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Abstract
We prove several reality properties for finite simple orthogonal groups. For any
prime power q and m > 1, we show that all real conjugacy classes are strongly
real in the simple groups P⌦±(4m+ 2,q),m > 1, except in the case P⌦-(4m+ 2,q)
with q ⌘ 3(mod 4), and we construct weakly real classes in this exceptional case
for any m. We also show that no irreducible complex character of P⌦±(n,q) can
have Frobenius–Schur indicator -1, except possibly in the case P⌦-(4m + 2,q)
with q ⌘ 3(mod 4).
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Frobenius–Schur indicator

1 Introduction

Let O(V) be the full orthogonal group corresponding to a non-degen-
erate symmetric form on a finite-dimensional vector space V over
a field of characteristic that is not 2. It is a result of M. Wonen-
burger [22] that every element of O(V) is the product of two invo-
lutions (or the identity) from O(V). This is equivalent to the fact that
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every element of O(V) may be conjugated to its inverse by an in-
volution in O(V). That is, every conjugacy class of the orthogonal
group O(V) is strongly real (and so we say the group itself is strongly
real). For certain subgroups of orthogonal groups, this property is
further explored by F. Knüppel and G. Thomsen [13], who classify
when the commutator subgroup ⌦(V) of O(V), and the kernel of the
spinor norm on O(V), are strongly real.

If O(V) is now the orthogonal group corresponding to a non-de-
fective quadratic form on V over a field that is characteristic 2, it
was shown by E. Ellers and W. Nolte [3] and R. Gow [6] that O(V)
is also strongly real. In the case that V has dimension divisible by 4
and V is defined over a finite field of characteristic 2, it is proven
by J. Rämö [14] that the commutator subgroup ⌦(V) of O(V) is
strongly real. This is not the case if the dimension of V is 2 mod-
ulo 4, by the work of P.H. Tiep and A.E. Zalesski [17].

For an element (or conjugacy class) of a group to be strongly real, it
is necessary that it is real, or conjugate to its inverse within the group.
In the representation theory of finite groups, it is of interest to under-
stand which conjugacy classes of a group are real, because the num-
ber of real conjugacy classes of a finite group is equal to the number
of real-valued irreducible complex characters of that group. The clas-
sification of finite simple groups with the property that all elements
are real is completed by P.H. Tiep and A.E. Zalesski [17]. The classifi-
cation of finite simple groups such that all elements are strongly real
is completed by J. Rämö [14], and E.P. Vdovin and A.A. Gal0t [18],
with the somewhat surprising result that all elements of a finite sim-
ple group are real if and only if they are all strongly real.

In this paper, we focus on the finite simple orthogonal groups, and
the question of when all real elements are strongly real. By the re-
sults mentioned above, the answer to this question is understood in
the case when all elements are real, and so we study the remaining
cases. We give a complete answer to the question in the case that the
underlying vector space has dimension that is 2 modulo 4.

The connection between the strongly real classes of a finite group
and the irreducible complex characters of that group is still mysteri-
ous in the general case, and one motivation for our study is to further
understand this connection in the case of finite simple orthogonal
groups. In particular, in some classes of finite groups there is a con-
nection between strongly real classes and the irreducible complex
characters that are afforded by a real representation. For example, it
is proven in [20] that for a finite simple group, all conjugacy classes
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are strongly real if and only if all irreducible complex characters can
be afforded by a real representation. In this paper we gather evidence
that for finite simple orthogonal groups, all real classes are strongly
real if and only if all real-valued irreducible complex characters can
be afforded by real representations.

This paper is organized as follows. In Section 2, we give some
standard information on orthogonal groups over finite fields and
their important subgroups. In Section 3, after giving some previ-
ous results, we prove our main results in the case of odd charac-
teristic, which are reality results for ⌦(V) and P⌦(V) in the remain-
ing cases when dim(V) ⌘ 2(mod 4). In particular, in the cases when
these groups are known to have classes that are not real, we show
that all real elements are strongly real, in Proposition 5 and The-
orem 8, except in the case of ⌦-(4m + 2,q) and P⌦-(4m + 2,q)
with q ⌘ 3(mod 4). In that exceptional case, we construct elements
that are real but not strongly real in Theorem 9 (with technical base
case constructions given in the Appendix). In Section 4, we prove
that all real elements are strongly real in ⌦±(4m+ 2,q) when q is a
power of 2, and we classify all real elements, in Theorem 12. In Sec-
tion 5, we prove in Theorem 14 that all real-valued irreducible char-
acters of ⌦±(n,q) and P⌦±(n,q) can be afforded by real representa-
tions, except possibly in the case ⌦-(4m+ 2,q) and P⌦-(4m+ 2,q)
with q ⌘ 3(mod 4), and we give some concluding remarks.

2 Finite orthogonal groups

In this section we state some well-known facts about finite orthogo-
nal groups and some of their subgroups. All of these results may be
found in [8] or [1, Chapter 16].

Let q be a power of a prime, and Fq a finite field with q elements.
Fix a finite-dimensional Fq-vector space V , say dimFq

(V) = n, and
we assume V carries a quadratic form Q. In the case that q is odd, we
assume that the bilinear form B associated with Q is non-degenerate,
and in the case that q is even we assume that n is even and Q is
non-defective. That is, when q is odd we have, for all u, v 2 V ,

Q(u+ v) = Q(u) + 2B(u, v) +Q(v),

for a non-degenerate symmetric bilinear form B, while if q is even
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we have
Q(u+ v) = Q(u) +B(u, v) +Q(v),

for a non-degenerate symplectic form B. We may then consider the
group O(V) of isometries of the quadratic form Q, which is the orthog-
onal group. When q is odd, this is the same as the group of isometries
of the associated symmetric bilinear form B.

For all n and q considered above, there are precisely two equiv-
alence classes of quadratic forms Q. For v 2 V , we take v to have
coordinate representation v = (x1, . . . , xn) with respect to some basis.
When n = 2m is even, one form may be taken to be

Q(v) = x1x2 + x3x4 + . . .+ x2m-1x2m,

which we say is a split form, or +-type. When q is odd and n = 2m+ 1
is odd, the split, or +-type, form is given by

Q(v) = x1x2 + x3x4 + . . .+ x2m-1x2m + x2
2m+1

.

The second equivalence class of quadratic forms (which we do not
formulate explicitly here) in the cases under consideration will be
called non-split forms, or --type. We will denote by O+(n,q)
or O-(n,q) the orthogonal groups corresponding to a quadratic form
of split or non-split type, respectively, and we will write O±(n,q)
for the generic case. In the case that n and q are odd, we in fact
have O+(n,q) ' O-(n,q), but these groups are not isomorphic in
the general case.

One group of primary interest in this paper is the derived (or com-
mutator) subgroup of the orthogonal group. Letting X0 denote the
derived subgroup of a group X, we may define

⌦±(n,q) = O±(n,q)0.

