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Abstract

A finite group G is a z-group if every Sylow subgroup of G is cyclic. A subgroup H
of a group G is called c-reachable (z-reachable) in G if there is a subgroup chain

H=Ho<H; <...<Hy <Hj;1 <...<H 1 <H, =G

such that Hi;; = H;iK;j, where K; is a cyclic subgroup (z-subgroup) for every i. The
aim of the paper is to study c-reachable and z-reachable subgroups. In particular, we
prove that in soluble groups, a z-reachable subgroup is c-reachable, and we establish
sufficient conditions under which all indices |H;i 7 : Hi| are primes. We obtain
the structure of a group in which all Sylow subgroups are z-reachable. Besides, we
prove that in Baer’s Theorem on supersolubility of a group G = AB with the nilpotent
derived subgroup and supersoluble normal subgroups A and B, the requirement for
the subgroups A and B to be normal can be weakened to z-reachability.
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1 Introduction

All groups in this paper are finite. We use the standard notation and
terminology. If A and B are subgroups of a group G and G = AB,
then B is said to be a supplement for A in G.

According to a theorem of Huppert (see [6, VI.9.5]), a group is
supersoluble if every its maximal subgroup is of prime index. In
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this case, every maximal subgroup has a cyclic supplement of prime-
power order. In 1965, O.H. Kegel proved that a group G is soluble if
every maximal subgroup of G admits a supplement which is cyclic
and of prime-power order [7, Proposition 1]. The symmetric group S4
of degree 4 possesses this property but S4 is not supersoluble.

J.C. Beidleman and D.J.S. Robinson [4] investigated a group G in
which for every proper subgroup H there is an element g € G\ H
such that H(g) = (g)H. In this case, maximal subgroups of G have
cyclic supplements.

A. Ballester-Bolinches, J. Cossey and S. Qiao [2, Theorem 4] gave a
detailed description of groups with cyclic supplements for maximal
subgroups.

A group G is a z-group if every Sylow subgroup of G is cyclic.
In view of Zassenhaus’s Theorem [6, IV.2.11], the derived subgroup
of a z-group is a Hall cyclic subgroup and the quotient group of
a z-group with respect to the derived subgroup is also cyclic.

Based on the above results, we propose the following definitions.

A subgroup H of a group G is c-supplemental (z-supplemental) in G if
there is a subgroup K such that G = HK and K is a cyclic subgroup (z-
subgroup, respectively), and we say K is a c-supplement (z-supplement,
respectively) for H in G. It is clear that every c-supplemental sub-
group is z-supplemental.

A subgroup H of a group G is c-reachable (z-reachable) in G if there
is a subgroup chain

H:H0<H1<...<H1<Hi+1...<Hn_1<Hn:G (*)

such that H; is c-supplemental (z-supplemental, respectively) in H;_ 1
for every i. It is clear that every c-reachable subgroup is z-reachable.

Let IP be the set of all primes and let H be a subgroup of a group G.
If H = G or there is a subgroup chain (x) such that [Hiyq : Hi| € P
for every i, then H is P-reachable in G. In [14], the concept “IP-sub-
normal subgroup” was used instead of “IP-reachable subgroup”. Ev-
ery IP-reachable subgroup is c-reachable, see Lemma 2.1 (1), and so it
is z-reachable.

From Huppert’s Theorem [6, VI.9.5], it follows that every subgroup
of a supersoluble group is IP-reachable.

Example 1.1 In the symmetric group S4 of degree 4, every sub-
group is c-reachable. In fact, all subgroups of S4 is P-reachable, ex-
cept for a Sylow 3-subgroup C3 and S3. Since S3 has a c-supple-
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ment ((1234)), S3 is c-supplemental in S4. From [S3 : C3| = 2, it
follows that C3 is c-reachable in Sy.

Example 1.2 In the symmetric group S5 of degree 5, every subgroup
is z-reachable. In fact, in S5 [5, SmallGroup(120,34)], maximal sub-
groups are isomorphic to Fzp, As, S4 and Dy;. Here, F29 = C5 x C4
is the Frobenius group of order 20, D, is the dihedral group of or-
der 12. Since

S5 =F20((12)(345)) = As5((12)) = S4((12345)) = D12F20,

in S5, F5 is c-reachable, but F,( is not IP-reachable, As, S4 are IP-reach-
able, D1, is z-reachable, but D1, is not c-reachable. Since F,o and D13
are supersoluble, all their subgroups are z-reachable in S5. All sub-
groups of S4 are c-reachable in Sy, so all subgroups of S4 are c-reach-
able in Ss. Since every 2-maximal subgroup of S5 is conjugate with
a subgroup of Fp, S4 or Dj;, it implies that all subgroups of Ss
are z-reachable in Ss.

