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Abstract
A finite group G is a z-group if every Sylow subgroup of G is cyclic. A subgroup H
of a group G is called c-reachable (z-reachable) in G if there is a subgroup chain

H = H0 6 H1 6 . . . 6 Hi 6 Hi+1 6 . . . 6 Hn-1 6 Hn = G

such that Hi+1 = HiKi, where Ki is a cyclic subgroup (z-subgroup) for every i. The
aim of the paper is to study c-reachable and z-reachable subgroups. In particular, we
prove that in soluble groups, a z-reachable subgroup is c-reachable, and we establish
sufficient conditions under which all indices |Hi+1 : Hi| are primes. We obtain
the structure of a group in which all Sylow subgroups are z-reachable. Besides, we
prove that in Baer’s Theorem on supersolubility of a group G = AB with the nilpotent
derived subgroup and supersoluble normal subgroups A and B, the requirement for
the subgroups A and B to be normal can be weakened to z-reachability.
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1 Introduction

All groups in this paper are finite. We use the standard notation and
terminology. If A and B are subgroups of a group G and G = AB,
then B is said to be a supplement for A in G.

According to a theorem of Huppert (see [6, VI.9.5]), a group is
supersoluble if every its maximal subgroup is of prime index. In
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this case, every maximal subgroup has a cyclic supplement of prime-
power order. In 1965, O.H. Kegel proved that a group G is soluble if
every maximal subgroup of G admits a supplement which is cyclic
and of prime-power order [7, Proposition 1]. The symmetric group S4
of degree 4 possesses this property but S4 is not supersoluble.

J.C. Beidleman and D.J.S. Robinson [4] investigated a group G in
which for every proper subgroup H there is an element g 2 G \H
such that Hhgi = hgiH. In this case, maximal subgroups of G have
cyclic supplements.

A. Ballester-Bolinches, J. Cossey and S. Qiao [2, Theorem 4] gave a
detailed description of groups with cyclic supplements for maximal
subgroups.

A group G is a z-group if every Sylow subgroup of G is cyclic.
In view of Zassenhaus’s Theorem [6, IV.2.11], the derived subgroup
of a z-group is a Hall cyclic subgroup and the quotient group of
a z-group with respect to the derived subgroup is also cyclic.

Based on the above results, we propose the following definitions.
A subgroup H of a group G is c-supplemental (z-supplemental) in G if

there is a subgroup K such that G = HK and K is a cyclic subgroup (z-
subgroup, respectively), and we say K is a c-supplement (z-supplement,
respectively) for H in G. It is clear that every c-supplemental sub-
group is z-supplemental.

A subgroup H of a group G is c-reachable (z-reachable) in G if there
is a subgroup chain

H = H0 6 H1 6 . . . 6 Hi 6 Hi+1 . . . 6 Hn-1 6 Hn = G (?)

such that Hi is c-supplemental (z-supplemental, respectively) in Hi+1

for every i. It is clear that every c-reachable subgroup is z-reachable.
Let P be the set of all primes and let H be a subgroup of a group G.

If H = G or there is a subgroup chain (?) such that |Hi+1 : Hi| 2 P
for every i, then H is P-reachable in G. In [14], the concept “P-sub-
normal subgroup” was used instead of “P-reachable subgroup”. Ev-
ery P-reachable subgroup is c-reachable, see Lemma 2.1 (1), and so it
is z-reachable.

From Huppert’s Theorem [6, VI.9.5], it follows that every subgroup
of a supersoluble group is P-reachable.

Example 1.1 In the symmetric group S4 of degree 4, every sub-
group is c-reachable. In fact, all subgroups of S4 is P-reachable, ex-
cept for a Sylow 3-subgroup C3 and S3. Since S3 has a c-supple-
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ment h(1 2 3 4)i, S3 is c-supplemental in S4. From |S3 : C3| = 2, it
follows that C3 is c-reachable in S4.

