

Advances in Group Theory and Applications

© 2023 AGTA - www.advgrouptheory.com/journal

16 (2023), pp. 23–38 ISSN: 2499-1287

DOI: 10.32037/agta-2023-006

On z-Reachable Subgroups of Finite Groups

Victor S. Monakhov — Irina L. Sokhor

(Received Jan. 5, 2022; Accepted Feb. 28, 2022 — Communicated by A. Skiba)

Abstract

A finite group G is a *z-group* if every Sylow subgroup of G is cyclic. A subgroup H of a group G is called *c-reachable* (*z-reachable*) in G if there is a subgroup chain

$$H=H_0\leqslant H_1\leqslant \ldots \leqslant H_i\leqslant H_{i+1}\leqslant \ldots \leqslant H_{n-1}\leqslant H_n=G$$

such that $H_{i+1} = H_i K_i$, where K_i is a cyclic subgroup (z-subgroup) for every i. The aim of the paper is to study c-reachable and z-reachable subgroups. In particular, we prove that in soluble groups, a z-reachable subgroup is c-reachable, and we establish sufficient conditions under which all indices $|H_{i+1}:H_i|$ are primes. We obtain the structure of a group in which all Sylow subgroups are z-reachable. Besides, we prove that in Baer's Theorem on supersolubility of a group G = AB with the nilpotent derived subgroup and supersoluble normal subgroups A and B, the requirement for the subgroups A and B to be normal can be weakened to z-reachability.

Mathematics Subject Classification (2020): 20D10, 20D20, 20E26

Keywords: finite group; z-subgroup; supersoluble group

1 Introduction

All groups in this paper are finite. We use the standard notation and terminology. If A and B are subgroups of a group G and G = AB, then B is said to be a supplement for A in G.

According to a theorem of Huppert (see [6, VI.9.5]), a group is supersoluble if every its maximal subgroup is of prime index. In

this case, every maximal subgroup has a cyclic supplement of prime-power order. In 1965, O.H. Kegel proved that a group G is soluble if every maximal subgroup of G admits a supplement which is cyclic and of prime-power order [7, Proposition 1]. The symmetric group S_4 of degree 4 possesses this property but S_4 is not supersoluble.

J.C. Beidleman and D.J.S. Robinson [4] investigated a group G in which for every proper subgroup H there is an element $g \in G \setminus H$ such that $H\langle g \rangle = \langle g \rangle H$. In this case, maximal subgroups of G have cyclic supplements.

A. Ballester-Bolinches, J. Cossey and S. Qiao [2, Theorem 4] gave a detailed description of groups with cyclic supplements for maximal subgroups.

A group G is a *z-group* if every Sylow subgroup of G is cyclic. In view of Zassenhaus's Theorem [6, IV.2.11], the derived subgroup of a *z-group* is a Hall cyclic subgroup and the quotient group of a *z-group* with respect to the derived subgroup is also cyclic.

Based on the above results, we propose the following definitions.

A subgroup H of a group G is c-supplemental (z-supplemental) in G if there is a subgroup K such that G = HK and K is a cyclic subgroup (z-subgroup, respectively), and we say K is a c-supplement (z-supplement, respectively) for H in G. It is clear that every c-supplemental subgroup is z-supplemental.

A subgroup H of a group G is c-reachable (z-reachable) in G if there is a subgroup chain

$$H = H_0 \leqslant H_1 \leqslant \ldots \leqslant H_i \leqslant H_{i+1} \ldots \leqslant H_{n-1} \leqslant H_n = G \qquad (\star)$$

such that H_i is c-supplemental (z-supplemental, respectively) in H_{i+1} for every i. It is clear that every c-reachable subgroup is z-reachable.

Let $\mathbb P$ be the set of all primes and let H be a subgroup of a group G. If H=G or there is a subgroup chain (\star) such that $|H_{i+1}:H_i|\in \mathbb P$ for every i, then H is $\mathbb P$ -reachable in G. In [14], the concept " $\mathbb P$ -subnormal subgroup" was used instead of " $\mathbb P$ -reachable subgroup". Every $\mathbb P$ -reachable subgroup is c-reachable, see Lemma 2.1 (1), and so it is z-reachable.

From Huppert's Theorem [6, VI.9.5], it follows that every subgroup of a supersoluble group is P-reachable.

Example 1.1 In the symmetric group S_4 of degree 4, every subgroup is c-reachable. In fact, all subgroups of S_4 is \mathbb{P} -reachable, except for a Sylow 3-subgroup C_3 and S_3 . Since S_3 has a c-supple-

ment $\langle (1234) \rangle$, S_3 is c-supplemental in S_4 . From $|S_3:C_3|=2$, it follows that C_3 is c-reachable in S_4 .

Example 1.2 In the symmetric group S_5 of degree 5, every subgroup is z-reachable. In fact, in S_5 [5, SmallGroup(120,34)], maximal subgroups are isomorphic to F_{20} , A_5 , S_4 and D_{12} . Here, $F_{20} = C_5 \rtimes C_4$ is the Frobenius group of order 20, D_{12} is the dihedral group of order 12. Since

$$S_5 = F_{20}\langle (12)(345)\rangle = A_5\langle (12)\rangle = S_4\langle (12345)\rangle = D_{12}F_{20}$$

in S_5 , F_{20} is c-reachable, but F_{20} is not \mathbb{P} -reachable, A_5 , S_4 are \mathbb{P} -reachable, D_{12} is z-reachable, but D_{12} is not c-reachable. Since F_{20} and D_{12} are supersoluble, all their subgroups are z-reachable in S_5 . All subgroups of S_4 are c-reachable in S_5 . Since every 2-maximal subgroup of S_5 is conjugate with a subgroup of F_{20} , F_{20

By Lemma 2.1 (3), every subnormal subgroup of a soluble group is P-reachable, so it is also c-reachable and z-reachable.