By Lemma 2.1 (3), every subnormal subgroup of a soluble group
is IP-reachable, so it is also c-reachable and z-reachable.

We establish that in a soluble group, every z-reachable subgroup
is c-reachable, and if H is a z-reachable subgroup of a soluble group G,
then H is P-reachable in G when one of the following conditions
holds: G is S4-free; 4 does not divide |G : H|; (|H|,6) = 1.

We also study soluble groups G with all Sylow subgroups z-reacha-
ble. In particular, we prove that in G, all Sylow subgroups are IP-reach-
able, except for, maybe, a Sylow 3-subgroup, that a Hall {2,3}'-sub-
group Gy, 3y is normal in G and has a Sylow tower of supersolu-
ble type. It implies that G with z-reachable Sylow normalizers is ei-
ther supersoluble or contains a normal subgroup N and G/N =~ S4.
Besides, we prove that in Baer’s Theorem on supersolubility of a
group G = AB with the nilpotent derived subgroup and supersol-
uble normal subgroups A and B, the requirement for subgroups A
and B to be normal can be weakened to z-reachability.

2 General properties of z-reachable subgroups

Lemma 2.1 Let H be a subgroup of a group G. The following statements
hold.
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(1) If H is IP-reachable in G, then H is c-reachable in G.
(2) If His c-reachable in G, then H is z-reachable in G.

(3) If H is subnormal in G and G is soluble, then H is IP-reachable in G.

Proor — (1) Let H be a IP-reachable subgroup of G. Then there is
a subgroup chain (x) such that [Hi;1 : Hi|=p; € P,i=0,...,n—1.
If P; is a Sylow pi-subgroup of Hi; 1 and x; € P; \ Hj, then

[Hi(x)l = Hill(x) : Hi N (xq) = Hilpi = [Higql
Hence H;i 1 = Hji(xy). Since this is true for every i, we deduce that H

is c-reachable in G.

(2) This follows from the definitions of c-reachable and z-reacha-
ble subgroups.

(3) Let H be a subnormal subgroup of a soluble group G. Then
in G, there is a composition series

T=Ho<H;<...<Hj=H<Hj;1 <...<H=G.

Since G is soluble, we get |[Hiy1 : Hi| € P for every i. Therefore H
is IP-reachable in G. O

Lemma 2.2 Let H be a z-reachable subgroup of a group G and let N < G.
The following statements hold.

(1) HY is z-reachable in G for every g € G.
(2) HN is z-reachable in G.
(3) HN/N is z-reachable in G/N.

(4) Let A < B < G. If A is z-reachable in B and B is z-reachable in G,
then A is z-reachable in G.

Proor — Let H be a z-reachable subgroup of a group G. Then there
is a subgroup chain (x) such that Hi; 1 = H;K;, where K; is a z-sub-
group for every i=0,..., m—1.

(1) Since Hgﬂ = (H;{)9(Ky)9 and (K;)9 is a z-subgroup, in (%), we
can replace H; by (H;)9 and conclude that HY is z-reachable in G.
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(2) Since N is normal in G, we have A; = H;N is a subgroup of G
for every i =0,..., m — 1. Consider a subgroup chain

A=HN=Ag<A; <...<A; <Ai41 <...<Am =G.

Since Ai—H = Hi_,_]N = (HiKi)N = (HiN)Ki = AiKi, we deduce Ai
is z-supplemental in A7 by K; and A = HN is z-reachable in G.

(3) Since KiN/N ~ K;/K; NN is a z-group and
Aip1/N = AiKi/N = (A{/N)(KiN/N),
we get Ai/N is z-supplemental in A;;1/N by KiN/N, and in view of
A/N=HN/N=Ay/N<...<A,/N=G/N,

we conclude that HN/N = A/N is z-reachable in G/N.
(4) Itis obviously. O

Similarly, we can proof the following lemma.

Lemma 2.3 Let H be a c-reachable subgroup of a group G and let N < G.
The following statements hold.