Example 1.2 In the symmetric group S5 of degree 5, every subgroup
is z-reachable. In fact, in S5 [5, SmallGroup(120,34)], maximal sub-
groups are isomorphic to F20, A5, S4 and D12. Here, F20 = C5 oC4

is the Frobenius group of order 20, D12 is the dihedral group of or-
der 12. Since

S5 = F20h(1 2)(3 4 5)i = A5h(1 2)i = S4h(1 2 3 4 5)i = D12F20,

in S5, F20 is c-reachable, but F20 is not P-reachable, A5, S4 are P-reach-
able, D12 is z-reachable, but D12 is not c-reachable. Since F20 and D12

are supersoluble, all their subgroups are z-reachable in S5. All sub-
groups of S4 are c-reachable in S4, so all subgroups of S4 are c-reach-
able in S5. Since every 2-maximal subgroup of S5 is conjugate with
a subgroup of F20, S4 or D12, it implies that all subgroups of S5
are z-reachable in S5.

By Lemma 2.1 (3), every subnormal subgroup of a soluble group
is P-reachable, so it is also c-reachable and z-reachable.

We establish that in a soluble group, every z-reachable subgroup
is c-reachable, and if H is a z-reachable subgroup of a soluble group G,
then H is P-reachable in G when one of the following conditions
holds: G is S4-free; 4 does not divide |G : H|; (|H|, 6) = 1.

We also study soluble groups G with all Sylow subgroups z-reacha-
ble. In particular, we prove that in G, all Sylow subgroups are P-reach-
able, except for, maybe, a Sylow 3-subgroup, that a Hall {2, 3}0-sub-
group G{2,3}0 is normal in G and has a Sylow tower of supersolu-
ble type. It implies that G with z-reachable Sylow normalizers is ei-
ther supersoluble or contains a normal subgroup N and G/N ' S4.
Besides, we prove that in Baer’s Theorem on supersolubility of a
group G = AB with the nilpotent derived subgroup and supersol-
uble normal subgroups A and B, the requirement for subgroups A
and B to be normal can be weakened to z-reachability.

2 General properties of z-reachable subgroups

Lemma 2.1 Let H be a subgroup of a group G. The following statements
hold.
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(1) If H is P-reachable in G, then H is c-reachable in G.

(2) If H is c-reachable in G, then H is z-reachable in G.

(3) If H is subnormal in G and G is soluble, then H is P-reachable in G.

Proof — (1) Let H be a P-reachable subgroup of G. Then there is
a subgroup chain (?) such that |Hi+1 : Hi| = pi 2 P, i = 0, . . . ,n- 1.
If Pi is a Sylow pi-subgroup of Hi+1 and xi 2 Pi \Hi, then

|Hihxii| = |Hi||hxii : Hi \ hxii| > |Hi|pi = |Hi+1|.

Hence Hi+1 = Hihxii. Since this is true for every i, we deduce that H
is c-reachable in G.

(2) This follows from the definitions of c-reachable and z-reacha-
ble subgroups.

(3) Let H be a subnormal subgroup of a soluble group G. Then
in G, there is a composition series

1 = H0 6 H1 6 . . . 6 Hj = H 6 Hj+1 6 . . . 6 Ht = G.

Since G is soluble, we get |Hi+1 : Hi| 2 P for every i. Therefore H
is P-reachable in G. ut

Lemma 2.2 Let H be a z-reachable subgroup of a group G and let NCG.
The following statements hold.

(1) Hg is z-reachable in G for every g 2 G.

(2) HN is z-reachable in G.

(3) HN/N is z-reachable in G/N.

(4) Let A 6 B 6 G. If A is z-reachable in B and B is z-reachable in G,
then A is z-reachable in G.

Proof — Let H be a z-reachable subgroup of a group G. Then there
is a subgroup chain (?) such that Hi+1 = HiKi, where Ki is a z-sub-
group for every i = 0, . . . ,m- 1.

(1) Since Hg

i+1
= (Hi)

g(Ki)
g and (Ki)

g is a z-subgroup, in (?), we
can replace Hi by (Hi)

g and conclude that Hg is z-reachable in G.
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(2) Since N is normal in G, we have Ai = HiN is a subgroup of G
for every i = 0, . . . ,m- 1. Consider a subgroup chain

A = HN = A0 6 A1 6 . . . 6 Ai 6 Ai+1 6 . . . 6 Am = G.