When q is even, ⌦±(n,q) is an index two subgroup of O±(n,q)
and is a simple group (with the exception of ⌦±(4, 2)). When q is
odd, ⌦±(n,q) is an index 4 subgroup of O±(n,q), and may or may
not contain the central involution of O±(n,q). Whether the central
involution is contained in ⌦±(n,q) may be determined by n, q, and
the type ± of the underlying form, as described in [1, p.230]. If Z
is the center of ⌦±(n,q), then P⌦±(n,q) = ⌦±(n,q)/Z is a finite
simple group (with a finite number of exceptions when n is small).
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We now assume that q is a power of an odd prime until Section 4.
In this case, we may define the special orthogonal groups SO±(n,q)
to be the elements of O±(n,q) with determinant 1. Then ⌦±(n,q) is
an index 2 subgroup of SO±(n,q), and SO±(n,q) is an index 2 sub-
group of O±(n,q). One may also define the spinor norm on O±(n,q),
which is a multiplicative homomorphism

✓ : O±(n,q) �! F⇥
q /(F⇥

q )2,

and the explicit definition can be found in [8, Chapter 9]. Then ker(✓)
is an index 2 subgroup of O±(n,q), and we write ker(✓) = K±(n,q).
Also ⌦±(n,q) is an index 2 subgroup of K±(n,q), and in fact we
have

⌦±(n,q) = SO±(n,q)\ K±(n,q).

There is a third index two subgroup of O±(n,q) containing ⌦±(n,q),
consisting of ⌦±(n,q) together with the coset in O±(n,q) disjoint
from both K±(n,q) and SO±(n,q). We define this subgroup to
be T±(n,q), that is,

T±(n,q) = ⌦±(n,q)[
�
g 2 O±(n,q) | g 62 K±(n,q)[ SO±(n,q)

 

= ker(✓⇥ det).

We denote the discriminant of the symmetric form B carried by V ,
defined in [8, Chapter 2], by dV 2 F⇥

q /(F⇥
q )2.

The discriminant, spinor norm, and determinant each behave as a
direct product map over an orthogonal direct sum of the underlying
space V = Fn

q . That is, suppose V = �iVi is an orthogonal direct
sum with respect to B, so that we may consider the non-degenerate
symmetric form B restricted to the subspace Vi, denoted BVi

. Then
we have dV =

P
i
dVi. If g 2 O(V) and each Vi is g-invariant, then

we may consider g with restricted action on each subspace Vi, and
denote this by gi = gVi

2 O(Vi). Then we have that the spinor norm
and determinant maps satisfy

✓(g) =
X

i

✓(gi) and det(g) =
Y

i

det(gi).

When restricting the symmetric form B to a subspace Vi, the ± type
of the corresponding quadratic form may be determined by the val-
ues of q, dim(Vi), and the discriminant dVi, as described at
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pp. 221–222 of [1].

3 Odd characteristic

We take q to be a power of an odd prime, V = Fn
q endowed with a

quadratic form Q, and B the associated non-degenerate symmetric
bilinear form on V . Let O±(n,q) be the corresponding orthogonal
group.

3.1 Preliminary Results

In this section we give previous results that will be repeatedly used
in what follows. If G is a finite group, then we say g 2 G is real in G
if there is an element h 2 G such that hgh-1 = g-1. If all elements
of G satisfy this property, then we say G is a real group. We say g 2 G
is strongly real in G if there is an element s 2 G such that s2 = 1
and sgs-1 = g-1, or equivalently, if there are elements s1, s2 2 G
such that s2

1
= s2

2
= 1 and g = s1s2. If all elements of G are strongly

real in G, then we say G is a strongly real group.
We have the following result of Wonenburger [22] mentioned in

the introduction (see also [13], Proposition 4.5).

Theorem 1 If q is a power of an odd prime and n > 2, then O±(n,q) is
strongly real.

The following result essentially comes from [22], but also follows
from [15].

Theorem 2 If q is a power of an odd prime and n > 3, then each element
of SO±(n,q) is strongly real if and only if it is real, and this group is real
if and only if n 6⌘ 2(mod 4).

The following is the result [13, Theorem 8.6] of Knüppel and Thom-
sen, specialized to the case of finite fields.

Theorem 3 If q is a power of an odd prime, and n > 3 (and also q > 3
when n < 6), then K±(n,q) is strongly real if and only if:

(i) q ⌘ 1(mod 4), or

(ii) q ⌘ 3(mod 4) and is one of K+(4m+2,q), K+(4m+3,q), K-(4m,q),
or K-(4m+ 1,q), or
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(iii) n = 8 or n = 9.

Knüppel and Thomsen also prove the following in Theorem 8.5
of [13] (see also [5]).

Theorem 4 If q is a power of an odd prime, and n > 3 (and also q > 3
when n < 6), then ⌦±(n,q) is strongly real if and only if:

(i) q ⌘ 1(mod 4) and n 6⌘ 2(mod 4), or

(ii) q ⌘ 3(mod 4) and it is ⌦-(4m,q), or

(iii) n = 8 or n = 9.

Note that for n < 6 we have ⌦±(n,q) is isomorphic to other well-
understood finite groups, by [12, Proposition 2.9.1].

Recall that if F is a field with fixed algebraic closure F, given a
monic non-constant polynomial with nonzero constant f(t) 2 F[t],
the reciprocal polynomial of f(t), denoted f⇤(t) 2 F[t], is the monic
polynomial with the property that for any zero ↵ 2 F

⇥ of f(t), ↵-1

is a zero of f⇤(t) with the same multiplicity. Then f(t) is self-reciprocal
if f(t) = f⇤(t).

We next describe an important orthogonal decomposition of the
underlying space V . Given any g 2 O±(n,q), then as in [13, Sec-
tion 3], V may be decomposed as an orthogonal (with respect to B)
direct sum, V = �Vi, such that each Vi is an orthogonally indecom-
posable g-invariant subspace of V , where each Vi is of one of the
following forms:

(1) Vi is a (non-orthogonal) direct sum, Vi = Ui�Wi of degenerate
totally isotropic g-invariant cyclic subspaces (with dimFq

(Ui) =
dimFq

(Wi)), and g has a single elementary divisor on both Ui

and Wi that is either (t- 1)2e (type 1-) or (t+ 1)2e (type 1+);

(2) Vi is g-cyclic, such that g has a single elementary divisor f(t)e

on Vi, where f(t) is irreducible and self-reciprocal, and
either f(t) 6= t± 1 (type 2⇤), or e is odd and f(t) = t- 1 (type 2-)
or f(t) = t+ 1 (type 2+);

(3) Vi is g-cyclic, and Vi=Ui�Wi is a (non-orthogonal) direct sum
of totally isotropic g-invariant subspaces (with dimFq

(Ui) =
dimFq

(Wi)), such that g has a single elementary divisor f(t)e

on Ui, and a single elementary divisor f⇤(t)e on Wi, such
that f(t) is irreducible and f(t) 6= f⇤(t) (type 3).

In case (1), we say that Vi is bicyclic with respect to g.
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3.2 Reality results

We begin with the following observation.

Proposition 5 Let G be one of the finite simple groups ⌦-(4m+ 2,q)
with q ⌘ 1(mod 4), or ⌦+(4m+ 2,q) with q ⌘ 3(mod 4), where m > 1.
Then all real classes of G are strongly real.

Proof — We have G is a subgroup of SO±(4m+ 2,q), and all real
classes of this group are strongly real by Theorem 2. Let g 2 G be real
in G, which is then real in SO±(4m+ 2,q). So we may write g = s1s2,
where s2

1
= s2

2
= 1, and we may assume s1, s2 2 SO±(4m+ 2,q) \G.