(1) HY is c-reachable in G for every g € G.
(2) HN is c-reachable in G.
(3) HN/N is c-reachable in G/N.

(4) Let A < B < G. If A is c-reachable in B and B is c-reachable in G,
then A is c-reachable in G.

In S4, a Sylow 3-subgroup C3 is c-reachable, but C3 < Ay < S4
and C3 is not z-reachable in A4. Hence a subgroup H can be c-reach-
able (z-reachable) in a group and non-z-reachable in a subgroup con-
taining H.

Lemma 2.4 Let Hand L be subgroups of a group G and let N be a normal
subgroup of G.

(1) If His P-reachable in G, then HN N is P-reachable in N and HN/N
is IP-reachable in G/N — [15, Lemma 3.1 (1)].



28 V.S. Monakhov - I.L. Sokhor

(2) If N < H and H/N is IP-reachable in G/N, then H is P-reachable
in G — [15, Lemma 3.1 (2)].

(3) If H is P-reachable in a soluble group G and U < G, then HN'U
is IP-reachable in U — [15, Lemma 3.4].

(4) If H < L, H is P-reachable in L and L is P-reachable in G, then H
is IP-reachable in G — [15, Lemma 3.1 (4)].

Lemma 2.5 Every subgroup of a supersoluble group is P-reachable.

Proor — Let H be a subgroup of a supersoluble group G. Consider
a subgroup chain

H=Ho<Hi<...<Hn_1 <Ha =G

such that Hy <Hj;¢,1=0,1,...,n—1. Here we write H; < Hj to
denote that H; is a maximal subgroup of H;i ;. Since [Hi4+1 : Hi| € P
by [6, IV.2.11], we conclude H is IP-reachable in G. O

3 z-Reachability in soluble groups

Lemma 3.1 (see Lemma 2.1 of [13]) Let M be a maximal subgroup of
a soluble group G, and assume that G = MC for a cyclic subgroup C.
Then |G : M| is a prime or 4. Also, if |G : M| =4, then G/Mg ~ Sa.

Theorem 3.2 In a soluble group G, a subgroup H is z-reachable if and
only if there is a subgroup chain

H=Mo<M; <...<M i <M1 <...<Mp 1 <My =G (%)

such that, for every i = 0,1,...,n—1, either Mi;1/(Milm,, = S4
and |Mi+1 : M1'_| =4, or |Mi+] : M1'_| eP.

Proor — Let G be a soluble group and let H be a z-reachable sub-
group of G. Compact chain (x) to a chain of maximal subgroups.
Assume that U; is a maximal subgroup of Hiy1, Hi < U; and Kj is
a z-supplement for H; in Hi; 1. Then

Hit1 = HiKy, Uy = Hy (U NKy), Hipqr = UK.
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Since G is soluble, we have [H; 1 : U;| = p; for a prime p; € mt(Hi41)
and «; € IN. Let P; be a Sylow p;-subgroup of K;. Then Hi 1 = U;P;,
where P; is a cyclic pi-subgroup. Since all Sylow subgroups of U; N K;
are cyclic, we deduce that in the chain H; < U; < Hji41, Hy is z-reach-
able in U;. Repeating this compaction several times, we obtain a
chain (xx) such that M; is maximal in M, and M1 = M;P;,
where P; is a cyclic pi-subgroup for every i = 0,1,...,n—1. In par-
ticular, every z-reachable subgroup of a soluble group is c-reachable.
By Lemma 3.1, for every i=0,1...,n—1, either My 1/(Mi)m,,, =S4
and |Mi+1 : Mi| =4, or |Mi+1 : Mi| eP.

Conversely, assume that there is a chain (xx) such that either the
index [Miy1 : Myl is a prime, or [Mi41 : Mij| =4 and M1 1/A; =~ Sy,
where A; = (Mi)m foreveryi=0,1,...,n—1.If Mj;1/A; ~ S4,
then

it+17

Mi/A; ~ S3, Mi1/A; = (Mi/A{)(Bi/Ay), Bi/Ai ~ Cy.

Let Bi/A; = (bjAi). Then M1 = M;(by), i.e. M; is z-reachable
in Mi+] .

Suppose that [Mi;1 : My| = p; € P, P; is a Sylow pi-subgroup
of M1 and x; € P; \ M. In that case,

IMi (i)l = IMill(x1) : Mi N (xi)] = [Milpi = IMiq1l.