Since Ai+1 = Hi+1N = (HiKi)N = (HiN)Ki = AiKi, we deduce Ai

is z-supplemental in Ai+1 by Ki and A = HN is z-reachable in G.
(3) Since KiN/N ' Ki/Ki \N is a z-group and

Ai+1/N = AiKi/N = (Ai/N)(KiN/N),

we get Ai/N is z-supplemental in Ai+1/N by KiN/N, and in view of

A/N = HN/N = A0/N 6 . . . 6 Am/N = G/N,

we conclude that HN/N = A/N is z-reachable in G/N.
(4) It is obviously. ut

Similarly, we can proof the following lemma.

Lemma 2.3 Let H be a c-reachable subgroup of a group G and let NCG.
The following statements hold.

(1) Hg is c-reachable in G for every g 2 G.

(2) HN is c-reachable in G.

(3) HN/N is c-reachable in G/N.

(4) Let A 6 B 6 G. If A is c-reachable in B and B is c-reachable in G,
then A is c-reachable in G.

In S4, a Sylow 3-subgroup C3 is c-reachable, but C3 6 A4 6 S4
and C3 is not z-reachable in A4. Hence a subgroup H can be c-reach-
able (z-reachable) in a group and non-z-reachable in a subgroup con-
taining H.

Lemma 2.4 Let H and L be subgroups of a group G and let N be a normal
subgroup of G.

(1) If H is P-reachable in G, then H\N is P-reachable in N and HN/N
is P-reachable in G/N — [15, Lemma 3.1 (1)].
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(2) If N 6 H and H/N is P-reachable in G/N, then H is P-reachable
in G — [15, Lemma 3.1 (2)].

(3) If H is P-reachable in a soluble group G and U 6 G, then H \U
is P-reachable in U — [15, Lemma 3.4].

(4) If H 6 L, H is P-reachable in L and L is P-reachable in G, then H
is P-reachable in G — [15, Lemma 3.1 (4)].

Lemma 2.5 Every subgroup of a supersoluble group is P-reachable.

Proof — Let H be a subgroup of a supersoluble group G. Consider
a subgroup chain

H = H0 6 H1 6 . . . 6 Hn-1 6 Hn = G

such that Hi lHi+1, i = 0, 1, . . . ,n- 1. Here we write Hi lHi+1 to
denote that Hi is a maximal subgroup of Hi+1. Since |Hi+1 : Hi| 2 P
by [6, IV.2.11], we conclude H is P-reachable in G. ut

3 z-Reachability in soluble groups

Lemma 3.1 (see Lemma 2.1 of [13]) Let M be a maximal subgroup of
a soluble group G, and assume that G = MC for a cyclic subgroup C.
Then |G : M| is a prime or 4. Also, if |G : M| = 4, then G/MG ' S4.

Theorem 3.2 In a soluble group G, a subgroup H is z-reachable if and
only if there is a subgroup chain

H = M0 6 M1 6 . . . 6 Mi 6 Mi+1 6 . . . 6 Mn-1 6 Mn = G (??)

such that, for every i = 0, 1, . . . ,n - 1, either Mi+1/(Mi)Mi+1
' S4

and |Mi+1 : Mi| = 4, or |Mi+1 : Mi| 2 P.

Proof — Let G be a soluble group and let H be a z-reachable sub-
group of G. Compact chain (?) to a chain of maximal subgroups.
Assume that Ui is a maximal subgroup of Hi+1, Hi 6 Ui and Ki is
a z-supplement for Hi in Hi+1. Then