We establish that in a soluble group, every z-reachable subgroup is c-reachable, and if H is a z-reachable subgroup of a soluble group G, then H is \mathbb{P} -reachable in G when one of the following conditions holds: G is S_4 -free; 4 does not divide |G:H|; (|H|, 6) = 1.

We also study soluble groups G with all Sylow subgroups z-reachable. In particular, we prove that in G, all Sylow subgroups are \mathbb{P} -reachable, except for, maybe, a Sylow 3-subgroup, that a Hall $\{2,3\}'$ -subgroup $G_{\{2,3\}'}$ is normal in G and has a Sylow tower of supersoluble type. It implies that G with z-reachable Sylow normalizers is either supersoluble or contains a normal subgroup N and $G/N \simeq S_4$. Besides, we prove that in Baer's Theorem on supersolubility of a group G = AB with the nilpotent derived subgroup and supersoluble normal subgroups A and B, the requirement for subgroups A and B to be normal can be weakened to z-reachability.

2 General properties of z-reachable subgroups

Lemma 2.1 Let H be a subgroup of a group G. The following statements hold.

- (1) If H is P-reachable in G, then H is c-reachable in G.
- (2) If H is c-reachable in G, then H is z-reachable in G.
- (3) If H is subnormal in G and G is soluble, then H is P-reachable in G.

PROOF — (1) Let H be a \mathbb{P} -reachable subgroup of G. Then there is a subgroup chain (\star) such that $|H_{i+1}:H_i|=p_i\in\mathbb{P}, i=0,\ldots,n-1$. If P_i is a Sylow p_i -subgroup of H_{i+1} and $x_i\in P_i\setminus H_i$, then

$$|\mathsf{H}_{\mathfrak{i}}\langle x_{\mathfrak{i}}\rangle| = |\mathsf{H}_{\mathfrak{i}}||\langle x_{\mathfrak{i}}\rangle : \mathsf{H}_{\mathfrak{i}} \cap \langle x_{\mathfrak{i}}\rangle| \geqslant |\mathsf{H}_{\mathfrak{i}}|p_{\mathfrak{i}} = |\mathsf{H}_{\mathfrak{i}+1}|.$$

Hence $H_{i+1} = H_i \langle x_i \rangle$. Since this is true for every i, we deduce that H is c-reachable in G.

- (2) This follows from the definitions of c-reachable and z-reachable subgroups.
- (3) Let H be a subnormal subgroup of a soluble group G. Then in G, there is a composition series

$$1=H_0\leqslant H_1\leqslant \ldots \leqslant H_i=H\leqslant H_{i+1}\leqslant \ldots \leqslant H_t=G.$$

Since G is soluble, we get $|H_{i+1}:H_i|\in\mathbb{P}$ for every i. Therefore H is \mathbb{P} -reachable in G.

Lemma 2.2 Let H be a z-reachable subgroup of a group G and let $N \triangleleft G$. The following statements hold.

- (1) H^g is z-reachable in G for every $g \in G$.
- (2) HN is z-reachable in G.
- (3) HN/N is z-reachable in G/N.
- (4) Let $A \leq B \leq G$. If A is z-reachable in B and B is z-reachable in G, then A is z-reachable in G.

PROOF — Let H be a z-reachable subgroup of a group G. Then there is a subgroup chain (*) such that $H_{i+1} = H_i K_i$, where K_i is a z-subgroup for every i = 0, ..., m-1.

(1) Since $H_{i+1}^g = (H_i)^g (K_i)^g$ and $(K_i)^g$ is a z-subgroup, in (\star) , we can replace H_i by $(H_i)^g$ and conclude that H^g is z-reachable in G.

(2) Since N is normal in G, we have $A_i = H_i N$ is a subgroup of G for every i = 0, ..., m-1. Consider a subgroup chain

$$A=HN=A_0\leqslant A_1\leqslant \ldots \leqslant A_i\leqslant A_{i+1}\leqslant \ldots \leqslant A_m=G.$$

Since $A_{i+1} = H_{i+1}N = (H_iK_i)N = (H_iN)K_i = A_iK_i$, we deduce A_i is z-supplemental in A_{i+1} by K_i and A = HN is z-reachable in G.

(3) Since $K_i N/N \simeq K_i/K_i \cap N$ is a z-group and

$$A_{i+1}/N = A_i K_i/N = (A_i/N)(K_i N/N),$$

we get A_i/N is z-supplemental in A_{i+1}/N by K_iN/N , and in view of

$$A/N = HN/N = A_0/N \le ... \le A_m/N = G/N$$

we conclude that HN/N = A/N is z-reachable in G/N.

Similarly, we can proof the following lemma.

Lemma 2.3 Let H be a c-reachable subgroup of a group G and let $N \triangleleft G$. The following statements hold.

- (1) H^g is c-reachable in G for every $g \in G$.
- (2) HN is c-reachable in G.
- (3) HN/N is c-reachable in G/N.
- (4) Let $A \leq B \leq G$. If A is c-reachable in B and B is c-reachable in G, then A is c-reachable in G.