Therefore M1 = M (xi), i.e. M; is z-supplemental in M; . Since
this is true for any i, we conclude H is z-reachable in G. O

Corollary 3.3 Every z-reachable subgroup of a soluble group is c-reacha-
ble.

If G is a group, A < B < G and A < B, then the quotient group B/A
is called a section of G. If G has no sections that are isomorphic to S4,
then G is said to be S4-free.

Corollary 3.4 Let H be a z-reachable subgroup of a soluble group G.
Then H is a P-reachable subgroup of G when one of the following condi-
tions holds:

(1) G is Sy-free.
(2) 4 does not divide |G : H.
(3) (H,6)=1.
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Proor — By Theorem 3.2, there is a subgroup chain (x*) such that
either |Mi+1 : M| =4 and Mi—l—]/(Mi)Mi_,_] ~ S, or |Mi_,_] Myl e P
foreveryi=0,1,...,n—1.

(1) By the hypotheses, G is S4-free, therefore [M;1 : M;| € P for
every i, and H is IP-reachable in G.

(2) By the hypotheses, 4 does not divide |G : H|. Hence in (xx), all
indices are primes, and H is IP-reachable in G.

(3) We proceed by induction on |G|. Of course, it is possible to
assume that H < M1 < My = G. Since H is z-reachable in M,,_1,
we conclude H is IP-reachable in M;,_; by induction. If |G : M;,_1| is
prime, then H is IP-reachable in G by Lemma 2.4 (4). If |G : M, _1| € P,
then

IG:Mp_1l=4, G/(Mn_1)g = S4.

By hypotheses, |H| is not divided by 2 and by 3, so H < (M,_1)g
and H is IP-reachable in (My_1)g by Lemma 2.4 (1). Since (M,,_1)g
is P-reachable in G by Lemma 2.1 (3), H is IP-reachable in G by Lem-
ma 2.4 (4). O

Corollary 3.5 Let G be a soluble group, H < G, N< G, N < H. If H/N
is z-reachable in G/N, then H is z-reachable in G.

Proor — Since H/N is z-reachable in G/N and G is soluble, then
by Theorem 3.2, there is a subgroup chain

H/N=Mp/N<...<Mi/N<Mj;1/N<...<Mp/N=G/N
with either [Mi; 1/N : M;/N|=4 and (Mi1/N)/(Mi/N)m, /N = S
or [IMiy+1/N: M;/N| € P for everyi=0,1,...,n—1. Consider a sub-
group chain

H=My<...<Miy<Mig1...<Mp_1<M, =G.
If IMit1/N @ My/N| € P, then [Mij;7 : Myl is prime. Assume
that [Mi1/N : My/N| = 4 and (Mi41/N)/(Mi/N)m /N = Sa.
Then M1 : Mi| =4 and

Mit1/(Mi)me, = (Mip1/N)/(Mi/N)m,, /N = Sa.

Consequently, H is z-reachable in G by Theorem 3.2. 0
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Corollary 3.6 Let G be a soluble group, let m C m(G), and let K be
a z-reachable m-subgroup of G. Then K is z-reachable in a Hall m-sub-
group G of G.

Proor — Since K is a z-reachable subgroup of a soluble group G, in
view of Theorem 3.2, there is a subgroup chain

K=Mo<M; <...<Mi <Mz <... $£Mp 1 =M< M, =G

such that, for every i = 0,1,...,n—1, either My, 1/(Mi)m,,, = S4
and M1 : My| =4, or IMj1 : My| € P. Since K is a z-reachable
subgroup of a soluble group M, then by induction, K is z-reachable
in a Hall t-subgroup M, of M.

If (|G : M|) N7t = 0, then M is a Hall m-subgroup of G and the
statement is true.

Assume that 71(|G : M[) N7t # 0 and Gy is a Hall m-subgroup of G
that contains M. In that case, G = MG, and

If My is IP-reachable in G, then K is z-reachable in G,. Suppose
that M is not IP-reachable in G,. Then

G : Mnl =4, Mz <Ggp, NGW(MT() = Mg, Gﬂ/(MH)Gﬂ =~ S4.

Since all subgroups of S4 are z-reachable in S4, we get M, /(Mx)G..
is z-reachable in Gr/(Mx)g,. By Corollary 3.5, My is z-reachable
in G and K is z-reachable in G, by Lemma 2.2 (4). O

Let G be a soluble group with all subgroups z-reachable. In view
of Corollary 3.3, every subgroup of G is c-reachable in G. Hence for
every proper subgroup H of G, there is an element g € G\ H such
that H < H(g) = (g)H. The description of these groups was obtained
in [4].