Hi+1 = HiKi, Ui = Hi(Ui \Ki), Hi+1 = UiKi.
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Since G is soluble, we have |Hi+1 : Ui| = p↵i

i
for a prime pi 2 ⇡(Hi+1)

and ↵i 2 N. Let Pi be a Sylow pi-subgroup of Ki. Then Hi+1 = UiPi,
where Pi is a cyclic pi-subgroup. Since all Sylow subgroups of Ui \Ki

are cyclic, we deduce that in the chain Hi 6 Ui 6 Hi+1, Hi is z-reach-
able in Ui. Repeating this compaction several times, we obtain a
chain (??) such that Mi is maximal in Mi+1 and Mi+1 = MiPi,
where Pi is a cyclic pi-subgroup for every i = 0, 1, . . . ,n- 1. In par-
ticular, every z-reachable subgroup of a soluble group is c-reachable.
By Lemma 3.1, for every i=0, 1 . . . ,n- 1, either Mi+1/(Mi)Mi+1

'S4
and |Mi+1 : Mi| = 4, or |Mi+1 : Mi| 2 P.

Conversely, assume that there is a chain (??) such that either the
index |Mi+1 : Mi| is a prime, or |Mi+1 : Mi| = 4 and Mi+1/Ai ' S4,
where Ai = (Mi)Mi+1

, for every i = 0, 1, . . . ,n- 1. If Mi+1/Ai ' S4,
then

Mi/Ai ' S3, Mi+1/Ai = (Mi/Ai)(Bi/Ai), Bi/Ai ' C4.

Let Bi/Ai = hbiAii. Then Mi+1 = Mihbii, i. e. Mi is z-reachable
in Mi+1.

Suppose that |Mi+1 : Mi| = pi 2 P, Pi is a Sylow pi-subgroup
of Mi+1 and xi 2 Pi \Mi. In that case,

|Mihxii| = |Mi||hxii : Mi \ hxii| > |Mi|pi = |Mi+1|.

Therefore Mi+1 = Mihxii, i. e. Mi is z-supplemental in Mi+1. Since
this is true for any i, we conclude H is z-reachable in G. ut

Corollary 3.3 Every z-reachable subgroup of a soluble group is c-reacha-
ble.

If G is a group, A 6 B 6 G and ACB, then the quotient group B/A
is called a section of G. If G has no sections that are isomorphic to S4,
then G is said to be S4-free.

Corollary 3.4 Let H be a z-reachable subgroup of a soluble group G.
Then H is a P-reachable subgroup of G when one of the following condi-
tions holds:

(1) G is S4-free.

(2) 4 does not divide |G : H|.

(3) (|H|, 6) = 1.
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Proof — By Theorem 3.2, there is a subgroup chain (??) such that
either |Mi+1 : Mi| = 4 and Mi+1/(Mi)Mi+1

' S4 or |Mi+1 : Mi| 2 P
for every i = 0, 1, . . . ,n- 1.

(1) By the hypotheses, G is S4-free, therefore |Mi+1 : Mi| 2 P for
every i, and H is P-reachable in G.

(2) By the hypotheses, 4 does not divide |G : H|. Hence in (??), all
indices are primes, and H is P-reachable in G.

(3) We proceed by induction on |G|. Of course, it is possible to
assume that H 6 Mn-1 l Mn = G. Since H is z-reachable in Mn-1,
we conclude H is P-reachable in Mn-1 by induction. If |G : Mn-1| is
prime, then H is P-reachable in G by Lemma 2.4 (4). If |G : Mn-1| 62 P,
then

|G : Mn-1| = 4, G/(Mn-1)G ' S4.

By hypotheses, |H| is not divided by 2 and by 3, so H 6 (Mn-1)G
and H is P-reachable in (Mn-1)G by Lemma 2.4 (1). Since (Mn-1)G
is P-reachable in G by Lemma 2.1 (3), H is P-reachable in G by Lem-
ma 2.4 (4). ut

Corollary 3.5 Let G be a soluble group, H 6 G, NCG, N 6 H. If H/N
is z-reachable in G/N, then H is z-reachable in G.

Proof — Since H/N is z-reachable in G/N and G is soluble, then
by Theorem 3.2, there is a subgroup chain

H/N = M0/N 6 . . . 6 Mi/N 6 Mi+1/N 6 . . . 6 Mn/N = G/N

with either |Mi+1/N : Mi/N|=4 and (Mi+1/N)/(Mi/N)Mi+1/N
' S4

or |Mi+1/N : Mi/N| 2 P for every i = 0, 1, . . . ,n- 1. Consider a sub-
group chain

H = M0 6 . . . 6 Mi 6 Mi+1 . . . 6 Mn-1 6 Mn = G.