Now, -I 62 G, and so the involutions -s1,-s22G with g=(-s1)(-s2).
Thus g is strongly real in G. ut

The goal for this section is to prove that the same statement holds
true in the case G = ⌦+(4m+ 2,q) with q ⌘ 1(mod 4) and for the
simple group G/Z = P⌦+(4m+ 2,q) with q ⌘ 1(mod 4), but in con-
trast we also show that the groups⌦-(4m+2,q) and P⌦-(4m+ 2,q)
with q ⌘ 3(mod 4) always have weakly real classes.

Lemma 6 Let g 2 T±(n,q), with V = Fn
q . Let V = �Vi be the orthogo-

nal decomposition corresponding to g. Then g is strongly real in T±(n,q)
if:

1. there exists a subspace Vi such that dim(Vi) ⌘ 2(mod 4) that is
type 2⇤ or 3, or

2. there exists a subspace Vi that is type 2± and dVi = (F⇥
q )2.

Proof — First, since g 2 O±(n,q), then g is the product of two
elements in O±(n,q) that square to the identity by Theorem 1. Let
us take g = sh with s2 = h2 = 1, and we assume

s,h 2 O±(n,q) \ T±(n,q),

otherwise g is already strongly real in T±(n,q). Write si = sVi
for

each subspace Vi, and by the proof of [13, Proposition 4.5], we
may assume si 2 O(Vi). First suppose that there is a subspace Vi

with dim(Vi) ⌘ 2(mod 4) that is of type 2⇤ or type 3. We consider
the spinor norm on O(Vi), and by [13, Lemma 5.8] and its proof, for
any non-square ↵ 2 F⇥

q \ (F⇥
q )2, we may replace si with some involu-

tion s 0
i

such that ✓(s 0
i
) = ↵✓(si), where s 0

i
is a GL(Vi)-conjugate of si
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so that det(si) = det(s 0
i
). Then we define

s 0 = s 0
i
�
M

j 6=i

sj,

and by construction s 0 2 T±(n,q), and s 0 is an inverting involution
for g.

Next assume that there is a subspace Vi that is type 2± and has
discriminant dVi = (F⇥

q )2. Then we define

s 0 = (-si)�
M

j6=i

sj,

so s 0 is an involution in O±(n,q). Since dVi = (F⇥
q )2, then -IVi

be-
longs to ker(✓i) by [1, pp. 221–222,230], and so ✓(s 0) = ✓(s). Since Vi

is type 2±, then dim(Vi) is odd, and so det(s 0) = -det(s). So by con-
struction we now have s 0 2 T±(n,q) and s 0 is an inverting involution
for g. ut

Proposition 7 Let n > 3 and q ⌘ 1(mod 4). Then T±(n,q) is strongly
real.

Proof — Let g 2 T±(n,q) with V = Fn
q = �Vi the orthogonal

decomposition corresponding to g. By Lemma 6, we may assume
that any Vi of type 2⇤ or 3 has dimension divisible by 4, and any Vi

of type 2± has discriminant dVi 6= (F⇥
q )2.

For any subspace Vi of type 1± or 2-, it follows from [13, Lem-
ma 4.7 (c)] that gi = gVi

2 ⌦(Vi). Since q ⌘ 1(mod 4) and dim(Vi)
must be either odd or divisible by 4 in these cases, it follows from The-
orem 4 that gi is strongly real in ⌦(Vi).

Consider a subspace Vi of type 2+. Then det(gi) = -1 by defini-
tion, and by assumption dVi 6= (F⇥

q )2. From [13, Lemma 4.7 (d)], we
also have ✓(gi) = dVi 6= (F⇥

q )2, and it follows that we have

gi 2 T(Vi) \⌦(Vi).

By [13, Lemma 5.1], gi can be inverted by an orthogonal involution si
such that either det(si) = 1 and ✓(si) = ±(F⇥

q )2 = (F⇥
q )2 (since

q ⌘ 1(mod 4)), or such that det(si) = -1 and ✓(s) = ±dVi 6= (F⇥
q )2

(by our assumption on dVi and since q ⌘ 1(mod 4)). In either case,
we have si 2 T(Vi).
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Now let Y be the orthogonal direct sum of all subspaces of type 2⇤

or type 3, and so Y has dimension divisible by 4, and let X be the or-
thogonal direct sum of all other subspaces Vi. If g 2 ⌦±(n,q), then
the number of subspaces of type 2+ must be even, and it follows
from the previous two paragraphs that gX 2 ⌦(X). Then we must
also have gY 2 ⌦(Y). If g 2 T±(n,q) \⌦±(n,q), then g 62 SO±(n,q)
and so the number of subspaces of type 2- must be odd. Again,
from the above it then follows that gX 2 T(X) \⌦(X), and so we must
have gY 2 ⌦(Y). In any case, we have gY 2 ⌦(Y) with dim(Y) divisi-
ble by 4 and q ⌘ 1(mod 4), and so gY is strongly real in ⌦(Y) by The-
orem 4. We now have g = gX � gY with gX strongly real in T(X)
and gY strongly real in ⌦(Y), so that g is strongly real in T±(n,q). ut

Theorem 8 Let q ⌘ 1(mod 4) and m > 1. In either of the groups
G = ⌦+(4m+2,q) or G/Z = P⌦+(4m+2,q), every real class is strongly
real.

Proof — From Theorem 3 and Proposition 7, we have both

K+(4m+ 2,q) and T+(4m+ 2,q)

are strongly real. Letting g 2 ⌦+(4m + 2,q), we have g can be in-
verted by an involution � in K+(4m+ 2,q) and by an involution s
in T+(4m+ 2,q). We may assume �, s 62 ⌦+(4m+ 2,q).

Let V = F4m+2
q and V = �Vi be the orthogonal decomposition

of V corresponding to g. Suppose that V has a subspace Vj of type 2±.
Then Vj has odd dimension and det(-IVj

) = -1. If dVj = (F⇥
q )2, then

by [1, pp. 230,222] we have ✓(-IVj
) = (F⇥

q )2. If we write � = ��i
with �i = �Vi

, then define

� 0 = (-�j)�
M

i 6=j

�i.

Then we have det(� 0) = -det(�) and ✓(� 0) = ✓(�), so that � 0 be-
longs to ⌦+(4m+ 2,q) and � 0 is an involution that inverts g, so g is
strongly real in ⌦+(4m+ 2,q). If dVj 6= (F⇥

q )2, then ✓(-IVj
) 6= (F⇥

q )2,
again from [1, pp. 230,222]. Writing s = �si, we define

s 0 = (-sj)�
M

i 6=j

si.

Now we have det(s 0) = -det(s) and ✓(s 0) 6= ✓(s), so that s 0 belongs
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to ⌦+(4m + 2,q) is an inverting involution for g. Thus if V has a
subspace of type 2±, then g is strongly real in ⌦+(4m+ 2,q).