In S_4 , a Sylow 3-subgroup C_3 is c-reachable, but $C_3 \le A_4 \le S_4$ and C_3 is not z-reachable in A_4 . Hence a subgroup H can be c-reachable (z-reachable) in a group and non-z-reachable in a subgroup containing H.

Lemma 2.4 Let H and L be subgroups of a group G and let N be a normal subgroup of G.

(1) If H is \mathbb{P} -reachable in G, then $H \cap N$ is \mathbb{P} -reachable in N and HN/N is \mathbb{P} -reachable in $G/N \longrightarrow [15, Lemma 3.1(1)]$.

- (2) If $N \leq H$ and H/N is \mathbb{P} -reachable in G/N, then H is \mathbb{P} -reachable in G—[15, Lemma 3.1(2)].
- (3) If H is \mathbb{P} -reachable in a soluble group G and $U \leq G$, then $H \cap U$ is \mathbb{P} -reachable in U [15, Lemma 3.4].
- (4) If $H \leq L$, H is \mathbb{P} -reachable in L and L is \mathbb{P} -reachable in G, then H is \mathbb{P} -reachable in G [15, Lemma 3.1 (4)].

Lemma 2.5 Every subgroup of a supersoluble group is P-reachable.

PROOF — Let H be a subgroup of a supersoluble group G. Consider a subgroup chain

$$H = H_0 \leqslant H_1 \leqslant \ldots \leqslant H_{n-1} \leqslant H_n = G$$

such that $H_i \leq H_{i+1}$, i = 0, 1, ..., n-1. Here we write $H_i \leq H_{i+1}$ to denote that H_i is a maximal subgroup of H_{i+1} . Since $|H_{i+1}:H_i| \in \mathbb{P}$ by [6, IV.2.11], we conclude H is \mathbb{P} -reachable in G.

3 z-Reachability in soluble groups

Lemma 3.1 (see Lemma 2.1 of [13]) Let M be a maximal subgroup of a soluble group G, and assume that G = MC for a cyclic subgroup C. Then |G:M| is a prime or 4. Also, if |G:M| = 4, then $G/M_G \simeq S_4$.

Theorem 3.2 In a soluble group G, a subgroup H is z-reachable if and only if there is a subgroup chain

$$H = M_0 \leqslant M_1 \leqslant \ldots \leqslant M_i \leqslant M_{i+1} \leqslant \ldots \leqslant M_{n-1} \leqslant M_n = G \quad (\star\star)$$

such that, for every $i=0,1,\ldots,n-1$, either $M_{i+1}/(M_i)_{M_{i+1}}\simeq S_4$ and $|M_{i+1}:M_i|=4$, or $|M_{i+1}:M_i|\in \mathbb{P}$.

PROOF — Let G be a soluble group and let H be a z-reachable subgroup of G. Compact chain (\star) to a chain of maximal subgroups. Assume that U_i is a maximal subgroup of H_{i+1} , $H_i \leqslant U_i$ and K_i is a z-supplement for H_i in H_{i+1} . Then

$$H_{i+1}=H_iK_i,\ U_i=H_i(U_i\cap K_i),\ H_{i+1}=U_iK_i.$$

Since G is soluble, we have $|H_{i+1}:U_i|=p_i^{\alpha_i}$ for a prime $p_i\in\pi(H_{i+1})$ and $\alpha_i\in\mathbb{N}$. Let P_i be a Sylow p_i -subgroup of K_i . Then $H_{i+1}=U_iP_i$, where P_i is a cyclic p_i -subgroup. Since all Sylow subgroups of $U_i\cap K_i$ are cyclic, we deduce that in the chain $H_i\leqslant U_i\leqslant H_{i+1}$, H_i is z-reachable in U_i . Repeating this compaction several times, we obtain a chain $(\star\star)$ such that M_i is maximal in M_{i+1} and $M_{i+1}=M_iP_i$, where P_i is a cyclic p_i -subgroup for every $i=0,1,\ldots,n-1$. In particular, every z-reachable subgroup of a soluble group is c-reachable. By Lemma 3.1, for every $i=0,1,\ldots,n-1$, either $M_{i+1}/(M_i)_{M_{i+1}}\simeq S_4$ and $|M_{i+1}:M_i|=4$, or $|M_{i+1}:M_i|\in\mathbb{P}$.

Conversely, assume that there is a chain (**) such that either the index $|M_{i+1}:M_i|$ is a prime, or $|M_{i+1}:M_i|=4$ and $M_{i+1}/A_i\simeq S_4$, where $A_i=(M_i)_{M_{i+1}}$, for every $i=0,1,\ldots,n-1$. If $M_{i+1}/A_i\simeq S_4$, then

$$M_i/A_i \simeq S_3$$
, $M_{i+1}/A_i = (M_i/A_i)(B_i/A_i)$, $B_i/A_i \simeq C_4$.

Let $B_i/A_i=\langle b_iA_i\rangle$. Then $M_{i+1}=M_i\langle b_i\rangle$, i.e. M_i is z-reachable in M_{i+1} .