If |Mi+1/N : Mi/N| 2 P, then |Mi+1 : Mi| is prime. Assume
that |Mi+1/N : Mi/N| = 4 and (Mi+1/N)/(Mi/N)Mi+1/N

' S4.
Then |Mi+1 : Mi| = 4 and

Mi+1/(Mi)Mi+1
' (Mi+1/N)/(Mi/N)Mi+1/N

' S4.

Consequently, H is z-reachable in G by Theorem 3.2. ut
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Corollary 3.6 Let G be a soluble group, let ⇡ ✓ ⇡(G), and let K be
a z-reachable ⇡-subgroup of G. Then K is z-reachable in a Hall ⇡-sub-
group G⇡ of G.

Proof — Since K is a z-reachable subgroup of a soluble group G, in
view of Theorem 3.2, there is a subgroup chain

K = M0 6 M1 6 . . . 6 Mi 6 Mi+1 6 . . . 6 Mn-1 = M 6 Mn = G

such that, for every i = 0, 1, . . . ,n- 1, either Mi+1/(Mi)Mi+1
' S4

and |Mi+1 : Mi| = 4, or |Mi+1 : Mi| 2 P. Since K is a z-reachable
subgroup of a soluble group M, then by induction, K is z-reachable
in a Hall ⇡-subgroup M⇡ of M.

If ⇡
�
|G : M|

�
\ ⇡ = ;, then M⇡ is a Hall ⇡-subgroup of G and the

statement is true.
Assume that ⇡

�
|G : M|

�
\ ⇡ 6= ; and G⇡ is a Hall ⇡-subgroup of G

that contains M⇡. In that case, G = MG⇡ and

|G : M| = |G⇡ : G⇡ \M| = |G⇡ : M⇡|.

If M⇡ is P-reachable in G⇡, then K is z-reachable in G⇡. Suppose
that M⇡ is not P-reachable in G⇡. Then

|G⇡ : M⇡| = 4, M⇡ lG⇡, NG⇡
(M⇡) = M⇡, G⇡/(M⇡)G⇡

' S4.

Since all subgroups of S4 are z-reachable in S4, we get M⇡/(M⇡)G⇡

is z-reachable in G⇡/(M⇡)G⇡
. By Corollary 3.5, M⇡ is z-reachable

in G⇡ and K is z-reachable in G⇡ by Lemma 2.2 (4). ut

Let G be a soluble group with all subgroups z-reachable. In view
of Corollary 3.3, every subgroup of G is c-reachable in G. Hence for
every proper subgroup H of G, there is an element g 2 G \H such
that H < Hhgi = hgiH. The description of these groups was obtained
in [4].

Let G be a soluble group with all maximal subgroups z-reachable.
According to Corollary 3.3, every maximal subgroup of G is c-reach-
able in G. The description of these groups was obtained in [2].

Later, U is the formation of all supersoluble groups, AU denotes
the U-residual of a group A.

Corollary 3.7 A group G is supersoluble if and only if A is z-reachable
in B for any subgroups A and B such that A 6 B.
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Proof — If G is supersoluble, then every subgroup of G is super-
soluble. Therefore by Lemma 2.5 and Lemma 2.1 (1), for any sub-
groups A and B such that A 6 B, A is z-reachable in B, and the
necessity of the condition is proved.

To prove the sufficiency we proceed by induction on |G|. Suppose
that G is a nonsupersoluble group of least order in which A is z-
reachable in B for any subgroups A and B such that A 6 B. Let H be
a proper subgroup of G. By induction, H is supersoluble and G is a
minimal nonsupersoluble group.