Now suppose g is a real element in ⌦+(4m+ 2,q). In particular, g
is then real as an element of SO+(4m+ 2,q). By [15, Theorem 7.2],
this implies that g has an elementary divisor of the form (t ± 1)e

with e odd, which means that V has a subspace of type 2±. Thus g
is strongly real in ⌦+(4m + 2,q), concluding the proof of the first
claim.

To prove the statement in G/Z = P⌦+(4m+ 2,q), where Z = {±I},
we must also consider elements g 2 ⌦+(4m+ 2,q) = G such that g is
conjugate to -g-1 in G, but g is not real in G (otherwise we already
know g is strongly real in G). Since g and -g-1 are conjugate, then
for any elementary divisor f(t)e of g, there is also an elementary
divisor ef(t)e of g with the same multiplicity, where if the roots of f(t)
in an algebraic closure Fq are given by the Frobenius orbit of ↵ 2 F

⇥
q ,

then the roots of ef(t) are given by the Frobenius orbit of -↵-1 (noting
that the action ↵ 7! ↵q commutes with ↵ 7! -↵-1).

Continue to write V = �iVi for the orthogonal decomposition of V
corresponding to g. Since we are assuming g is not real in G, then
from the above we may assume V has no subspaces of type 2±. Note
also that subspaces of V that are type 1± have dimension divisible
by 4. We now consider subspaces Vi of type 2⇤ or type 3.

Consider a subspace Vi of type 2⇤, which then corresponds to an
elementary divisor f(t)e on Vi, where f(t) is irreducible in Fq[t] and
is self-reciprocal, with f(t) 6= t± 1. That is, the set of roots of f(t)
in Fq is invariant under the map ↵ 7! ↵-1. In particular, f(t) has
even degree. Then also ef(t)e is an elementary divisor, where ef(t) is
also self-reciprocal, corresponding to a subspace eVi of type 2⇤ with
the same dimension as Vi. If f(t) 6= ef(t), then Vi � eVi has dimension
divisible by 4. If f(t) = ef(t), then the set of roots of f(t) is invariant un-
der both the maps ↵ 7! ↵-1 and ↵ 7! -↵-1, and so is also invariant
under ↵ 7! -↵. This implies the only nonzero coefficients of f(t) are
those of even powers of t, so that f(t) = f1(t

2) for some irreducible
self-reciprocal polynomial f1(t) 2 Fq[t]. Also f1(t) 6= t± 1 since nei-
ther of t2 ± 1 are irreducible (since q ⌘ 1(mod 4)), and so f1(t) must
have even degree. Then f(t) = f1(t

2) has degree divisible by 4, and
it follows that the direct sum of all subspaces of V of type 2⇤ has
dimension divisible by 4.

Finally, consider a subspace Vi of type 3, so Vi is a non-orthogonal
direct sum, Vi = Ui �Wi, and g has elementary divisors f(t)e on Ui
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and f⇤(t)e on Wi. If ef(t) 6= f(t), f⇤(t), then V also has a sub-
space eVi = eUi � fWi with elementary divisors ef(t)e and ef⇤(t)e. In this
case, Vi and eVi each have the same even dimension, and Vi � eVi

has dimension divisible by 4. If either f(t) = ef(t) or f⇤(t) = ef(t),
then the set of roots of f(t) is invariant under one of the order 2
actions ↵ 7! -↵ or ↵ 7! -↵-1, and so f(t) must have even degree.
Then Ui and Wi each have even degree, and so Vi has dimension
divisible by 4.

Through exhausting all cases, it follows that if g is not real but g
is conjugate to -g-1 in G, then dim(V) is divisible by 4. This contra-
dicts the fact that dim(V) = 4m+ 2, and so G has no such elements.
Thus all real classes of G/Z = P⌦+(4m + 2,q), q ⌘ 1(mod 4), are
strongly real. ut

We now assume q ⌘ 3(mod 4) and m > 1, with G = ⌦-(4m+ 2,q)
and G/Z = P⌦-(4m+ 2,q), and we show both G and G/Z always
have weakly real elements, that is, elements that are real but not strong-
ly real.

Theorem 9 Let q ⌘ 3(mod 4) and m > 1. Then P⌦-(4m+ 2,q) con-
tains weakly real elements.

Proof — In Lemma 15 of the Appendix, we construct an ele-
ment h 2 ⌦-(6,q) such that hZ is weakly real in P⌦-(6,q), where
the elementary divisors of h are

(t- 1)2, (t- 1)2, t+ 1, t+ 1.

Now consider an element ⌘ 2 ⌦+(8,q) having elementary divi-
sors (t2 + 1)2, (t2 + 1)2, which exists by [1, Propositions 16.10, 16.30],
and we may define an element g1 2 ⌦-(8l+ 6,q) as a block-diagonal
direct sum as

g1 = h�
lM

i=1

⌘, (3.1)

and we show that g1Z is weakly real in P⌦-(8l+ 6,q). First, we have

⌘l =
lM

i=1

⌘ 2 ⌦+(8l,q),

and since ⌦+(8,q) is strongly real by Theorem 4, then ⌘l is strongly
real in ⌦+(8l,q). It follows from [1, Proposition 16.34] that the cen-
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tralizer of ⌘l in O+(8l,q) is contained completely in ⌦+(8l,q). Thus
any element in O+(8l,q) that conjugates ⌘l to its inverse must be
in ⌦+(8l,q). By [21, Case (C), (iv) of 2.6], since the eigenvalues of h
are distinct from those of ⌘l, we have

CO-(8l+6,q)(g1) ' CO-(6,q)(h)⇥CO+(8l,q)(⌘l)

= CO-(6,q)(h)⇥C⌦+(8l,q)(⌘l).

We therefore have

C⌦-(8l+6,q)(g1) ' C⌦-(6,q)(h)⇥C⌦+(8l,q)(⌘l). (3.2)

Next notice that g1 is real in ⌦-(8l+ 6,q) since h is real in ⌦-(6,q)
and ⌘l is real in ⌦+(8l,q), and so g1Z is real in P⌦-(8l+ 6,q). In
particular, there is an element x1 = (x, xl) 2 ⌦-(6,q) ⇥⌦+(8l,q)
such that xhx-1 = h-1 and xl⌘lx

-1

l
= ⌘-1

l
, and so x1g1x

-1

1
= g-1

1

in ⌦-(8l+ 6,q). Since any two elements that conjugate g1 to its in-
verse differ by an element of the centralizer, then from (3.2) we have
every element of ⌦-(8l+ 6,q) that conjugates g1 to its inverse must
be of the form

(x, xl) 2 ⌦-(6,q)⇥⌦+(8l,q).

If g1Z is strongly real in P⌦-(8l+ 6,q), and since the elementary di-
visors of g1 prevent the possibility that g1 is conjugate to -g-1

1
, we

assume x1g1x
-1

1
= g-1

1
with x2

1
= ±I. Then x1 = (x, xl) with x2 = ±I

and xhx-1 = h-1 for x 2 ⌦-(6,q). This contradicts the fact that hZ
is weakly real in ⌦-(6,q), and thus g1Z must be weakly real
in P⌦-(8l+ 6,q).

In Lemma 17, we construct h0 2 ⌦-(10,q) such that h0Z is weakly
real in P⌦-(10,q), where h0 has elementary divisors

(t- 1)3, (t- 1)3, (t+ 1)2, (t+ 1)2.