Let G be a soluble group with all maximal subgroups z-reachable.
According to Corollary 3.3, every maximal subgroup of G is c-reach-
able in G. The description of these groups was obtained in [2].

Later,  is the formation of all supersoluble groups, A* denotes
the {-residual of a group A.

Corollary 3.7 A group G is supersoluble if and only if A is z-reachable
in B for any subgroups A and B such that A < B.
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Proor — If G is supersoluble, then every subgroup of G is super-
soluble. Therefore by Lemma 2.5 and Lemma 2.1(1), for any sub-
groups A and B such that A < B, A is z-reachable in B, and the
necessity of the condition is proved.

To prove the sufficiency we proceed by induction on |G|. Suppose
that G is a nonsupersoluble group of least order in which A is z-
reachable in B for any subgroups A and B such that A < B. Let H be
a proper subgroup of G. By induction, H is supersoluble and G is a
minimal nonsupersoluble group.

Suppose ©(G) # 1. For subgroups A/®(G) < B/®(G) of G/O(G), A
is z-reachable in B by the hypothesis. By Lemma 2.2(3), A/®(G)
is z-reachable in B/®(G). Consequently, by induction, G/®(G) € 4,
and G € 4, a contradiction. Therefore ®(G) = 1, and in view
of [8, Lemma 2.1], G = G x H, where G isa Sylow p-subgroup for a
prime p € ©(G), GY is a minimal normal subgroup of G, IGH| > p, H
is a maximal subgroup of G. By the choice of G, H is z-reachable
in G. In view of Theorem 3.2, either |G : H| € P or |G : H = 4
and G/Hg ~ S4. Since |G : H| = |G¥| > p and Hg = 1, we get G ~ S4.
But S4 contains the nonsupersoluble subgroup A4, a contradiction.
Therefore G is supersoluble. O

4 Soluble groups with z-reachable Sylow
subgroups

From Huppert’s Theorem [6, VI.9.5], it follows that the formation
of all supersoluble groups can be defined as a class of all groups in
which all subgroups are IP-reachable. Let 7w C IP; w4l is the class of
all groups with IP-reachable Sylow r-subgroups for every r € m N 7t(G)
(see [16]). If T = IP we write wil instead of wpil. The class wil is fairly
well studied [8, 10, 14]. In particular, wil is a subgroup-closed satu-
rated formation. According to [16, Theorem 3.1], w4l is a subgroup-
closed formation.

Lemma 4.1 Let r = max nt(G) and let R be a Sylow r-subgroup of a
soluble group G. If R is z-reachable in G and v > 3, then R is normal in G.

ProorF — We proceed by induction on |G|. By Theorem 3.2, there is
a subgroup chain

R=Rp <R <...<R{<Ry1 <...<RL 1 <Ry =G (1)
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such that either [R;1:Ri| =4 and Ry, 1/(Ri)r, ;=S4 or [Ri;1:Ri| € P
fori = 0,1,...,n—1. Since R is z-reachable in R,,_1, R is normal

in Rp_1 by induction. If R is not normal in G, then R,,_; = Ng(R).
By the Sylow Theorem, |G : R,_1| = 1 (mod r). Since v = maxn(G),
we get |G : Rp_1| ¢ P. If |G : R,_1| = 4, then v = 3, a contradiction.
Thus R is normal in G. O

Theorem 4.2 If every Sylow subgroup of a soluble group G is z-reachable,
then the following statements hold.

(1) G € wail

(2) A Hall {2,3}-subgroup Gy, 3y of G is normal in G.
(3) G e wil, G3r € wil, Gy 3y € wil.

(4) If G is a Sa-free group, then G € wil.

Proor — Assume that every Sylow subgroup of a soluble group G
is z-reachable in G.

(1) By Corollary 3.4(2,3), every Sylow r-subgroup R, with v # 3,
is IP-reachable in G, i.e. G € wz/4l.

(2) We proceed by induction on |G|. Let R be a Sylow r-subgroup
of H = Gy, 3y for T = max7t(G). It is clear that if r < 3, then H=1,
and the statement is true. Let v > 3. By the hypotheses, R is z-
reachable in G, and by Lemma 4.1, R is normal in G. In view of Lem-
ma 2.2(3), every Sylow subgroup of G/R is z-reachable in G/R. By
induction, H/R is normal in G/R. Hence H is normal in G.