Suppose �(G) 6= 1. For subgroups A/�(G) 6 B/�(G) of G/�(G), A
is z-reachable in B by the hypothesis. By Lemma 2.2 (3), A/�(G)
is z-reachable in B/�(G). Consequently, by induction, G/�(G) 2 U,
and G 2 U, a contradiction. Therefore �(G) = 1, and in view
of [8, Lemma 2.1], G = GUoH, where GU is a Sylow p-subgroup for a
prime p 2 ⇡(G), GU is a minimal normal subgroup of G, |GU

| > p, H
is a maximal subgroup of G. By the choice of G, H is z-reachable
in G. In view of Theorem 3.2, either |G : H| 2 P or |G : H| = 4
and G/HG ' S4. Since |G : H| = |GU

| > p and HG = 1, we get G ' S4.
But S4 contains the nonsupersoluble subgroup A4, a contradiction.
Therefore G is supersoluble. ut

4 Soluble groups with z-reachable Sylow
subgroups

From Huppert’s Theorem [6, VI.9.5], it follows that the formation U
of all supersoluble groups can be defined as a class of all groups in
which all subgroups are P-reachable. Let ⇡ ✓ P; w⇡U is the class of
all groups with P-reachable Sylow r-subgroups for every r 2 ⇡\ ⇡(G)
(see [16]). If ⇡ = P we write wU instead of wPU. The class wU is fairly
well studied [8, 10, 14]. In particular, wU is a subgroup-closed satu-
rated formation. According to [16, Theorem 3.1], w⇡U is a subgroup-
closed formation.

Lemma 4.1 Let r = max ⇡(G) and let R be a Sylow r-subgroup of a
soluble group G. If R is z-reachable in G and r > 3, then R is normal in G.

Proof — We proceed by induction on |G|. By Theorem 3.2, there is
a subgroup chain

R = R0 6 R1 6 . . . 6 Ri 6 Ri+1 6 . . . 6 Rn-1 6 Rn = G (†)
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such that either |Ri+1 :Ri| = 4 and Ri+1/(Ri)Ri+1
'S4 or |Ri+1 :Ri| 2 P

for i = 0, 1, . . . ,n - 1. Since R is z-reachable in Rn-1, R is normal
in Rn-1 by induction. If R is not normal in G, then Rn-1 = NG(R).
By the Sylow Theorem, |G : Rn-1| ⌘ 1 (mod r). Since r = max⇡(G),
we get |G : Rn-1| /2 P. If |G : Rn-1| = 4, then r = 3, a contradiction.
Thus R is normal in G. ut

Theorem 4.2 If every Sylow subgroup of a soluble group G is z-reachable,
then the following statements hold.

(1) G 2 w30U.

(2) A Hall {2, 3}0-subgroup G{2,3}0 of G is normal in G.

(3) G20 2 wU, G30 2 wU, G{2,3}0 2 wU.

(4) If G is a S4-free group, then G 2 wU.

Proof — Assume that every Sylow subgroup of a soluble group G
is z-reachable in G.

(1) By Corollary 3.4 (2,3), every Sylow r-subgroup R, with r 6= 3,
is P-reachable in G, i. e. G 2 w30U.

(2) We proceed by induction on |G|. Let R be a Sylow r-subgroup
of H = G{2,3}0 for r = max⇡(G). It is clear that if r 6 3, then H = 1,
and the statement is true. Let r > 3. By the hypotheses, R is z-
reachable in G, and by Lemma 4.1, R is normal in G. In view of Lem-
ma 2.2 (3), every Sylow subgroup of G/R is z-reachable in G/R. By
induction, H/R is normal in G/R. Hence H is normal in G.

(3) All Sylow subgroups of G30 and of G{2,3}0 are P-reachable in G
in view of Statement (1) and P-reachable in G30 and, respectively,
in G{2,3}0 by Lemma 2.4 (3). Therefore G30 2 wU and G{2,3}0 2 wU.

Since R = G3 is z-reachable in G, R is z-reachable in a Hall 20-sub-
group G20 of G by Corollary 3.6. In view of Theorem 3.2, there is
a subgroup chain (†) (in this chain, we assume that G = G20) such
that either |Ri+1 : Ri| = 4 or |Ri+1 : Ri| 2 P for i = 0, 1, . . . ,n - 1.
Since G20 is a group of odd order, we deduce that R is P-reachable
in G20 . From Statement (1), it follows that a Sylow p-subgroup of G20

is P-reachable in G for every p 2 ⇡(G20) \ {3}. By Lemma 2.4 (3), all Sy-
low subgroups of G20 are P-reachable in G20 . Thus, G20 2 wU.