Then we consider the element g0 = (h0, ⌘l) 2 ⌦-(10,q)⇥⌦+(8l,q),
so we repeat the construction in (3.1) with h replaced by h0. By
repeating the same argument, we obtain that g0Z is weakly real
in P⌦-(8l+ 10,q). This gives that every P⌦-(4m + 2,q), where
q ⌘ 3(mod 4) and m > 1, has weakly real elements. ut

In the above construction, it would of course be much simpler to
just add a single elementary divisor of the form (t2 + 1)2, so that
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only one base case is needed. However, this does not work because
such an element is not real in ⌦+(4,q) when q ⌘ 3(mod 4).

4 Characteristic two

We now assume that q is a power of 2, and consider the vector
space V = F2n

q with Q a non-defective quadratic form on V , and B
the associated non-degenerate symplectic form on V . All non-de-
generate symplectic forms on V are equivalent, and so we may al-
ways embed the orthogonal group O±(2n,q) associated with Q in
the symplectic group Sp(2n,q) associated with B, and there is only
one such symplectic group up to isomorphism. We also recall that
given g 2 O±(2n,q), we have g 2 ⌦±(2n,q) if and only if rank(g+ I)
is even [14, Proposition 3.2].

Given any g 2 Sp(2n,q) (and so any g 2 ⌦±(2n,q)), we now de-
scribe an orthogonal decomposition (with respect to B) of V = F2n

q ,
which is somewhat similar to the case when q is odd. We follow the
description given in [6, Section 1], and these results are due to Hup-
pert [9]. We say a subspace W of V is symplectically indecomposable
with respect to g if W has no B-orthogonal decomposition into non-
trivial subspaces that are g-invariant. Then V can be orthogonally
decomposed, as V = �Vi, into symplectically indecomposable g-in-
variant subspaces Vi which are one of the following forms:

(1) Vi is a (non-orthogonal) direct sum, Vi = Ui �Wi, of degener-
ate totally isotropic g-invariant cyclic subspaces (with
dimFq

(Ui) = dimFq
(Wi)), and g has a single elementary di-

visor (t- 1)e on both Ui and Wi;

(2) Vi is g-cyclic, such that g has a single elementary divisor f(t)e,
where f(t) is irreducible and self-reciprocal, and if f(t) = t- 1
then e is even;

(3) Vi is g-cyclic, and Vi a (non-orthogonal) direct sum Vi=Ui �Wi

of totally isotropic g-invariant subspaces (with dimFq
(Ui) =

dimFq
(Wi)), such that g has a single elementary divisor f(t)e

on Ui, and a single elementary divisor f⇤(t)e on Wi, such
that f(t) is irreducible and f(t) 6= f⇤(t).

We continue to say in case (1) that Vi is bicyclic with respect to g.
Note that e can be even or odd in case (1), while e must be even in
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case (2) (different from the case when q is odd). Given the decompo-
sition V = �Vi, we will also continue to write O(Vi) and ⌦(Vi) for
the groups corresponding to the quadratic form Q restricted to the
subspace Vi.

Rämö proved that every element of ⌦±(4m,q) is strongly real by
considering the decomposition V = �Vi. By applying the work done
there, we obtain the following statement for the group ⌦±(4m+ 2,q).

Proposition 10 Let q be a power of 2, and let g 2 ⌦±(4m + 2,q).
Then there exists an element h 2 O±(4m + 2,q) \⌦±(4m + 2,q) such
that h2 = 1 and hgh-1 = g-1.

Proof — Write V = �Vi, where each Vi is either cyclic or bi-
cyclic, dim(V) = 4m+ 2, and g = �gi, where gi = gVi

. Note that
we must have each dim(Vi) even, since otherwise Vi is cyclic of odd
dimension which is not possible. We consider each possibility for Vi.

First suppose 4|dim(Vi). If Vi is cyclic, then by [14, Proposition 3.3]
there is an involution hi 2 ⌦(Vi) that inverts gi. If Vi is bicyclic,
then by [14, Proposition 3.5] there is an involution hi 2 ⌦(Vi) that
inverts gi.

Now suppose dim(Vi) ⌘ 2(mod 4). If Vi is cyclic, then by [14, Pro-
position 3.3], there is an involution hi 2 O(Vi) \⌦(Vi) that inverts gi.
If Vi is bicyclic, then by [14, Propositions 3.16 and 3.17], there exists
an involution hi 2 ⌦(Vi) and an involution h 0

i
2 O(Vi) \⌦(Vi), each

of which inverts gi.
Since dim(V) = 4m + 2, then there are an odd number of Vi’s

such that dim(Vi) ⌘ 2(mod 4). So, when taking h = �hi, we may
choose an odd number of the hi’s such that rank(hi + IVi

) is odd.
Thus, rank(h+ I) is odd, and so h inverts g, h2 = 1, and h belongs
to O±(4m+ 2,q) \⌦±(4m+ 2,q). ut

We will also need the following statement.

Lemma 11 If q is a power of 2 and u 2 ⌦±(4m,q) has a single ele-
mentary divisor corresponding to a cyclic space, then u has an inverting
involution h 2 O±(4m,q) \⌦±(4m,q).

Proof — This follows directly from the proof of [14, Proposition 3.4],
where we get

an/2 = a2m =

✓
4m

2m

◆
= 0

in characteristic 2. The rank of the resulting inverting involution is
then odd, and so is in O±(4m,q) \⌦±(4m,q). ut
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Rämö also proves that for a unipotent cyclic subspace Vi, if

dim(Vi) ⌘ 2(mod 4),

then there is an inverting involution h 0
i
2 ⌦(Vi) [14, Proposition 3.4].

Based on the cases covered in the proof of Proposition 10, this means
that the only case where there may not be an inverting involution
in⌦(Vi) is in the case Vi is cyclic, non-unipotent, dim(Vi)⌘ 2(mod 4),
and Vi corresponds to a self-reciprocal elementary divisor f(t)e. We
must have deg

�
f(t)

�
even since f(t) is self-reciprocal, and so e must

be odd. We are concerned with the case that these have odd multi-
plicity, that is, when there are an odd number of such elementary
divisors counting multiplicity (otherwise, we have an even number
of hi 2 O(Vi) \⌦(Vi), and we will get h = �hi 2 ⌦±(n,q)). These
observations motivate the main result of this section, which we now
prove.

Theorem 12 Let q be a power of 2, V = F4m+2
q , and g 2 ⌦±(4m+ 2,q).

Then g is strongly real in ⌦±(4m+ 2,q) if and only if either of the follow-
ing holds:

(i) There are an even number of elementary divisors (counting multi-
plicity) of g of the form f(t)e with e odd, f(t) self-reciprocal, and
deg

�
f(t)

�
= 4r+ 2, or

(ii) In the orthogonal decomposition V = �Vi, there exists a Vi on
which g has only eigenvalues equal to 1 and such that Vi is not bi-
cyclic with dimension divisible by 4.

Moreover, all real classes in ⌦±(4m+ 2,q) are strongly real.