Suppose that $|M_{i+1}: M_i| = p_i \in \mathbb{P}$, P_i is a Sylow p_i -subgroup of M_{i+1} and $x_i \in P_i \setminus M_i$. In that case,

$$|M_{\mathfrak{i}}\langle x_{\mathfrak{i}}\rangle| = |M_{\mathfrak{i}}||\langle x_{\mathfrak{i}}\rangle : M_{\mathfrak{i}} \cap \langle x_{\mathfrak{i}}\rangle| \geqslant |M_{\mathfrak{i}}|p_{\mathfrak{i}} = |M_{\mathfrak{i}+1}|.$$

Therefore $M_{i+1} = M_i \langle x_i \rangle$, i. e. M_i is z-supplemental in M_{i+1} . Since this is true for any i, we conclude H is z-reachable in G.

Corollary 3.3 Every z-reachable subgroup of a soluble group is c-reachable.

If G is a group, $A \le B \le G$ and $A \triangleleft B$, then the quotient group B/A is called a section of G. If G has no sections that are isomorphic to S_4 , then G is said to be S_4 -free.

Corollary 3.4 Let H be a z-reachable subgroup of a soluble group G. Then H is a P-reachable subgroup of G when one of the following conditions holds:

- (1) G is S₄-free.
- (2) *4 does not divide* |**G** : **H**|.
- (3) (|H|, 6) = 1.

PROOF — By Theorem 3.2, there is a subgroup chain $(\star\star)$ such that either $|M_{i+1}:M_i|=4$ and $M_{i+1}/(M_i)_{M_{i+1}}\simeq S_4$ or $|M_{i+1}:M_i|\in\mathbb{P}$ for every $i=0,1,\ldots,n-1$.

- (1) By the hypotheses, G is S₄-free, therefore $|M_{i+1}:M_i|\in\mathbb{P}$ for every i, and H is \mathbb{P} -reachable in G.
- (2) By the hypotheses, 4 does not divide |G:H|. Hence in $(\star\star)$, all indices are primes, and H is \mathbb{P} -reachable in G.
- (3) We proceed by induction on |G|. Of course, it is possible to assume that $H \leq M_{n-1} \leq M_n = G$. Since H is z-reachable in M_{n-1} , we conclude H is \mathbb{P} -reachable in M_{n-1} by induction. If $|G:M_{n-1}|$ is prime, then H is \mathbb{P} -reachable in G by Lemma 2.4 (4). If $|G:M_{n-1}| \not\in \mathbb{P}$, then

$$|G: M_{n-1}| = 4$$
, $G/(M_{n-1})_G \simeq S_4$.

By hypotheses, |H| is not divided by 2 and by 3, so $H \leq (M_{n-1})_G$ and H is \mathbb{P} -reachable in $(M_{n-1})_G$ by Lemma 2.4(1). Since $(M_{n-1})_G$ is \mathbb{P} -reachable in G by Lemma 2.1(3), H is \mathbb{P} -reachable in G by Lemma 2.4(4).

Corollary 3.5 Let G be a soluble group, $H \leq G$, $N \triangleleft G$, $N \leq H$. If H/N is z-reachable in G/N, then H is z-reachable in G.

PROOF — Since H/N is z-reachable in G/N and G is soluble, then by Theorem 3.2, there is a subgroup chain

$$H/N = M_0/N \leqslant \ldots \leqslant M_i/N \leqslant M_{i+1}/N \leqslant \ldots \leqslant M_n/N = G/N$$

with either $|M_{i+1}/N:M_i/N|=4$ and $(M_{i+1}/N)/(M_i/N)_{M_{i+1}/N}\simeq S_4$ or $|M_{i+1}/N:M_i/N|\in \mathbb{P}$ for every $i=0,1,\ldots,n-1$. Consider a subgroup chain

$$H = M_0 \le ... \le M_i \le M_{i+1} ... \le M_{n-1} \le M_n = G.$$

If $|M_{i+1}/N: M_i/N| \in \mathbb{P}$, then $|M_{i+1}: M_i|$ is prime. Assume that $|M_{i+1}/N: M_i/N| = 4$ and $(M_{i+1}/N)/(M_i/N)_{M_{i+1}/N} \simeq S_4$. Then $|M_{i+1}: M_i| = 4$ and

$$M_{i+1}/(M_i)_{M_{i+1}} \simeq (M_{i+1}/N)/(M_i/N)_{M_{i+1}/N} \simeq S_4.$$

Consequently, H is z-reachable in G by Theorem 3.2.

Corollary 3.6 Let G be a soluble group, let $\pi \subseteq \pi(G)$, and let K be a z-reachable π -subgroup of G. Then K is z-reachable in a Hall π -subgroup G_{π} of G.

PROOF — Since K is a *z*-reachable subgroup of a soluble group G, in view of Theorem 3.2, there is a subgroup chain

$$K = M_0 \leqslant M_1 \leqslant \ldots \leqslant M_i \leqslant M_{i+1} \leqslant \ldots \leqslant M_{n-1} = M \leqslant M_n = G$$

such that, for every $i=0,1,\ldots,n-1$, either $M_{i+1}/(M_i)_{M_{i+1}}\simeq S_4$ and $|M_{i+1}:M_i|=4$, or $|M_{i+1}:M_i|\in\mathbb{P}$. Since K is a z-reachable subgroup of a soluble group M, then by induction, K is z-reachable in a Hall π -subgroup M_{π} of M.

If $\pi(|G:M|) \cap \pi = \emptyset$, then M_{π} is a Hall π -subgroup of G and the statement is true.