(4) If G is S4-free, then G 2 wU in view of Corollary 3.4 (1). ut

Later, the Sylow normalizer is the normalizer of a Sylow subgroup
of a group. If every Sylow normalizer of a group G is P-reachable,
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then G is supersoluble (see [11]). For a group with all Sylow nor-
malizer z-reachable, the following statement is true.

Corollary 4.3 If every Sylow normalizer of a soluble group G is z-reacha-
ble, then either G is supersoluble or G contains a normal subgroup N such
that G/N ' S4.

Proof — Note that in view of Lemma 2.2 and Lemma 2.5, every Sy-
low subgroup of G is z-reachable in G.

We proceed by induction on |G|. Assume that N is a normal sub-
group of G, N 6= 1, and R is a Sylow r-subgroup of G = G/N for a
prime r 2 ⇡(G/N). Then in G, there is a Sylow r-subgroup R such
that R = RN/N. By the hypotheses, NG(R) is z-reachable in G. Since

N
G
(R) = NG/N(RN/N) = NG(R)N/N,

according to Lemma 2.2 (3), N
G
(R) is z-reachable in G. Consequently,

the hypotheses is true for every quotient subgroup of G. By induc-
tion, either G/N is supersoluble or G/N has a normal subgroup K/N
such that (G/N)/(K/N) ' S4. In the latter case, G/K ' S4 and
the statement is true. Therefore we consider that G/N is supersol-
uble for every non-identity normal subgroup N of G. By [11, Lem-
ma 2.2], G is primitive, F = F(G) is a unique minimal normal sub-
group, G = FoH, H is a maximal subgroup of G, HG = 1 and H
is supersoluble. Let q = max ⇡(H) and let Q be a Sylow q-subgroup
of H. Since H is supersoluble, Q is normal in H and NH(Q) = H.
Hence Q is a Sylow q-subgroup of G, and by the hypotheses, H
is z-reachable in G. In view of Theorem 3.2, either |G : H| = |F| 2 P
or |G : H| = |F| = 4. If |G : H| = |F| 2 P, then G is supersoluble.
If |G : H| = |F| = 4, then G ' G/HG ' S4 by Theorem 3.2. ut

Example 4.4 The group G=C4

2
o(S3⇥S3) [5, SmallGroup(576,8654)]

is soluble and contains the following classes of non-conjugate maxi-
mal subgroups:

M ' S3 ⇥ S3,M1 ' C4

2
o (C3 ⇥ S3),M2 ' C4

2
o (C3 ⇥ S3),

M3 ' (A4 ⇥A4)oC2,M4 ' C4

2
oD12,M5 ' C4

2
oD12,

|G : M|= 16, |G : M1| = |G : M2| = |G : M3| = 2,

|G : M4| = |G : M5| = 3.

Since G contains the maximal subgroup M of index 16, G /2 U, and
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in view of |⇡(G)| = 2, G /2 wU. As G has no maximal subgroups of in-
dex 4, G does not contain a normal subgroup N such that G/N ' S4.

In G, the Sylow 2-subgroup P ' C4

2
oC2

2
= F(G)oP1. Here P1 ' C2

2

is a Sylow 2-subgroup of M. Since M is supersoluble, P1 is P-reacha-
ble in M by Lemma 2.5, and P is P-reachable in G. By Lemma 2.1, P
is z-reachable in G. For the Sylow 3-subgroup Q of G, there is a
subgroup chain

Q ' C3 ⇥C3 lC3 o S3 lC3 o S4 lM3 lG.

It is clear that Q is z-reachable in C3 o S3, C3 o S3 is z-reachable
in C3 o S4 (see Example 1.1). In M3 ' (A4 ⇥ A4) o C2 [5, Small-
Group(288,1026)], C3 o S4 is z-reachable in view of Theorem 3.2,
since |M3 : C3 o S4| = 4 and M3/(C3 o S4)M3

' S4. Therefore Q
is z-reachable in G.