(3) All Sylow subgroups of Gz and of Gy, 3y are IP-reachable in G
in view of Statement (1) and P-reachable in Gz and, respectively,
in Gy 3y by Lemma 2.4 (3). Therefore Gz, € wil and Gy, 3y € wil.

Since R = G3 is z-reachable in G, R is z-reachable in a Hall 2’-sub-
group Gy of G by Corollary 3.6. In view of Theorem 3.2, there is
a subgroup chain () (in this chain, we assume that G = G,/) such
that either |[Ri 1 : Ryl =4 or [Riy1 : Ry € P fori =0,1,...,n—1.
Since Gy is a group of odd order, we deduce that R is P-reachable
in G/. From Statement (1), it follows that a Sylow p-subgroup of G,/
is IP-reachable in G for every p € 7(G,/) \{3}. By Lemma 2.4 (3), all Sy-
low subgroups of G, are IP-reachable in G,,. Thus, G, € wil.

(4) If Gis Sy-free, then G € wil in view of Corollary 3.4 (1). O

Later, the Sylow normalizer is the normalizer of a Sylow subgroup
of a group. If every Sylow normalizer of a group G is P-reachable,
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then G is supersoluble (see [11]). For a group with all Sylow nor-
malizer z-reachable, the following statement is true.

Corollary 4.3  If every Sylow normalizer of a soluble group G is z-reacha-
ble, then either G is supersoluble or G contains a normal subgroup N such
that G/N ~ 84.

Proor — Note that in view of Lemma 2.2 and Lemma 2.5, every Sy-
low subgroup of G is z-reachable in G.

We proceed by induction on |G|. Assume that N is a normal sub-
group of G, N = 1, and R is a Sylow r-subgroup of G = G/N for a
prime r € 7(G/N). Then in G, there is a Sylow r-subgroup R such
that R = RN/N. By the hypotheses, Ng(R) is z-reachable in G. Since

Ng(R) = Ng/N(RN/N) = Ng(R)N/N,

according to Lemma 2.2 (3), Ng(R) is z-reachable in G. Consequently,
the hypotheses is true for every quotient subgroup of G. By induc-
tion, either G/N is supersoluble or G/N has a normal subgroup K/N
such that (G/N)/(K/N) ~ S4. In the latter case, G/K ~ S; and
the statement is true. Therefore we consider that G/N is supersol-
uble for every non-identity normal subgroup N of G. By [11, Lem-
ma 2.2], G is primitive, F = F(G) is a unique minimal normal sub-
group, G = F x H, H is a maximal subgroup of G, Hg = 1 and H
is supersoluble. Let ¢ = max 7t(H) and let Q be a Sylow g-subgroup
of H. Since H is supersoluble, Q is normal in H and Ny (Q) = H.
Hence Q is a Sylow g-subgroup of G, and by the hypotheses, H
is z-reachable in G. In view of Theorem 3.2, either |G : H| = |F| € IP
or |G: H|l =1F =4.1f |G: H|l =|F € P, then G is supersoluble.
If |G:H| =|F| =4, then G ~ G/Hg ~ S4 by Theorem 3.2. O

Example 4.4 The group G= C‘z‘ x(S3xS3) [5, SmallGroup(576,8654)]
is soluble and contains the following classes of non-conjugate maxi-
mal subgroups:
M ~ S3 x S3, My ~ C3 % (C3 x S3),M =~ C} x (C3 x S3),
M3 ~ (A4 X A4) X Cz,M4 ~ Céz1 X D]Z/MS ~ CLZ‘ X D12,
IG:M|=16,|G: M1|=|G: M3 =|G: M3| =2,
|G : Myl =|G: Ms| =3.

Since G contains the maximal subgroup M of index 16, G ¢ 4, and
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in view of |(G)| =2, G ¢ wil. As G has no maximal subgroups of in-
dex 4, G does not contain a normal subgroup N such that G/N ~ S4.

In G, the Sylow 2-subgroup P ~ C3 x C3 = F(G) x Py. Here Py ~ C3
is a Sylow 2-subgroup of M. Since M is supersoluble, P; is P-reacha-
ble in M by Lemma 2.5, and P is IP-reachable in G. By Lemma 2.1, P
is z-reachable in G. For the Sylow 3-subgroup Q of G, there is a
subgroup chain

QC3xC3<C3xS3<C3xS4<M3<G.