Assume that $\pi(|G:M|) \cap \pi \neq \emptyset$ and G_{π} is a Hall π -subgroup of G that contains M_{π} . In that case, $G = MG_{\pi}$ and

$$|G:M| = |G_{\pi}: G_{\pi} \cap M| = |G_{\pi}: M_{\pi}|.$$

If M_{π} is \mathbb{P} -reachable in G_{π} , then K is *z*-reachable in G_{π} . Suppose that M_{π} is not \mathbb{P} -reachable in G_{π} . Then

$$|G_{\pi}: M_{\pi}| = 4$$
, $M_{\pi} < G_{\pi}$, $N_{G_{\pi}}(M_{\pi}) = M_{\pi}$, $G_{\pi}/(M_{\pi})_{G_{\pi}} \simeq S_4$.

Since all subgroups of S_4 are z-reachable in S_4 , we get $M_{\pi}/(M_{\pi})_{G_{\pi}}$ is z-reachable in $G_{\pi}/(M_{\pi})_{G_{\pi}}$. By Corollary 3.5, M_{π} is z-reachable in G_{π} and K is z-reachable in G_{π} by Lemma 2.2(4).

Let G be a soluble group with all subgroups z-reachable. In view of Corollary 3.3, every subgroup of G is c-reachable in G. Hence for every proper subgroup H of G, there is an element $g \in G \setminus H$ such that $H < H\langle g \rangle = \langle g \rangle H$. The description of these groups was obtained in [4].

Let G be a soluble group with all maximal subgroups z-reachable. According to Corollary 3.3, every maximal subgroup of G is c-reachable in G. The description of these groups was obtained in [2].

Later, $\mathfrak U$ is the formation of all supersoluble groups, $A^{\mathfrak U}$ denotes the $\mathfrak U$ -residual of a group A.

Corollary 3.7 A group G is supersoluble if and only if A is z-reachable in B for any subgroups A and B such that $A \leq B$.

PROOF — If G is supersoluble, then every subgroup of G is supersoluble. Therefore by Lemma 2.5 and Lemma 2.1(1), for any subgroups A and B such that $A \leq B$, A is z-reachable in B, and the necessity of the condition is proved.

To prove the sufficiency we proceed by induction on |G|. Suppose that G is a nonsupersoluble group of least order in which A is z-reachable in B for any subgroups A and B such that $A \leq B$. Let H be a proper subgroup of G. By induction, H is supersoluble and G is a minimal nonsupersoluble group.

Suppose $\Phi(G) \neq 1$. For subgroups $A/\Phi(G) \leqslant B/\Phi(G)$ of $G/\Phi(G)$, A is z-reachable in B by the hypothesis. By Lemma 2.2(3), $A/\Phi(G)$ is z-reachable in $B/\Phi(G)$. Consequently, by induction, $G/\Phi(G) \in \mathfrak{U}$, and $G \in \mathfrak{U}$, a contradiction. Therefore $\Phi(G) = 1$, and in view of [8, Lemma 2.1], $G = G^{\mathfrak{U}} \rtimes H$, where $G^{\mathfrak{U}}$ is a Sylow p-subgroup for a prime $\mathfrak{p} \in \pi(G)$, $G^{\mathfrak{U}}$ is a minimal normal subgroup of G, $|G^{\mathfrak{U}}| > \mathfrak{p}$, H is a maximal subgroup of G. By the choice of G, H is z-reachable in G. In view of Theorem 3.2, either $|G:H| \in \mathbb{P}$ or |G:H| = 4 and $G/H_G \simeq S_4$. Since $|G:H| = |G^{\mathfrak{U}}| > \mathfrak{p}$ and $H_G = 1$, we get $G \simeq S_4$. But S_4 contains the nonsupersoluble subgroup A_4 , a contradiction. Therefore G is supersoluble. \Box

4 Soluble groups with z-reachable Sylow subgroups

From Huppert's Theorem [6, VI.9.5], it follows that the formation $\mathfrak U$ of all supersoluble groups can be defined as a class of all groups in which all subgroups are $\mathbb P$ -reachable. Let $\pi \subseteq \mathbb P$; $w_\pi \mathfrak U$ is the class of all groups with $\mathbb P$ -reachable Sylow r-subgroups for every $r \in \pi \cap \pi(G)$ (see [16]). If $\pi = \mathbb P$ we write $w\mathfrak U$ instead of $w_\mathbb P \mathfrak U$. The class $w\mathfrak U$ is fairly well studied [8, 10, 14]. In particular, $w\mathfrak U$ is a subgroup-closed saturated formation. According to [16, Theorem 3.1], $w_\pi \mathfrak U$ is a subgroup-closed formation.

Lemma 4.1 Let $r = max \pi(G)$ and let R be a Sylow r-subgroup of a soluble group G. If R is z-reachable in G and r > 3, then R is normal in G.

PROOF — We proceed by induction on |G|. By Theorem 3.2, there is a subgroup chain

$$R = R_0 \leqslant R_1 \leqslant \ldots \leqslant R_i \leqslant R_{i+1} \leqslant \ldots \leqslant R_{n-1} \leqslant R_n = G \qquad (\dagger)$$

such that either $|R_{i+1}:R_i|=4$ and $R_{i+1}/(R_i)_{R_{i+1}}\simeq S_4$ or $|R_{i+1}:R_i|\in \mathbb{P}$ for $i=0,1,\ldots,n-1$. Since R is z-reachable in R_{n-1} , R is normal in R_{n-1} by induction. If R is not normal in G, then $R_{n-1}=N_G(R)$. By the Sylow Theorem, $|G:R_{n-1}|\equiv 1\pmod{r}$. Since $r=\max\pi(G)$, we get $|G:R_{n-1}|\notin \mathbb{P}$. If $|G:R_{n-1}|=4$, then r=3, a contradiction. Thus R is normal in G.