This example shows that for a group with z-reachable Sylow sub-
groups, the analog of Corollary 4.3 is not true.

5 To Baer’s theorem

If X is a formation and A is a group, then AX is an X-residual of A.
Recall A, N and U denote the formations of all abelian, nilpotent and
supersoluble groups, respectively, [A,B] = h[a,b] | a 2 A, b 2 Bi
denotes the commutator of subgroups A and B.

The following is a well known result due to Baer.

Theorem 5.1 (see [1, p.186]) Let A and B be supersoluble normal sub-
groups of a group G and let G = AB. If the derived subgroup of G is
nilpotent, then G is supersoluble.

Since nilpotency of the derived subgroup of a group G is equiva-
lent to (G0)N = 1, Theorem 5.1 arises from the following theorem.

Theorem 5.2 Let A and B be supersoluble subgroups of a group G and
let G = AB.

(1) If A and B are subnormal subgroups of G, then GU=(G0)N=[A,B]N
— [9, Theorem 2].

(2) If A and B are P-reachable subgroups of G, then GU = (G0)N —
[12, Theorem 3.3].
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We prove a more general statement.

Theorem 5.3 Let A and B be supersoluble z-reachable subgroups of a
group G and let G = AB. Then GU = (G0)N 6 [A,B]. In particular, if the
derived subgroup of G is nilpotent, then G is supersoluble.

Proof — Since the derived subgroup of a supersoluble group is
nilpotent [6, VI.9.1], we have U ✓ NA and (G0)N 6 GU. Since A and B
are supersoluble subgroups of G, then GU 6 [A,B] by [9, Lemma 11].
Thus, (G0)N 6 GU 6 [A,B]. Now we prove that GU 6 (G0)N.

Consider separately the case when (G0)N = 1. In that case, G0 is
nilpotent and G is soluble. Since A is z-reachable, by Theorem 3.2,
there is a subgroup chain

A = M0 6 M1 6 . . . 6 Mi 6 Mi+1 6 . . . 6 Mn-1 6 Mn = G

such that, for every i = 0, 1, . . . ,n- 1, either Mi+1/(Mi)Mi+1
' S4

and |Mi+1 : Mi| = 4, or |Mi+1 : Mi| 2 P. Since the derived sub-
group of S4 is not nilpotent, case Mi+1/(Mi)Mi+1

' S4 is impossible.
Hence |Mi+1 : Mi| 2 P for every i = 0, 1, . . . ,n- 1, and A is P-reach-
able in G. Similarly, B is P-reachable in G. Thus, in view of Theo-
rem 5.2 (2), GU = 1, i. e. G is supersoluble and 1 = (G0)N = GU.

Now, assume that (G0)N 6= 1. Consider

G/(G0)N = A(G0)N/(G0)N ·B(G0)N/(G0)N.

Since A and B are supersoluble z-reachable subgroups of G, we have
that also the subgroups A(G0)N/(G0)N and B(G0)N/(G0)N are super-
soluble and z-reachable in G/(G0)N in view of Lemma 2.2 (3). More-
over,

�
G/(G0�N)0 = G0(G0)N/(G0)N = G0/(G0)N 2 N,

��
G/(G0)N

�0�N
= 1.

By the above, G/(G0)N 2 U and GU 6 (G0)N. ut

Corollary 5.4 Let A and B be abelian subgroups of a group G = AB. If A
and B are z-reachable in G, then G is supersoluble.

Proof — Since (G0)0 = 1 (see for instance [6, VI.4.4]), by Theo-
rem 5.3, we have that GU = (G0)N 6 (G0)0 = 1 and G is supersol-
uble. ut
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Example 5.5 In S4, every subgroup is z-reachable (see Example 1.1).
Furthermore,

S4 = AB, A ' C3, B ' D8,

(S4)
0 = [A,B] ' A4,

�
(S4)

0�N = (S4)
U ' C2

2
< A4.

Therefore in Theorem 5.3, we can not replace inclusion (G0)N 6 [A,B]
by equality.
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