Proof — We first suppose (i) or (ii) holds. Write V = �Vi as before,
and consider the cases for Vi as in the proof of Proposition 10. If (i)
is true, then since dim(V) = 4m + 2, there is some other Vi in the
orthogonal decomposition such that dim(Vi) ⌘ 2(mod 4). Such a
space is either bicyclic or cyclic and unipotent, in which case we
can choose an inverting involution in the correct coset. If (ii) is true,
then we can again choose an inverting involution in the correct coset,
by Lemma 11 and [14, Propositions 3.4, 3.16, and 3.17].

For the converse, we assume g does not satisfy (i) or (ii), and we
prove that g is not real in ⌦±(4m + 2,q), and this also proves the
second claim. First, by Proposition 10, there is an inverting involution

h 2 O±(4m+ 2,q) \⌦±(4m+ 2,q).
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If k 2 O±(4m + 2,q) is any other inverting involution for h, then
we must have k = ha where a 2 CG(g) and G = O±(4m + 2,q).
Now write V = Vy � Vu, where Vy is the direct sum of all Vi on
which g has eigenvalues different from 1, and Vu is the direct sum of
those on which g has eigenvalues only equal to 1. Write g = gy � gu,
where gy = gVy

and gu = gVu
. From the description of centralizers

given by Wall [21, Section 3.7], it follows that we have the direct
product

CG(g) = CO(Vy)(gy)⇥CO(Vu)(gu). (4.1)

Since g does not satisfy condition (ii), then neither does gu. This im-
plies that gu is an exceptional unipotent element of O(Vu), as defined
in [4, p. 2547]. It then follows from [4, Theorem 2.5 (iia)] that

CO(Vu)(gu) ⇢ ⌦(Vu),

and so the conjugacy class of gu in O(Vu) splits into two conjugacy
classes in ⌦(Vu). From (4.1), the conjugacy class of g = gy � gu in G
must also split into two conjugacy classes in ⌦±(4m+ 2,q), and so

CG(g) ⇢ ⌦±(4m+ 2,q).

Since h 2 G \⌦±(4m+ 2,q), and CG(g) ⇢ ⌦±(4m+ 2,q), then ev-
ery inverting element for g in ⌦±(4m + 2,q) must be in the outer
coset h⌦±(4m+ 2,q). Thus g is not real in ⌦±(4m+ 2,q), giving the
claim. ut

5 Real-valued characters

In this section, we give some results on real-valued irreducible com-
plex characters of finite simple orthogonal groups, and compare them
to the known reality results of their conjugacy classes.

Given a finite group G, we let Irr(G) denote the collection of com-
plex irreducible characters of G, so that each � 2 Irr(G) is afforded
by a complex representation (⇡,W) of G (where W denotes the rep-
resentation space, that is ⇡ : G �! GL(W)). Given a basis B of W,
let [⇡] = [⇡]B denote the associated matrix representation. We say
that (⇡,W) is a real representation if there is a basis B of W such
that [⇡(g)] has all real entries for all g 2 G. The Frobenius–Schur indi-
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cator of � 2 Irr(G), which we denote by "(�), is given by the formula

"(�) =
1

|G|

X

g2G

�(g2),

and takes the values "(�) = 0 if � is not real-valued, "(�) = -1 if �
is real-valued but (⇡,W) is not a real representation, and "(�) = 1
if (⇡,W) is a real representation (see [10, Chapter 4]). In particular, be-
cause the number of real conjugacy classes of G is equal to the num-
ber of real-valued irreducible complex characters of G, then "(�) = ±1
for all � 2 Irr(G) if and only if G is a real group.

There is a twisted variation of the Frobenius–Schur indicator, due
to N. Kawanaka and H. Matsuyama [11], which we will need here.
Let ◆ be an automorphism of the group G, such that ◆2 = 1, and let ◆�
denote the character defined by ◆�(g) = �(◆(g)). If we define "◆(�) by

"◆(�) =
1

|G|

X

g2G

�(g · ◆(g)),

then "◆(�) takes only the values 1,-1, 0 for � 2 Irr(G), and "◆(�) = ±1
if and only if ◆� = �. This twisted variant generalizes the Frobe-
nius–Schur indicator, and has many other interesting properties, but
we do not need them here. We have the following, which is only a
slight variation of [16, Lemma 2.3 (i)].

Lemma 13 Suppose H and G are finite groups with H an index two sub-
group of G such that G = hH, si with s2 = 1. If "(�) = 1 for all � 2 Irr(G),
then "( ) > 0 for all  2 Irr(H). If H is a real group, then "( ) = 1 for
all  2 Irr(H).

Proof — We define ◆ on H by ◆g = sgs-1. Given any  2 Irr(H), the
induced character  G is either irreducible or the sum of two distinct
irreducibles of G. As in the proof of [16, Lemma 2.3], if  H = �
irreducible, we have "(�) = "( ) + "◆( ), while if  H = �1 + �2
with �1,�2 2 Irr(G), we have

"(�1) + "(�2) = "( ) + "◆( ) with "(�1) = "(�2).

Since "(�) = 1 for all � 2 Irr(G), and "( ), "◆( ) can only take the
values 0 or ±1, then in the first case we must either have "( ) = 1
and "◆( ) = 0, or "( ) = 0 and "◆( ) = 1. In the second case, we
must have "( ) = "◆( ) = 1. Thus "( ) > 0 for all  2 Irr(H) as
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claimed. Further, if H is a real group, then "( ) = ±1 for all  , and
so we must have "( ) = 1 for all  2 Irr(H). ut

We may now obtain the following result on the Frobenius–Schur
indicators of the finite simple orthogonal groups.

Theorem 14 Let q be any prime power, n > 1, and H = ⌦±(n,q),
other than the case H = ⌦-(4m + 2,q) with q ⌘ 3(mod 4). Then for
any  2 Irr(H), we have "( ) > 0. That is, if  is a real-valued irre-
ducible character of H, then  is afforded by a real representation. The same
statement holds for the groups P⌦±(n,q), other than P⌦-(4m + 2,q)
with q ⌘ 3(mod 4).

Proof — If q is a power of 2, the statement is proven in [20, Theo-
rems 8.3 and 8.6] and in [19, Theorem 4.2] (note that if q is a power
of 2, then SO(2m+ 1,q) ' Sp(2m,q)). Thus we now assume that q is
a power of an odd prime.

For any ✓ 2 Irr(O±(n,q)), we have "(✓) = 1 by [7, Theorem 1].
For each case, we consider an index 2 subgroup G of O±(n,q) such
that G is strongly real. If n 6= 4m+ 2, then we can take G = SO±(n,q)
by Theorem 2. When n = 4m+2, then we may take G = K±(4m+ 2,q)
by parts (i) and (ii) of Theorem 3. In particular, for each of these
cases G is a real group and O±(n,q) = hG, ti with t any involution
in O±(n,q) \G. It follows from the second statement in Lemma 13
that "(�) = 1 for all � 2 Irr(G). Now [G : H] = 2, and G = hH, si
with s any involution in G \H. It now follows from the first state-
ment in Lemma 13 that "( ) > 0 for all  2 Irr(H).