It is clear that Q is z-reachable in C3 x S3, C3 x S3 is z-reachable
in C3 x Sy (see Example 1.1). In M3 ~ (A4 x Ag) x C, [5, Small-
Group(288,1026)], C3 x S4 is z-reachable in view of Theorem 3.2,
since [M3 : C3 x S4f = 4 and M3/(C3 x S4)m; =~ S4. Therefore Q
is z-reachable in G.

This example shows that for a group with z-reachable Sylow sub-
groups, the analog of Corollary 4.3 is not true.

5 To Baer’s theorem

If X is a formation and A is a group, then A¥* is an X-residual of A.
Recall 2, 9T and 4 denote the formations of all abelian, nilpotent and
supersoluble groups, respectively, [A,B] = ([a,b] | a € A, b € B)
denotes the commutator of subgroups A and B.

The following is a well known result due to Baer.

Theorem 5.1 (see [1, p.186]) Let A and B be supersoluble normal sub-
groups of a group G and let G = AB. If the derived subgroup of G is
nilpotent, then G is supersoluble.

Since nilpotency of the derived subgroup of a group G is equiva-
lent to (G’)™® =1, Theorem 5.1 arises from the following theorem.

Theorem 5.2 Let A and B be supersoluble subgroups of a group G and
let G = AB.

(1) If A and B are subnormal subgroups of G, then G¥*=(G')" =[A, B]™!
— [9, Theorem 2].

(2) If A and B are P-reachable subgroups of G, then G¥ = (G")M —
[12, Theorem 3.3].
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We prove a more general statement.

Theorem 5.3 Let A and B be supersoluble z-reachable subgroups of a
group G and let G = AB. Then G = (G')” < [A, B. In particular, if the
derived subgroup of G is nilpotent, then G is supersoluble.

Proor — Since the derived subgroup of a supersoluble group is
nilpotent [6, VI.g.1], we have 4l C 912 and (G)”' < GY. Since A and B
are supersoluble subgroups of G, then G* < [A, B] by [9, Lemma 11].
Thus, (G")™ < G¥ < [A, B]. Now we prove that GY < (G,

Consider separately the case when (G')” = 1. In that case, G’ is
nilpotent and G is soluble. Since A is z-reachable, by Theorem 3.2,
there is a subgroup chain

A=Mo<Mi<...<Mi <M1 <...<M;_1<Mp =G

such that, for every i = 0,1,...,n—1, either My 1/(Mi)m;,; = S4
and [Miy1 @ Myl = 4, or IMj1:M;| € P. Since the derived sub-
group of Sy is not nilpotent, case M 1/(Mi)m,,, = S4 is impossible.
Hence [Mi11: M| € P foreveryi=0,1,...,n—1, and A is P-reach-
able in G. Similarly, B is IP-reachable in G. Thus, in view of Theo-
rem 5.2 (2), G¥=1,ie Gis supersoluble and 1 = (GH™ = G,

Now, assume that (G’)™ # 1. Consider

G/(G"™ = A(G")™/(6"™-B(G™/(G"™.

Since A and B are supersoluble z-reachable subgroups of G, we have
that also the subgroups A(G’)™/(G’)™ and B(G')*/(G")*" are super-
soluble and z-reachable in G/(G’)*! in view of Lemma 2.2 (3). More-
over,

N

(6/(6")™) =6 (6" /(6" =6'/(6"M e, ((6/(6N™))" =1.

By the above, G/(G’)™ € sland G* < (G")™N. O

Corollary 5.4 Let A and B be abelian subgroups of a group G = AB. If A
and B are z-reachable in G, then G is supersoluble.

Proor — Since (G’)’ = 1 (see for instance [6, VI.4.4]), by Theo-
rem 5.3, we have that G* = (G)” < (G’)’ = 1 and G is supersol-
uble. O
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Example 5.5 In S4, every subgroup is z-reachable (see Example 1.1).
Furthermore,
S4 =AB, A~Cs, B~Dg,

(S4) = A, Bl ~ Ag, ((S4))" = (Sa)" =~ C} < As.

Therefore in Theorem 5.3, we can not replace inclusion (G’ )M < [A, B]
by equality.
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