(S) = S, and every sub-
group of S is G-invariant.

Proof — Lemma 3.2 shows that G/[G,G] is a cyclic p-group for
some prime p. Since [G,G] is not G-monolithic, Gp[G,G] is not G-mo-
nolithic too. Lemma 4.7 shows that every subgroup of Gp[G,G]
is G-invariant. In particular, Gp[G,G] is a Dedekind group. Being
a Dedekind group, it is nilpotent of nilpotency class at most 2.

By our conditions, G contains a proper non-trivial core-free sub-
group E. By above proved, every subgroup of Gp[G,G] is G-invariant.
It follows that

E\Gp[G,G] = h1i.

Thus |E| = p and E = hgi where |g| = p. Moreover, G = [G,G]h hgi.
Since every subgroup of [G,G] is G-invariant and G/[G,G] is cyclic,

the group G is hypercyclic. Let q be the smallest prime from the
set ⇧(G). Then G = Sh P where P is a Sylow q-subgroup of G and S
is a Sylow q 0-subgroup of G. The inclusion [G,G] 6 S[P,P] together
with the fact that G/[G,G] is a p-group imply that q = p. Thus, p is a
least prime number of a set ⇧(G).

Consider the case when p = 2. Since [G,G] is a Dedekind group,
its Sylow 2 0-subgroup S is abelian. If we suppose that [S, g] 6= S, then

G/([S, g]⇥ (P \ [G,G]))

is abelian, and we obtain a contradiction. This contradiction implies
the equality S = [S, g]. Since S = [S, g]⇥CS(g) (see, for example, Pro-
position 5.19 of [13]), we obtain that CS(g) = h1i. Using the fact that
every subgroup of S is G-invariant, we obtain that xg = x-1 for
each x 2 S. In particular, G is a group of type (i).
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Suppose first that the derived subgroup [G,G] is non-abelian. Then
its Sylow 2-subgroup P1 is a direct product of a quaternion group
of order 8 and an elementary abelian 2-group. Now we can obtain
that G/S is nilpotent. But a nilpotent group, having a cyclic factor-
group by the derived subgroup, is itself cyclic. It follows that P = hgi.
Thus G is a group of type (i).

Suppose now that a derived subgroup [G,G] is abelian and its Sy-
low 2-subgroup P1 is non-trivial. By Lemma 2.1, every subgroup
of 2-group G/S is either normal or contranormal. Lemma 2.4 im-
plies that [G,G]/S is divisible, so that P1 is divisible. Repeating the
arguments of the proof of Lemma 2.4 we obtain that xg = x-1 for
each x 2 P1, so that G is a group of type (ii).

Consider now the case when p is odd. Using the above arguments
we obtain that P = hgi. Thus G is a group of type (iii). ut

Proof of Theorem E — This theorem directly follows from Lem-
mas 3.11, 4.4, 4.6, 4.8.
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