Theorem 4.2 *If every Sylow subgroup of a soluble group* G *is z-reachable, then the following statements hold.*

- (1) $G \in w_{3'}\mathfrak{U}$.
- (2) A Hall $\{2,3\}'$ -subgroup $G_{\{2,3\}'}$ of G is normal in G.
- (3) $G_{2'} \in w\mathfrak{U}, G_{3'} \in w\mathfrak{U}, G_{\{2,3\}'} \in w\mathfrak{U}.$
- (4) If G is a S_4 -free group, then $G \in w\mathfrak{U}$.

PROOF — Assume that every Sylow subgroup of a soluble group G is *z*-reachable in G.

- (1) By Corollary 3.4(2,3), every Sylow r-subgroup R, with $r \neq 3$, is \mathbb{P} -reachable in G, i. e. $G \in w_3 \cup \mathbb{U}$.
- (2) We proceed by induction on |G|. Let R be a Sylow r-subgroup of $H = G_{\{2,3\}'}$ for $r = \max \pi(G)$. It is clear that if $r \le 3$, then H = 1, and the statement is true. Let r > 3. By the hypotheses, R is z-reachable in G, and by Lemma 4.1, R is normal in G. In view of Lemma 2.2 (3), every Sylow subgroup of G/R is z-reachable in G/R. By induction, H/R is normal in G/R. Hence H is normal in G.
- (3) All Sylow subgroups of $G_{3'}$ and of $G_{\{2,3\}'}$ are \mathbb{P} -reachable in G in view of Statement (1) and \mathbb{P} -reachable in $G_{3'}$ and, respectively, in $G_{\{2,3\}'}$ by Lemma 2.4 (3). Therefore $G_{3'} \in w\mathfrak{U}$ and $G_{\{2,3\}'} \in w\mathfrak{U}$.

Since $R = G_3$ is z-reachable in G, R is z-reachable in a Hall 2'-subgroup $G_{2'}$ of G by Corollary 3.6. In view of Theorem 3.2, there is a subgroup chain (†) (in this chain, we assume that $G = G_{2'}$) such that either $|R_{i+1}:R_i|=4$ or $|R_{i+1}:R_i|\in \mathbb{P}$ for $i=0,1,\ldots,n-1$. Since $G_{2'}$ is a group of odd order, we deduce that R is \mathbb{P} -reachable in $G_{2'}$. From Statement (1), it follows that a Sylow p-subgroup of $G_{2'}$ is \mathbb{P} -reachable in G for every $p\in \pi(G_{2'})\setminus \{3\}$. By Lemma 2.4 (3), all Sylow subgroups of $G_{2'}$ are \mathbb{P} -reachable in $G_{2'}$. Thus, $G_{2'}\in \mathfrak{WL}$.

(4) If G is S₄-free, then $G \in w\mathfrak{U}$ in view of Corollary 3.4 (1). \square

Later, the Sylow normalizer is the normalizer of a Sylow subgroup of a group. If every Sylow normalizer of a group G is P-reachable,

then G is supersoluble (see [11]). For a group with all Sylow normalizer z-reachable, the following statement is true.

Corollary 4.3 If every Sylow normalizer of a soluble group G is z-reachable, then either G is supersoluble or G contains a normal subgroup N such that $G/N \simeq S_4$.

PROOF — Note that in view of Lemma 2.2 and Lemma 2.5, every Sylow subgroup of G is z-reachable in G.

We proceed by induction on |G|. Assume that N is a normal subgroup of G, $N \neq 1$, and \overline{R} is a Sylow r-subgroup of $\overline{G} = G/N$ for a prime $r \in \pi(G/N)$. Then in G, there is a Sylow r-subgroup R such that $\overline{R} = RN/N$. By the hypotheses, $N_G(R)$ is z-reachable in G. Since

$$N_{\overline{G}}(\overline{R}) = N_{G/N}(RN/N) = N_{G}(R)N/N$$

according to Lemma 2.2 (3), $N_{\overline{G}}(\overline{R})$ is z-reachable in \overline{G} . Consequently, the hypotheses is true for every quotient subgroup of G. By induction, either G/N is supersoluble or G/N has a normal subgroup K/N such that $(G/N)/(K/N) \simeq S_4$. In the latter case, $G/K \simeq S_4$ and the statement is true. Therefore we consider that G/N is supersoluble for every non-identity normal subgroup N of G. By [11, Lemma 2.2], G is primitive, F = F(G) is a unique minimal normal subgroup, $G = F \rtimes H$, H is a maximal subgroup of G, $H_G = 1$ and H is supersoluble. Let $G = \max \pi(H)$ and let $G = \max \pi(H)$ be a Sylow $G = \max \pi(H)$. Hence $G = \max \pi(H)$ is normal in $G = \min \pi(H)$ and $G = \min \pi(H)$ is z-reachable in $G = \min \pi(H)$. In view of Theorem 3.2, either $G = \min \pi(H)$ is z-reachable in $G = \min \pi(H)$. If $G = \min \pi(H)$ is supersoluble. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ if $G = \min \pi(H)$ is z-reachable. If $G = \min \pi(H)$ is z-reachable.