Now consider the group

eH = P⌦±(n,q) = H/Z,

where Z = Z(H) is the center of H. Given any ! 2 Irr(eH), there corre-
sponds the character  2 Irr(H) defined by  (h) = !(hZ), that is by
inflation (see [10, Lemma 2.22]). It follows by either direct computa-
tion, or the fact that the field of definition for the inflated representa-
tion is unchanged, that "( ) = "(!). The result now follows. ut

We cannot make the same conclusion of Theorem 14 for the group

H = ⌦-(4m+ 2,q)

with q ⌘ 3(mod 4), where to do so it would be enough to show
that H is contained in an index 2 subgroup of O-(4m+ 2,q) that is
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real (but not necessarily strongly real). By Theorem 2, such an index 2
subgroup cannot be SO-(4m+ 2,q). In fact, one can show that both
of the groups

K-(4m+ 2,q) and T-(4m+ 2,q),

with q ⌘ 3(mod 4), contain elements that are not real. That is, in the
exceptional case H = ⌦-(4m+ 2,q) with q ⌘ 3(mod 4), H is not
contained in any real index two subgroup of O-(4m+2,q). We could
also make this conclusion from the above if we construct some

� 2 Irr(⌦-(4m+ 2,q)),

where q ⌘ 3(mod 4), such that "(�) = -1. By Proposition 2.9.1 (vii)
of [12], we have P⌦-(6,q) ' PSU(4,q), and the character table
for PSU(4, 3) reveals the existence of characters of P⌦-(6, 3) which
indeed have Frobenius–Schur indicator -1 [2, p. 54].

Given the results obtained here, we expect that for any values of n
and q, all real classes of ⌦±(n,q) or P⌦±(n,q) are strongly real if
and only if all real-valued irreducible complex characters have Fro-
benius–Schur indicator equal to 1. We hope to complete the proof
of this statement in the sequel, by constructing irreducible complex
characters with Frobenius–Schur indicator -1 of ⌦-(4m + 2,q)
and P⌦-(4m+ 2,q) with q ⌘ 3(mod 4), and showing all real classes
are strongly real in ⌦(2n + 1,q), ⌦+(4m,q), and P⌦+(4m,q)
with q ⌘ 3(mod 4).

Appendix: weakly real elements

Here we construct elements h 2 ⌦-(6,q) and h0 2 ⌦-(10,q),
with q ⌘ 3(mod 4), such that hZ is weakly real in P⌦-(6,q) and h0Z
is weakly real in P⌦-(10,q).

We define the matrix Jn to have 1’s on the main antidiagonal
and 0’s elsewhere, so

Jn =

0

B@
1

. ..

1

1

CA .
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We first consider an element with elementary divisors (t- 1)2,(t- 1)2,
given by

u =

0

BB@

1 -1
1

1 1
1

1

CCA .

If we define a symmetric form on F4
q using the Gram matrix J4, then

this is a split form, and by [1, Proposition 16.30] we have u 2 ⌦+(4,q).
It follows from [1, Proposition 16.34] that the centralizer of u in the
group O+(4,q) is contained completely in ⌦+(4,q). Now note that
the element

s0 =

✓
0 I
I 0

◆

satisfies s0 2 SO+(4,q) and sus-1 = u-1. The -1-eigenspace of s0
is spanned by (1, 0,-1, 0)> and (0, 1, 0,-1)>, and restricting our sym-
metric form defined by J4 to this subspace, with these vectors as a
basis, gives that the symmetric form on this subspace has matrix

✓
0 -2

-2 0

◆
.

Since this form has discriminant a non-square (since -4 is not a
square when q ⌘ 3(mod 4)), then this is a split form on the -1-eigen-
space. By [1, Proposition 16.30], we have s0 62 ⌦+(4,q). Since one
element in SO+(4,q) which conjugates u to its inverse is not in the
group ⌦+(4,q) and the centralizer of u in SO+(4,q) is contained
in ⌦+(4,q), then every element of SO+(4,q) that conjugates u to its
inverse must be in SO+(4,q) \⌦+(4,q).

We also claim that u is not conjugated to its inverse by any ele-
ment of O+(4,q) that squares to -I. By direct computation, such an
element would have to be of the form (just from it conjugating u to
its inverse): 0

BB@

a b c d
0 -a 0 c

c1 d1 a1 b1
0 c1 0 -a1

1

CCA ,

where a2 + cc1 = -1 and ac + ca1 = 0, from the assumption that
this squares to -I. We cannot have c = 0, since otherwise a2 = -1
with q ⌘ 3(mod 4), and so we have a1 = -a. Using the fact that this



60 J. Kim – S. Trefethen – C.R. Vinroot

matrix must preserve the form defined by J4, we obtain cc1 - aa1 = 1,
or a2 + cc1 = 1. This is a contradiction to a2 + cc1 = -1, and so such
an element cannot exist.

We now consider the symmetric form defined by the Gram matrix
✓

J4
I2

◆
,

which defines a non-split form on F6
q when q ⌘ 3(mod 4), and we

consider the element
h =

✓
u

-I2

◆
.

Then h has elementary divisors (t - 1)2, (t - 1)2, t + 1, t + 1, and h
belongs to ⌦-(6,q) by [1, Proposition 16.30].

Lemma 15 The element h 2 ⌦-(6,q) is such that hZ is weakly real
in P⌦-(6,q) when q ⌘ 3(mod 4).

Proof — First, take any element x0 2 SO-(2,q) \⌦-(2,q), and take
the element s0 2 SO+(4,q) \⌦+(4,q) defined above. Then we have

✓
s0

x0

◆
2 ⌦-(6,q),

and this element conjugates h to its inverse. Thus h is real in⌦-(6,q)
and hZ is real in P⌦-(6,q).

To prove that hZ is not strongly real in P⌦-(6,q), we first note
that h cannot be conjugate to -h-1 since these two elements have dif-
ferent sets of elementary divisors. So we consider only the possibility
that shs-1 = h-1 with s2 = ±I. Since u 2 ⌦+(4,q) and -I 2 ⌦-(2,q)
have distinct eigenvalues, then [21, Case (C), (iv) of 2.6] yields that

CO-(6,q)(h) = CO+(4,q)(u)⇥CO-(2,q)(-I) = C⌦+(4,q) ⇥ O-(2,q),

since the centralizer of u in O+(4,q) is contained in ⌦+(4,q) (men-
tioned above). That is, we have C⌦-(6,q)(h) = C⌦+(4,q)(u)⇥⌦-(2,q).
We now have the element

(s0, x0) 2 (SO+(4,q) \⌦+(4,q))⇥ (SO-(2,q) \⌦-(2,q)),

which conjugates h to its inverse, and every such element in ⌦-(6,q)
must be a product of this with an element of the centralizer of h
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in ⌦-(6,q). So any element s 2 ⌦-(6,q) such that shs-1 = h-1 and
s2 = ±I must be of the form s = (�, ⌧) where � 2 SO+(4,q) \⌦+(4,q),
⌧ 2 SO-(2,q) \⌦-(2,q), �2 = ±I, and ⌧2 = ±I. As proven above,
there is no element of O+(4,q) that conjugates u to its inverse that
squares to -I, and so we must assume �2 = I and ⌧2 = I. How-
ever, SO-(2,q) is cyclic of order q+ 1, and so the only elements ⌧
in SO-(2,q) that square to I are ±I. But ±I are both elements
of ⌦-(2,q), contradicting that such an element would have to come
from the other coset in SO-(2,q). Thus no such s 2 ⌦-(6,q) exists,
and we have hZ is weakly real in P⌦-(6,q). ut

We next consider the symmetric form on F6
q defined by the Gram

matrix ✓
J3

J3

◆
,

which is a non-split form when q ⌘ 3(mod 4), and we consider the
element

u1 =

0

BBBBBB@

1 -1 �
1 1

1
1 -1 �

1 1
1

1

CCCCCCA
,

where � 2 Fq such that 2� + 1 = 0 (so if q is a power of p, we
can take � = (p- 1)/2). Then u1 preserves the non-split form above,
has elementary divisors (t- 1)3, (t- 1)3, and since u1 is unipotent
then u1 2 ⌦-(6,q). We need the following.

Lemma 16 Any involution in SO-(6,q) that conjugates the element u1

to its inverse, must be an element of ⌦-(6,q).

Proof — A somewhat tedious but straightforward calculation re-
veals that any orthogonal involution that conjugates u1 to its inverse,
using the above Gram matrix, must be of the form

0

BBBBBB@

a a1 a2 c c1 c2
-a a1 -c c1

a c
c c1 c2 b b1 b2

-c c1 -b b1
c b

1

CCCCCCA
,
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such that a2 = b2, a2 + c2 = 1, and c(a + b) = 0, among other
required relations. Thus either c = 0 or a = -b. The determinant of
this matrix is (ab- c2)3, and so for this to be in SO-(6,q) we must
have (ab- c2)3 = 1. If c 6= 0, then a = -b, which gives

(ab- c2)3 = (-a2 - c2)3 = -1.

Thus we must have c = 0 and a3b3 = 1, and since then a2 = b2 = 1,
we must have a = b = ±1. It follows that an involution in SO-(6,q)
that conjugates u1 to its inverse must be either of the form

0

BBBBBB@

1 a1 a2 c1 c2
-1 a1 c1

1
c1 c2 1 b1 b2

c1 -1 b1
1

1

CCCCCCA
,

such that a2

1
+ c2

1
+ 2a2 = b2

1
+ c2

1
+ 2b2 = c1(a1 + b1) + 2c2 = 0, or

of the form 0

BBBBBB@

-1 a1 a2 c1 c2
1 a1 c1

-1
c1 c2 -1 b1 b2

c1 1 b1
-1

1

CCCCCCA
,

such that a2

1
+ c2

1
- 2a2 = b2

1
+ c2

1
- 2b2 = c1(a1 + b1)- 2c2 = 0.

In order to determine whether these involutions are elements
of ⌦-(6,q), we must calculate whether the restriction of the symmet-
ric form to the -1-eigenspace of the involution is split or non-split. In
the first case above, the -1-eigenspace is 2-dimensional and spanned
by the vectors

(-a1/2, 1, 0,-c1/2, 0, 0)>, (-c1/2, 0, 0,-b1/2, 1, 0)>.

In terms of this ordered eigenbasis, the matrix for the symmetric
form restricted to this eigenspace is I2, which is a non-split form
by [1, p. 222], and so this involution is an element of ⌦-(6,q)
by [1, Proposition 16.30]. In the second case above, the -1-eigenspace
of the involution is spanned by the vectors (1, 0, 0, 0, 0, 0)>,
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(0,-a1/2, 1, 0,-c1/2, 0)>, (0, 0, 0, 1, 0, 0)>, and (0,-c1/2, 0, 0,-b1/2, 1)>.
When restricting our symmetric form to this eigenspace, then with
respect to this ordered basis, the restricted symmetric form has Gram
matrix 0

BB@

0 1 0 0
1 (a2

1
+ c2

1
)/4 0 c1(a1 + b1)/4

0 0 0 1
0 c1(a1 + b1)/4 1 (b2

1
+ c2

1
)/4

1

CCA ,

which has determinant 1. It follows this is a split form by [1, p. 222],
and the involution is again an element of ⌦-(6,q) by [1, Proposi-
tion 16.30], giving the result. ut

Remark The centralizer of u1 in SO-(6,q) contains elements both
in ⌦-(6,q) and its other coset, and so while there are elements out-
side of ⌦-(6,q) that conjugate u1 to its inverse, there are no such
involutions.

Finally, we consider the element

h0 =

✓
u1

-u

◆
,

where u is the element of ⌦+(4,q) described above. Then h0 is an
element of ⌦-(10,q) with respect to the symmetric form defined by
the Gram matrix 0

@
J3

J3
J4

1

A ,

and h0 has elementary divisors (t- 1)3, (t- 1)3, (t+ 1)2, (t+ 1)2.

Lemma 17 The element h0 2 ⌦-(10,q) is such that h0Z is weakly real
in P⌦-(10,q) when q ⌘ 3(mod 4).

Proof — It was shown above that the element u is conjugated to its
inverse by elements in SO+(4,q) that are not elements of ⌦+(4,q),
and that u is not conjugated to its inverse by any element in O+(4,q)
that squares to -I. Thus both of these statements hold for -u as well.

As mentioned above, the centralizer of u1 contains elements
in SO-(6,q) that are not in ⌦-(6,q), which follows from [1, Propo-
sition 16.34]. Taking any element of ⌦-(6,q) that conjugates u1 to
its inverse (for example, any of the involutions described
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above), and multiplying it by an element of the centralizer of u1

from SO-(6,q) \⌦-(6,q), yields an element y1 from that outer coset
that conjugates u1 to its inverse. We have already found an involu-
tion s0 from SO+(4,q) \⌦+(4,q) that conjugates -u to its inverse,
and so now the block diagonal element (y1, s0) 2 ⌦-(10,q) conju-
gates h0 = (u1,-u) to its inverse. Thus h0Z is real in P⌦-(10,q).
Next we show that h0Z is not strongly real in P⌦-(10,q), and note
that we cannot have h0 conjugate to -h-1

0
since these elements have

different sets of elementary divisors. So we must show there is
no s 2 ⌦-(10,q) such that sh0s

-1 = h-1 and s2 = ±I.
Since u1 and -u have distinct eigenvalues, and since the central-

izer of -u in O+(4,q) is completely contained in ⌦+(4,q) by [1,
Proposition 16.34], then it follows from [21, Case (C), (iv) of 2.6] that
we have

C⌦-(10,q)(h0) = C⌦-(6,q)(u1)⇥C⌦+(4,q)(-u).

Since there is an element

(y1, s0) 2 (SO-(6,q) \⌦-(6,q))⇥ (SO+(4,q) \⌦+(4,q)),

such that y1 conjugates u1 to its inverse and s0 conjugates -u to
its inverse, then from the structure of the centralizer of h0, any el-
ement of ⌦-(10,q) that conjugates h0 to its inverse must take this
form. However, there is no element in SO+(4,q) \⌦+(4,q) that con-
jugates -u to its inverse and that squares to -I, so there is no such
conjugating element for h0 in ⌦-(10,q). Since there is no involution
in SO-(6,q) \⌦-(6,q) that conjugates u1 to its inverse by Lemma 16,
then there can be no involution in ⌦-(10,q) that conjugates h0 to its
inverse. Thus h0Z is not strongly real in P⌦-(10,q). ut
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