Example 4.4 The group $G = C_2^4 \times (S_3 \times S_3)$ [5, SmallGroup(576,8654)] is soluble and contains the following classes of non-conjugate maximal subgroups:

$$\begin{split} M &\simeq S_3 \times S_3, M_1 \simeq C_2^4 \rtimes (C_3 \times S_3), M_2 \simeq C_2^4 \rtimes (C_3 \times S_3), \\ M_3 &\simeq (A_4 \times A_4) \rtimes C_2, M_4 \simeq C_2^4 \rtimes D_{12}, M_5 \simeq C_2^4 \rtimes D_{12}, \\ |G:M| &= 16, |G:M_1| = |G:M_2| = |G:M_3| = 2, \\ |G:M_4| &= |G:M_5| = 3. \end{split}$$

Since G contains the maximal subgroup M of index 16, G $\notin \mathfrak{U}$, and

in view of $|\pi(G)| = 2$, $G \notin w\mathfrak{U}$. As G has no maximal subgroups of index 4, G does not contain a normal subgroup N such that $G/N \simeq S_4$.

In G, the Sylow 2-subgroup $P \simeq C_2^4 \rtimes C_2^2 = F(G) \rtimes P_1$. Here $P_1 \simeq C_2^2$ is a Sylow 2-subgroup of M. Since M is supersoluble, P_1 is \mathbb{P} -reachable in M by Lemma 2.5, and P is \mathbb{P} -reachable in G. By Lemma 2.1, P is z-reachable in G. For the Sylow 3-subgroup Q of G, there is a subgroup chain

$$Q \simeq C_3 \times C_3 \lessdot C_3 \rtimes S_3 \lessdot C_3 \rtimes S_4 \lessdot M_3 \lessdot G.$$

It is clear that Q is z-reachable in $C_3 \rtimes S_3$, $C_3 \rtimes S_3$ is z-reachable in $C_3 \rtimes S_4$ (see Example 1.1). In $M_3 \simeq (A_4 \times A_4) \rtimes C_2$ [5, Small-Group(288,1026)], $C_3 \rtimes S_4$ is z-reachable in view of Theorem 3.2, since $|M_3:C_3 \rtimes S_4|=4$ and $M_3/(C_3 \rtimes S_4)_{M_3} \simeq S_4$. Therefore Q is z-reachable in G.

This example shows that for a group with z-reachable Sylow subgroups, the analog of Corollary 4.3 is not true.

5 To Baer's theorem

If $\mathfrak X$ is a formation and A is a group, then $A^{\mathfrak X}$ is an $\mathfrak X$ -residual of A. Recall $\mathfrak A$, $\mathfrak N$ and $\mathfrak U$ denote the formations of all abelian, nilpotent and supersoluble groups, respectively, $[A,B]=\langle [\mathfrak a,\mathfrak b]\mid \mathfrak a\in A,\ \mathfrak b\in B\rangle$ denotes the commutator of subgroups A and B.

The following is a well known result due to Baer.

Theorem 5.1 (see [1, p.186]) Let A and B be supersoluble normal subgroups of a group G and let G = AB. If the derived subgroup of G is nilpotent, then G is supersoluble.

Since nilpotency of the derived subgroup of a group G is equivalent to $(G')^{\mathfrak{N}}=1$, Theorem 5.1 arises from the following theorem.

Theorem 5.2 Let A and B be supersoluble subgroups of a group G and let G = AB.

- (1) If A and B are subnormal subgroups of G, then $G^{\mathfrak{U}} = (G')^{\mathfrak{N}} = [A, B]^{\mathfrak{N}}$ [9, Theorem 2].
- (2) If A and B are \mathbb{P} -reachable subgroups of G, then $G^{\mathfrak{U}}=(G')^{\mathfrak{N}}$ [12, Theorem 3.3].

We prove a more general statement.

Theorem 5.3 Let A and B be supersoluble z-reachable subgroups of a group G and let G = AB. Then $G^{\mathfrak{U}} = (G')^{\mathfrak{N}} \leq [A, B]$. In particular, if the derived subgroup of G is nilpotent, then G is supersoluble.

Proof — Since the derived subgroup of a supersoluble group is nilpotent [6, VI.9.1], we have $\mathfrak{U}\subseteq\mathfrak{M}\mathfrak{A}$ and $(G')^{\mathfrak{N}}\leqslant G^{\mathfrak{U}}$. Since A and B are supersoluble subgroups of G, then $G^{\mathfrak{U}}\leqslant [A,B]$ by [9, Lemma 11]. Thus, $(G')^{\mathfrak{N}}\leqslant G^{\mathfrak{U}}\leqslant [A,B]$. Now we prove that $G^{\mathfrak{U}}\leqslant (G')^{\mathfrak{N}}$.

Consider separately the case when $(G')^{\mathfrak{N}}=1$. In that case, G' is nilpotent and G is soluble. Since A is z-reachable, by Theorem 3.2, there is a subgroup chain

$$A = M_0 \leqslant M_1 \leqslant \ldots \leqslant M_i \leqslant M_{i+1} \leqslant \ldots \leqslant M_{n-1} \leqslant M_n = G$$

such that, for every $i=0,1,\ldots,n-1$, either $M_{i+1}/(M_i)_{M_{i+1}}\simeq S_4$ and $|M_{i+1}:M_i|=4$, or $|M_{i+1}:M_i|\in\mathbb{P}$. Since the derived subgroup of S_4 is not nilpotent, case $M_{i+1}/(M_i)_{M_{i+1}}\simeq S_4$ is impossible. Hence $|M_{i+1}:M_i|\in\mathbb{P}$ for every $i=0,1,\ldots,n-1$, and A is \mathbb{P} -reachable in G. Similarly, B is \mathbb{P} -reachable in G. Thus, in view of Theorem 5.2 (2), $G^\mathfrak{U}=1$, i.e. G is supersoluble and $1=(G')^\mathfrak{N}=G^\mathfrak{U}$.

Now, assume that $(G')^{\mathfrak{N}} \neq 1$. Consider

$$G/(G')^{\mathfrak{N}} = A(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}} \cdot B(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}.$$

Since A and B are supersoluble z-reachable subgroups of G, we have that also the subgroups $A(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$ and $B(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$ are supersoluble and z-reachable in $G/(G')^{\mathfrak{N}}$ in view of Lemma 2.2(3). Moreover,

$$\big(G/(G'\big)^{\mathfrak{N}})'=G'(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}=G'/(G')^{\mathfrak{N}}\in \mathfrak{N},\ \big(\big(G/(G')^{\mathfrak{N}}\big)'\big)^{\mathfrak{N}}=1.$$

By the above,
$$G/(G')^{\mathfrak{N}} \in \mathfrak{U}$$
 and $G^{\mathfrak{U}} \leqslant (G')^{\mathfrak{N}}$.

Corollary 5.4 Let A and B be abelian subgroups of a group G = AB. If A and B are z-reachable in G, then G is supersoluble.

PROOF — Since (G')'=1 (see for instance [6, VI.4.4]), by Theorem 5.3, we have that $G^{\mathfrak{U}}=(G')^{\mathfrak{N}}\leqslant (G')'=1$ and G is supersoluble.

Example 5.5 In S_4 , every subgroup is z-reachable (see Example 1.1). Furthermore,

$$\begin{split} S_4 = AB, \ A \simeq C_3, \ B \simeq D_8, \\ (S_4)' = [A,B] \simeq A_4, \ \big((S_4)'\big)^{\mathfrak{N}} = (S_4)^{\mathfrak{U}} \simeq C_2^2 < A_4. \end{split}$$

Therefore in Theorem 5.3, we can not replace inclusion $(G')^{\mathfrak{N}} \leq [A, B]$ by equality.

REFERENCES

- [1] R. BAER: "Classes of finite groups and their properties", *Illinois J. Math.* 1 (1957), 115–187.
- [2] A. Ballester-Bolinches J. Cossey S. Qiao: "A note on finite groups with the maximal permutiser condition", *RACSAM* 110 (2016), 247–250.
- [3] A. Ballester-Bolinches R. Esteban-Romero M. Asaad: "Products of Finite Groups", *de Gruyter*, Berlin (2010).
- [4] J.C. Beidleman D.J.S. Robinson: "On finite groups satisfying the permutizer condition", *J. Algebra* 191 (1997), 686–703.
- [5] "The GAP Group: GAP Groups, Algorithms, and Programming", Ver. 4.11.1 (02-03-2021).
- [6] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1967).
- [7] O.H. Kegel: "On Huppert's characterization of finite supersoluble groups", in: Proc. Internat. Conf. Theory of Groups (Canberra, 1965), *Gordon and Breach*, New York (1967), 209–215.
- [8] V.S. Monakhov: "Finite groups with abnormal and \$\mathscr{U}\$-subnormal subgroups", Siberian Math. J. 57 (2016), 352–363.
- [9] V.S. Monakhov I.K. Chirik: "On the supersoluble residual of a product of subnormal supersoluble subgroups", *Siberian Math. J.* 58 (2017), 271–280.
- [10] V.S. Monakhov V.N. Kniahina: "Finite groups with P-subnormal subgroups", *Ric. Mat.* 62 (2013), 307–323.

- [11] V.S. Monakhov V.N. Kniahina: "On supersolvability of finite groups with P-subnormal subgroups", *Int. J. Group Theory* 2:4 (2013), 21–29.
- [12] V.S. Monakhov A.A. Trofimuk: "On the supersoluble residual of a product of supersoluble subgroups", *Adv. Group Theory Appl.* 9 (2020), 51–70.
- [13] S. QIAO G. QIAN Y. WANG: "Finite groups with the maximal permutizer condition", *J. Algebra Appl.* 12:5 (2013), 1250217, 5pp.
- [14] A.F. Vasil'ev T.I. Vasil'eva V.N. Tyutyanov: "On the finite groups of supersoluble type", *Siberian Math. J.* 51 (2010), 1004–1012.
- [15] A.F. Vasil'ev T.I. Vasil'eva V.N. Tyutyanov: "On the products of P-subnormal subgroups of finite groups", *Siberian Math. J.* 53 (2012), 47–54.
- [16] A.F. Vasil'ev T.I. Vasil'eva A.S. Vegera: "Finite groups with generalized subnormal embedding of Sylow subgroups", *Siberian Math. J.* 57 (2016), 200–212.

Victor S. Monakhov, Irina L. Sokhor Department of Mathematics and Technologies of Programming Francisk Skorina Gomel State University Kirova Str. 119, 246019 Gomel (Belarus) e-mail: victor.monakhov@gmail.com; irina.sokhor@gmail.com